首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Adriamycin-resistant variants derived from V79 Chinese hamster cells were examined for their radiation response properties. A stable resistant cell line (77A) demonstrated a significant reduction in the extrapolation number of the single-dose radiation survival curve. Second-step mutants from 77A cells exhibited a spectrum of radiation response states including decreased D0 values and large extrapolation numbers. A highly Adriamycin-resistant line (LZ) was found to be radiation sensitive with increased capacity for the accumulation of sublethal radiation injury. LZ cells are known to contain double-minute chromosomes and an amplified gene for the multidrug phenotype and to exhibit multidrug resistant properties. These cells require the presence of Adriamycin in their growth medium to maintain their pleiotropic characteristics. LZ cells became more resistant to radiation following reversion to an intermediate Adriamycin response as the consequence of growth in Adriamycin-free medium. Reverted cells also lost their large capacity for sublethal damage. It is suggested that detailed study of these mutants may provide insight into the identification of radiation-sensitive sites and their relationship to the genetic changes characterizing Adriamycin-resistant cell lines.  相似文献   

2.
Cook J 《Radiation research》2001,155(2):304-310
The cell cycle effects, alteration in radiation response, and inherent cytotoxicity of the metal chelators mimosine, desferrioxamine (DFO), N,N'-bis(o-hydroxybenzyl)-ethylenediamine-N,N'-diacetic acid (HBED), and deferiprone (L1) were studied in exponentially growing Chinese hamster V79 cells. Incubation of cells with 200-1000 microM mimosine for 12 h reduced clonogenic survival to 50-60%, while incubation for 24 h reduced survival further to 0.5%. Mimosine treatment resulted in cell cycle blocks at the G(1)/S-phase border and in S phase. Pulse labeling with 5-bromodeoxyuridine indicated that the S-phase cells ceased to actively replicate DNA after only 2 h of mimosine treatment and were unable to replicate DNA for extended periods. Treatment of V79 cells with 600 microM mimosine for 12 h resulted in radiosensitization, yielding a sensitizer enhancement ratio (SER) of 2.7 +/- 0.3 at the 10% survival level. To study the kinetics of the sensitization, V79 cells were incubated with mimosine for various times up to 12 h and irradiated with a single 10-Gy dose of X rays. It was found that the radiosensitization increased continually up to 8 h (from a 3- to a 100-fold difference in survival) and then reached a plateau after 8 h. Mimosine also equally radiosensitized human lung cancer cells having either a normal or mutated TP53 gene, suggesting a TP53-independent mechanism. To test whether iron binding by mimosine was responsible for the observed radiosensitization, additional experiments were performed using the iron chelators DFO, HBED and L1. V79 cells treated with 500 microM of these agents for 8 h followed by various doses of X rays gave SERs similar to that for mimosine (2.0-2.7). These studies indicate that metal chelators are potent radiosensitizers in V79 and human cells. Importantly, when the DFO was preloaded together with Fe(3+) [Fe(III)-DFO], the radiosensitizing effect was lost. These preliminary findings warrant further studies for the possible application of metal chelators as radiation sensitizers in radiation oncology.  相似文献   

3.
A multi-drug-resistant cell line selected in increasing concentrations of Adriamycin and designated LZ (J. A. Belli, Radiat. Res. 119, 88-100, 1989) is shown to exhibit a survival response characterized by radiation sensitivity and Adriamycin resistance. To determine if this response is due to alterations in either the initial levels of damage induced or the repair of DNA damage, LZ cells and the parental V79 cells were exposed to either radiation or Adriamycin and the damage and repair were measured with alkaline or nondenaturing filter elution. After exposure to radiation, induction and repair of both single-strand and double-strand breaks were equivalent. LZ cells exposed to 100 micrograms/ml Adriamycin for 1 h contained no measurable damage while the same treatment induced breaks and crosslinks in V79 cells. Pretreatment of LZ cells for 1 h with Adriamycin before irradiation did not alter either the initial levels of induced damage or the repair of strand breakage. These results suggest that (1) mechanisms other than differential induction and repair of strand breaks are responsible for the increased radiation sensitivity in LZ, and (2) the lack of Adriamycin-induced DNA damage in LZ is at least partially responsible for the increased cell survival after treatment.  相似文献   

4.
5.
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters play a key role in the development of multidrug resistance (MDR) in cancer cells. P-glycoprotein (P-gp) and multidrug resistance-associated protein 1 (MRP1) are important proteins in this superfamily which are widely expressed on the membranes of multidrug resistance (MDR) cancer cells. Besides, upregulation of cellular autophagic responses is considered a contributing factor for MDR in cancer cells. We designed a liposome system co-encapsulating a chemotherapeutic drug (doxorubicin hydrochloride, DOX) and a typical autophagy inhibitior (chloroquine phosphate, CQ) at a weight ratio of 1:2 and investigated its drug resistance reversal mechanism. MTT assay showed that the IC50 of DOX/CQ co-encapsulated liposome in DOX-resistant human breast cancer cells (MCF7/ADR) was 4.7?±?0.2?μM, 5.7-fold less than that of free DOX (26.9?±?1.9 μM), whereas it was 19.5-fold in doxorubicin-resistant human acute myelocytic leukemia cancer cells (HL60/ADR) (DOX/CQ co-encapsulated liposome 1.2?±?0.1?μM, free DOX 23.4?±?2.8?μM). The cellular uptake of DOX increased upon addition of free CQ, indicating that CQ may interact with P-gp and MRP1; however, the expressions of P-gp and MRP1 remained unchanged. In contrast, the expression of the autophagy-related protein LC3-II increased remarkably. Therefore, the mechanism of MDR reversal may be closely related to autophagic inhibition. Evaluation of anti-tumor activity was achieved in an MCF-7/ADR multicellular tumor spheroid model and transgenic zebrafish model. DOX/CQ co-encapsulated liposome exerted a better anti-tumor effect in both models than that of liposomal DOX or DOX alone. These findings suggest that encapsulating CQ with DOX in liposomes significantly improves the sensitivity of DOX in DOX-resistant cancer cells.  相似文献   

6.
In an earlier report [H. Utsumi and M. M. Elkind, Radiat. Res. 119, 534-541 (1989)], it was shown that the survival of V79 Chinese hamster cells treated with bleomycin was significantly reduced by a posttreatment with anisotonic phosphate-buffered saline in a manner that was qualitatively similar to what had been observed with X rays [H. Utsumi and M. M. Elkind, Radiat. Res. 77, 346-360 (1979)]. This similarity suggested that similarities might exist in the cyclic variation in the suppression of the repair of potentially lethal damage following treatment with bleomycin or X rays. Accordingly, the age-response variations of survival, with or without a posttreatment challenge with hypertonic buffer, were compared in the same experiment when cells were treated with either agent. Although a significant difference was observed near the G1/S-phase border, in general the damage induced by the two agents showed a similar dependence on cell age, and posttreatment with hypertonic buffer enhanced cell killing appreciably following either treatment. The results support the inference that bleomycin is a radiomimetic agent.  相似文献   

7.
Chen YJ  Kuo CD  Chen SH  Chen WJ  Huang WC  Chao KS  Liao HF 《PloS one》2012,7(5):e37006
Multi-drug resistance (MDR), an unfavorable factor compromising treatment efficacy of anticancer drugs, involves upregulated ATP binding cassette (ABC) transporters and activated Sonic hedgehog (Shh) signaling. By preparing human breast cancer MCF-7 cells resistant to doxorubicin (DOX), we examined the effect and mechanism of norcantharidin (NCTD), a small-molecule synthetic compound, on reversing multidrug resistance. The DOX-prepared MCF-7R cells also possessed resistance to vinorelbine, characteristic of MDR. At suboptimal concentration, NCTD significantly inhibited the viability of DOX-sensitive (MCF-7S) and DOX-resistant (MCF-7R) cells and reversed the resistance to DOX and vinorelbine. NCTD increased the intracellular accumulation of DOX in MCF-7R cells and suppressed the upregulated the mdr-1 mRNA, P-gp and BCRP protein expression, but not the MRP-1. The role of P-gp was strengthened by partial reversal of the DOX and vinorelbine resistance by cyclosporine A. NCTD treatment suppressed the upregulation of Shh expression and nuclear translocation of Gli-1, a hallmark of Shh signaling activation in the resistant clone. Furthermore, the Shh ligand upregulated the expression of P-gp and attenuated the growth inhibitory effect of NCTD. The knockdown of mdr-1 mRNA had not altered the expression of Shh and Smoothened in both MCF-7S and MCF-7R cells. This indicates that the role of Shh signaling in MDR might be upstream to mdr-1/P-gp, and similar effect was shown in breast cancer MDA-MB-231 and BT-474 cells. This study demonstrated that NCTD may overcome multidrug resistance through inhibiting Shh signaling and expression of its downstream mdr-1/P-gp expression in human breast cancer cells.  相似文献   

8.
Galectin-1 (GAL1), a β-galactoside-binding protein abundantly expressed in the tumor microenvironment, has emerged as a key mechanism of chemoresistance developed by different tumors. Although increased expression of GAL1 is a hallmark of hepatocellular carcinoma (HCC) progression, aggressiveness and metastasis, limited information is available on the role of this endogenous lectin in HCC resistance to chemotherapy. Moreover, the precise mechanisms underlying this effect are uncertain. HCC has evolved different mechanisms of resistance to chemotherapy including those involving the P-glycoprotein (P-gp), an ATP-dependent drug efflux pump, which controls intracellular drug concentration. Here, we investigated the molecular mechanism underlying GAL1-mediated chemoresistance in HCC cells, particularly the involvement of P-gp in this effect. Our results show that GAL1 protected HepG2 cells from doxorubicin (DOX)- and sorafenib-induced cell death in vitro. Accordingly, GAL1-overexpressing HepG2 cells generated DOX-resistant tumors in vivo. High expression of GAL1 in HepG2 cells reduced intracellular accumulation of DOX likely by increasing P-gp protein expression rather than altering its membrane localization. GAL1-mediated increase of P-gp expression involved activation of the phosphatidylinositol-3 kinase (PI3K) signaling pathway. Moreover, ‘loss-of-function’ experiments revealed that P-gp mediates GAL1-driven resistance to DOX, but not to sorafenib, in HepG2 cells. Conversely, in PLC/PRF/5 cells, P-gp protein expression was undetectable and GAL1 did not control resistance to DOX or sorafenib, supporting the critical role of P-gp in mediating GAL1 effects. Collectively, our findings suggest that GAL1 confers chemoresistance in HCC through mechanisms involving modulation of P-gp, thus emphasizing the role of this lectin as a potential therapeutic target in HCC.Subject terms: Glycobiology, Liver cancer  相似文献   

9.
P-glycoprotein is an ATP-binding-cassette transporter that pumps many structurally unrelated drugs out of cells through an ATP-dependent mechanism. As a result, multidrug-resistant cells that overexpress P-glycoprotein have reduced intracellular steady-state levels of a variety of chemotherapeutic agents. In addition, increased cytosolic pH has been a frequent finding in multidrug-resistant cells that express P-glycoprotein, and it has been proposed that this consequence of P-glycoprotein expression may contribute to the lower intracellular levels of chemotherapeutic agents. In these studies, we measured intracellular pH and the rate of acid extrusion in response to an acid load in two cells with very different levels of P-glycoprotein expression: V79 parental cells and LZ-8 multidrug resistant cells. Compared to the wild-type V79 cells, LZ-8 cells have a lower intracellular pH and a slower recovery of intracellular pH after an acid load. The data also show that LZ-8 cells have reduced ability to extrude acid, probably due to a decrease in Na+/H+ exchanger activity. The alterations in intracellular pH and acid extrusion in LZ-8 cells are reversed by 24-h exposure to the multidrug-resistance modulator verapamil. The lower intracellular pH in LZ-8 indicates that intracellular alkalinization is not necessary for multidrug resistance. The reversal by verapamil of the decreased acid-extrusion suggests that P-glycoprotein can affect other membrane transport mechanism.  相似文献   

10.
Synchronized Chinese hamster cells were irradiated in air and in nitrogen at various points in the cell cycle. The irradiations were carried out after flushing with air or nitrogen with the medium removed from the mono-layer of cells. Under these conditions the dose-modifying factor, or oxygen enhancement ratio, was between 2.0 and 2.3 for survival in asynchronous cells. The variation in x-ray sensitivity evident as the cell progresses through its cycle was not differentially affected by its state of oxygenation at the time of irradiation. The x-ray age-response curves for irradiation in air and in nitrogen were similar at each point, except for the dose-modifying factor. This was true not only for the cells of a normal short generation time (10 hours) subline of the V79 line but also for a longer generation time (with longer GC period) subline derived from a "small colony". The variation in radiosensitivity as the cell progresses through its cycle must therefore be due to factors other than change in oxygen tension within the cell. The fact that the same variation in x-ray sensitivity with age exists for hypoxic cells as for well-oxygenated cells has a bearing on the radiotherapy of tumors which contain cells at low oxygen tensions.  相似文献   

11.
A new technique is described for measuring cell survival as a function of cell cycle position using flow cytometric cell sorting on the basis of electronic volume signals. The sorting of cells into different cell age compartments is demonstrated for three different cell lines commonly used in radiobiological research. Using flow cytometric DNA content analysis and [3H]thymidine autoradiography of the sorted cell populations, we demonstrate that the resolution of the age compartment separation is as good as or better than that reported for other cell synchronizing techniques. The variation in cell survival as a function of position in the cell cycle after a single dose of radiation as measured by volume cell sorting is similar to that determined by other cell synchrony techniques. This new method has several advantages, including: no treatment of the cells is required, thus, this method is noncytotoxic; no cell cycle progression is needed to obtain different cell age compartments; the cell population can be held in complete growth medium at any desired temperature during sorting; and a complete radiation age-response assay can be plated in 2 h. The application of this method to problems in radiobiology and chemotherapy is discussed, along with some of the technical limitations.  相似文献   

12.
We identified four breast cancer cell lines and one stomach cancer cell line resistant to the cytotoxic effects of doxorubicin (DOX) and examined their sensitivity to other chemotherapeutic agents. SP600125, an inhibitor of the Jnk pathway, reduced the cellular viability of all five DOX-resistant cancer cell lines. Jnk1 siRNA also reduced the viability of the one DOX-resistant cell line in which it was tested. Similar results were produced in an in vivo mouse model, in which the volume of tumors derived from the DOX-resistant cell line was reduced more effectively by treatment with SP600125 than by treatment with DOX, whereas those from a DOX-sensitive cell line were reduced only by DOX treatment. Overall, these results may contribute to the development of chemotherapeutic treatments for patients with DOX-resistant tumors.  相似文献   

13.
Survival parameters and immediate DNA damage induced by 60Co gamma rays, 50-kVp X rays, and Janus fission-spectrum neutrons in human epithelial P3 cells (derived from an embryonic teratocarcinoma) are compared with those for Chinese hamster lung V79 cells. DNA damage caused by X and gamma irradiation, measured by alkaline elution methods, is the same in both cell types, whereas the P3 cells are about two times more sensitive (as measured by Do ratios of the final survival curve slope) to the lethal effects of these radiations than are the V79 cells. Human P3 cells are also more sensitive to the lethal effects of fission-spectrum neutrons than V79 cells. Survival experiments with split radiation doses and hypertonic salt treatment indicate that both P3 cells and V79 cells can recover from radiation-induced damage efficiently.  相似文献   

14.
Nitrosoureas inactivate cellular glutathione reductase. N,'N'1,3-bis(trans-4-hydroxycyclohexyl)-N'-nitrosoureas (BCyNU), a nitrosourea reported to selectively inhibit glutathione reductase (GR) activity, was examined to determine if it could be used as a means to inhibit cellular levels of this enzyme in radiobiology studies. Confirmation of drug-induced inhibition of GR activity was demonstrated using a cell-free model system employing purified GR. Cellular studies with Chinese hamster V79A03 showed that BCyNU decreased cellular glutathione content concomitant with an inhibition of specific GR activity. Under relatively nontoxic conditions, cellular exposure to BCyNU (25 microM, 0.25 h) either before or after radiation treatment, increased cellular radiosensitivity with the optimum time for drug addition being immediately following radiation. At a BCyNU dosage which produced less than or equal to 5% cell toxicity, a marked decrease in radioresistance was characterized as a reduction in both Dq (24 +/- 1.5%) and Do (8 +/- 0.5%) concomitant with a 25 +/- 2% decrease in cellular glutathione reductase (GR) activity. At cytotoxic drug dosages (25 microM, 1 h; cell survival 79 +/- 7%), a marked radiosensitization manifested by a 1.25 +/- .07-fold reduction in the Dq was observed concomitant with a 49 +/- 4% decrease in GR activity. Using cells enriched in different stages of the cell cycle, BCyNU caused cell-age dependent cytotoxicity with preferential killing of cells in the radioresistant late-S-phase, a likely explanation for its radiosensitizing capabilities at high drug dosages. Data obtained at nontoxic drug dosages suggest that GR-inactivation may be an important component of cellular response to free-radical induced damage.  相似文献   

15.
The radiation dose to cells in vitro from intracellular indium-111   总被引:1,自引:0,他引:1  
Most of the radionuclides used in nuclear medicine emit low energy Auger electrons following radioactive decay. These emissions, if intracellular, could irreparably damage the radiosensitive structures of the cell. The resulting radiation dose, which is a measure of biological damage in the affected cell, could be many times the average radiation dose to the associated organ. In this series of experiments, the radiation dose to the nucleus of a chinese hamster V79 cell was determined for the intracellular radiopharmaceutical 111indium-oxine. Assuming the cell nucleus to be the radiosensitive volume, the radiation dose would be primarily due to the low energy Auger electrons. A much smaller dose would be absorbed from the penetrating X- and gamma-rays and internal conversion electrons released from other radiolabelled cells in the culture. The radiation dose to the cell from the intranuclear decay of 111In was empirically established from cell survival studies to be 3.5 mGy/decay, using cobalt-60 as a reference radiation. The average dose to V79 cells from extracellular 111In (i.e., from 111In located outside the target cell) was calculated to be 5.8 pGy/decay. This suggests that for an intracellular radiopharmaceutical, the radiation dose of consequence would be delivered by the low energy Auger electrons. In contrast, Auger electrons from an extracellular radiopharmaceutical could not directly damage the cell nucleus and therefore would not contribute to the radiation dose.  相似文献   

16.
Further studies are described with a radiation-sensitive clone of V79 Chinese hamster cells, designated V79-AL162/S-10. Extended postirradiation treatment with caffeine causes V79-AL162/S-10 cells to respond like repair-competent V79 cells, but both kinds of cells suffer enhanced killing by caffeine, in a similar fashion, when the postirradiation treatment period is relatively brief. Extended postirradiation treatment of repair-competent cells causes them to respond like sensitive cells without caffeine post-treatment. Treating irradiated V79-AL162/S-10 cells with hypertonic saline appreciably reduces the survival rescue which can be effected by caffeine. This latter observation leads to the inference that the sectors of damage affected by anisotonic shock and caffeine post-treatment overlap. From these and other results we propose that the DNA replicational machinery of the cell is the locus of action of these radiation damage/repair processes.  相似文献   

17.
Cultured V79 Chinese hamster fibroblast cells were exposed to continuous radiation, frequency 7.7 GHz, power density 0.5 mW/cm2 for 15, 30 and 60 min. The effect of microwave radiation on cell survival and on the incidence and frequency of micronuclei and structural chromosome aberrations was investigated. The decrease in the number of irradiated V79 cell colonies was related to the power density applied and to the time of exposure. In comparison with the control samples there was a significantly higher frequency of specific chromosome aberrations such as dicentric and ring chromosomes in irradiated cells. The presence of micronuclei in irradiated cells confirmed the changes that had occurred in chromosome structure. These results suggest that microwave radiation can induce damage in the structure of chromosomal DNA.  相似文献   

18.
Postirradiation incubation of V79 Chinese hamster cells with inhibitors of poly(ADP-ribose) synthesis was found to potentiate the killing of cells by X rays. Potentiation increased with incubation time and with concentration of the inhibitor. Preirradiation incubation had only a small effect. The enhanced response correlated well with the known extent of the inhibition of poly(ADP-ribose) synthesis. A radiation-sensitive line, V79- AL162 /S-10, was affected to a lesser extent than the normal cells. Cells repaired the radiation damage with which the inhibitors interacted within 1 hr, a process that has similar kinetics to what is observed when a postirradiation treatment with hypertonic buffer is used [H. Utsumi and M. M. Elkind , Radiat . Res. 77, 346-360 (1979)]. However, the sectors of damage affected by inhibitors of poly(ADP-ribose) synthesis and hypertonic buffer do not entirely overlap. The inhibitor nicotinamide enhanced the killing mainly of late S-phase cells and did not affect cells at the G1/S border. It is concluded that the repair process(es) involving poly(ADP-ribose) synthesis is important for cell survival in repair-competent cells and that the radiation-sensitive cells that were examined are partially deficient in a repair pathway in which poly(ADP-ribose) participates.  相似文献   

19.
Ji BS  He L  Liu GQ 《Life sciences》2005,77(18):2221-2232
P-glycoprotein-mediated drug efflux can yield a multidrug resistance (MDR) phenotype that is associated with a poor response to cancer chemotherapy. Development of safe and effective MDR reversing agents is an important approach in the clinic. The aim of this study was to observe the effects of CJX1, an amlodipine derivative, on the inhibition of P-gp function and P-gp-mediated MDR in K562/DOX cells and parental K562 cells. Based on the flow cytometric technology, the uptake, accumulation and efflux of rhodamine123 (Rh123) were detected in these cells by measuring Rh123-associated mean fluorescence intensity (MFI). The effects of CJX1 on the doxorubicin cytotoxicity were evaluated by assaying for MTT (3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium bromide) reduction and the reversal fold (RF) values. The DNA content, percentage of apoptosis and cell cycle analysis were monitored with flow cytometry. Intracellular accumulation of doxorubicin was also assessed by the determination of doxorubicin-associated MFI. Verapamil was employed as a comparative agent. Incubation of K562/DOX cells with CJX1 caused a marked increase in uptake and a notable decrease in efflux of Rh123, No such results were found in parental K562 cells. The inhibitory effect of the agent of P-gp function was reversible, but it persisted at least for 90 min after removal of 2.5 microM CJX1 from incubation medium. The doxorubicin-induced cytotoxicity, apoptosis and cell cycle perturbations were significantly potentiated by CJX1. The intracellular accumulation of doxorubicin was enhanced in the presence of various concentrations of CJX1. The CJX1 exhibited potent effects in vitro in the reversal of P-gp-mediated MDR, suggesting that the compound may become a candidate of effective MDR reversing agent in cancer chemotherapy.  相似文献   

20.
Diphenyl diselenide (DPDS) is an electrophilic reagent used in the synthesis of a variety of pharmacologically active organic selenium compounds. Studies have shown its antioxidant, hepatoprotective, neuroprotective, anti-inflammatory, and antinociceptive effects. We recently showed the antioxidant effect of DPDS in V79 cells, and established the beneficial and toxic doses of this compound in this cell line. Here, we report the antigenotoxic and antimutagenic properties of DPDS, investigated by using a permanent lung fibroblast cell line derived from Chinese hamsters. We determined the cytotoxicity by clonal survival assay, and evaluated DNA damage in response to several mutagens by comet assay and micronucleus test in binucleated cells. In the clonal survival assay, at concentrations ranging from 1.62 to 12.5microM, DPDS was not cytotoxic, while at concentrations up to 25microM, it significantly decreased survival. The treatment with this organoselenium compound at non-cytotoxic dose range increased cell survival after challenge with hydrogen peroxide, methyl-methanesulphonate, and UVC radiation, but did not protect against 8-methoxypsoralen plus UVA-induced cytotoxicity. In addition, the treatment prevented induced DNA damage, as verified in the comet assay. The mutagenic effect of these genotoxins, as measured by the micronucleus test, similarly attenuated or prevented cytotoxicity and DNA damage. Treatment with DPDS also decreased lipid peroxidation levels after exposure to hydrogen peroxide MMS, and UVC radiation, and increased glutathione peroxidase activity in the extracts. Our results clearly demonstrate that DPDS at low concentrations presents antimutagenic properties, which are most probably due to its antioxidant properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号