首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study aimed to evaluate β-galactosidase production by liquid-state fermentation using an experimental design and response surface methodology. A culture medium containing lactose and analytical grade glycerol was formulated to maximize β-galactosidase production. The effects of the pH, lactose, and glycerol concentration on the enzyme production were studied using a Central Composite Design (CCD; 23 plus central points), followed by a Central Composite Rotatable Design (CCRD; 23 plus axial and central points). The conditions that maximized β-galactosidase production were: lactose concentration of 20?g?L?1, glycerol concentration of 60?g?L?1, and pH 5.0. Under these conditions, the highest enzymatic activity was 40.7?U?mL?1. Glycerol and lactose were replaced by residual glycerin and whey respectively, according to the best condition obtained in CCRD, reaching enzymatic values of 31.8?U?mL?1, and thus demonstrating to be great alternative sources for β-galactosidase production.  相似文献   

2.
In the present investigation Thalassospira frigidphilosprofundus, a novel species from the deep waters of the Bay of Bengal, was explored for the production of cold-active β-galactosidase by submerged fermentation using marine broth medium as the basal medium. Effects of various medium constituents, namely, carbon, nitrogen source, pH, and temperature, were investigated using a conventional one-factor-at-a-time method. It was found that lactose, yeast extract, and bactopeptones are the most influential components for β-galactosidase production. Under optimal conditions, the production of β-galactosidase was found to be 3,864 U/mL at 20 ± 2°C, pH 6.5 ± 0.2, after 48 hr of incubation. β-Galactosidase production was further optimized by the Taguchi orthogonal array design of experiments and the central composite rotatable design (CCRD) of response surface methodology. Under optimal experimental conditions the cold-active β-galactosidase enzyme production from Thalassospira frigidphilosprofundus was enhanced from 3,864 U/mL to 10,657 U/mL, which is almost three times higher than the cold-active β-galactosidase production from the well-reported psychrophile Pseudoalteromonas haloplanktis.  相似文献   

3.
A new low-cost β-galactosidase (lactase) preparation for whey permeate saccharification was developed and characterized. A biocatalyst with a lactase activity of 10 U/mg, a low transgalactosylase activity and a protein content of 0.22 mg protein/mg was obtained from a fermenter culture of the fungus Penicillium notatum. Factors influencing the enzymatic hydrolysis of lactose, such as reaction time, pH, temperature and enzyme and substrate concentration were standardized to maximize sugar yield from whey permeate. Thus, a 98.1% conversion of 5% lactose in whey permeate to sweet (glucose-galactose) syrup was reached in 48 h using 650 β-galactosidase units/g hydrolyzed substrate. After the immobilization of the acid β-galactosidase from Penicillium notatum on silanized porous glass modified by glutaraldehyde binding, more than 90% of the activity was retained. The marked shifts in the pH value (from 4.0 to 5.0) and optimum temperatures (from 50°C to 60°C) of the solid-phase enzyme were observed and discussed. The immobilized preparation showed high catalytic activity and stability at wider pH and temperature ranges than those of the free enzyme, and under the best operating conditions (lactose, 5%; β-galactosidase, 610–650 U/g lactose; pH 5.0; temperature 55°C), a high efficiency of lactose saccharification (84–88%) in whey permeate was achieved when lactolysis was performed both in a batch process and in a recycling packed-bed bioreactor. It seems that the promising results obtained during the assays performed on a laboratory scale make this immobilizate a new and very viable preparation of β-galactosidase for application in the processing of whey and whey permeates.  相似文献   

4.
The effects of phytate on the hydrolysis of lactose with β-galactosidases from bovine liver and Escherichia coli were investigated. The activities of both β-galactosidases were decreased to the same extent by increased concentrations of phytate. The rates of inhibition of β-galactosidase activity from E. coli in a reaction mixture containing 10 mm of phytate were 78.9% and 64.4%, respectively, in the absence of and with 4 mm of Mg2 +. Therefore, it was found that the stimulatory effect of Mg2+ was hardly affected by the presence of phytate in the range from 2 to 10 mm. The β-galactosidase activity was also not influenced by preincubating β-galactosidase or lactose with phytate. Kinetic studies showed that the inhibition of β-galactosidase activity by phytate was of an uncompetitive type with a Ki value of 3.46 mm. Therefore, it is considered that phytate may interact with a complex of ß-galactosidase and lactose.  相似文献   

5.
Unlike dairy lactic acid bacteria, Lactobacillus brevis cannot ferment milk. We characterized the lactose utilization by L. brevis KB290. In a carbohydrate fermentation assay using API 50 CHL, we showed during 7?days L. brevis did not ferment lactose. L. brevis grew to the stationary phase in 2?weeks in MRS broth containing lactose as the carbon source. L. brevis slowly consumed the lactose in the medium. L. brevis hydrolyzed lactose and a lactose analog, o-nitrophenyl-β-d-galactopyranoside (ONPGal). This β-galactosidase activity for ONPGal was not repressed by glucose, galactose, fructose, xylose, or maltose showing the microorganism may not have carbon catabolite repression. We purified the L. brevis β-galactosidase using ammonium sulfate precipitation and several chromatographies. The enzyme’s molecular weight is estimated at 72 and 37?kDa using SDS-PAGE analysis. The N-terminal amino acid sequence of the larger protein was 90?% similar to the sequence of the putative β-galactosidase (YP_796339) and the smaller protein was identical to the sequence of the putative β-galactosidase (YP_796338) in L. brevis ATCC367. This suggests the enzyme is a heterodimeric β-galactosidase. The specific activity of the purified enzyme for lactose is 55?U/mg. We speculate inhibition of lactose transport delays the lactose utilization in L. brevis KB290.  相似文献   

6.
Fungal β-galactosidase from Aspergillus oryzae was immobilized into polyvinylalcohol (PVA) hydrogel by LentiKats® technology and used for the production of short-chain alkyl glycosides. Ethyl- and propyl-β-d-galactopyranosides were prepared from lactose (100?g/L) and varying initial amounts of alcohol (10–30% v/v) at 40?°C and pH 4.5. The entrapped β-galactosidase preserved 50% of the initial transgalactosylation activity after 25 repeated cycles in the production of ethyl β-d-galactopyranoside. When 5% (v/v) propanol was used as an acceptor, the enzyme activity (30–32?U/g immobilized enzyme) remained constant for 25 repeated batch runs. These findings suggest that entrapped β-galactosidase into LentiKats® has a great potential to be one effective, reusable and easy producible biocatalyst for the production of alkyl glycosides in a large scale.  相似文献   

7.
Products of β-galactosidase action on lactose by intact E. coli cells appeared in the medium as soon as lactose was added and the amount of product was equal to the lactose used. No detectable levels of β-galactosidase were found in the medium and lactose was not significantly broken down unless lac permease was present. The appearance did not depend upon the presence of any of the commonly known galactose or glucose permease systems. The Km of product appearance from whole cells was equal to the Kt for lactose transport by lac permease. When the cells were broken the Km became the normal β-galactosidase Km.  相似文献   

8.
The cold active β-galactosidase from psychrophilic bacteria accelerate the possibility of outperforming the current commercial β-galactosidase production from mesophilic sources. The present study is carried out to screen and isolate a cold active β-galactosidase producing bacterium from profound marine waters of Bay-of-Bengal and to optimize the factors for lactose hydrolysis in milk. Isolated bacterium 3SC-21 was characterized as marine psychrotolerant, halophile, gram negative, rod shaped strain producing an intracellular cold active β-galactosidase enzyme. Further, based upon the 16S rRNA gene sequence, bacterium 3SC-21 was identified as Thalassospira sp. The isolated strain Thalassospira sp. 3SC-21 had shown the enzyme activity between 4 and 20?°C at pH of 6.5 and the enzyme was completely inactivated at 45?°C. The statistical method, central composite rotatable design of response surface methodology was employed to optimize the hydrolysis of lactose and to reveal the interactions between various factors behind this hydrolysis. It was found that maximum of 80.18?% of lactose in 8?ml of raw milk was hydrolysed at pH of 6.5 at 20?°C in comparison to 40?% of lactose hydrolysis at 40?°C, suggesting that the cold active β-galactosidase from Thalassospira sp. 3SC-21would be best suited for manufacturing the lactose free dairy products at low temperature.  相似文献   

9.
A novel heterodimeric β-galactosidase with a molecular mass of 105 kDa was purified from crude cell extracts of the soil isolate Lactobacillus pentosus KUB-ST10-1 using ammonium sulphate fractionation followed by hydrophobic interaction and affinity chromatography. The electrophoretically homogenous enzyme has a specific activity of 97 UoNPG/mg protein. The Km, kcat and kcat/Km values for lactose and o-nitrophenyl-β-D-galactopyranoside (oNPG) were 38 mM, 20 s-1, 530 M-1·s-1 and 1.67 mM, 540 s-1, 325 000 M-1·s-1, respectively. The temperature optimum of β-galactosidase activity was 60–65°C for a 10-min assay, which is considerably higher than the values reported for other lactobacillal β-galactosidases. Mg2+ ions enhanced both activity and stability significantly. L. pentosus β-galactosidase was used for the production of prebiotic galacto-oligosaccharides (GOS) from lactose. A maximum yield of 31% GOS of total sugars was obtained at 78% lactose conversion. The enzyme showed a strong preference for the formation of β-(1→3) and β-(1→6) linkages, and the main transgalactosylation products identified were the disaccharides β-D-Galp-(1→6)-D -Glc, β-D-Galp-(1→3)-D -Glc, β-D -Galp-(1→6)-D -Gal, β-D -Galp-(1→3)-D -Gal, and the trisaccharides β-D -Galp-(1→3)-D -Lac, β-D -Galp-(1→6)-D -Lac.  相似文献   

10.

Lactose conversion by lactic acid bacteria is of high industrial relevance and consistent starter culture quality is of outmost importance. We observed that Lactococcus lactis using the high-affinity lactose-phosphotransferase system excreted galactose towards the end of the lactose consumption phase. The excreted galactose was re-consumed after lactose depletion. The lacS gene, known to encode a lactose permease with affinity for galactose, a putative galactose–lactose antiporter, was upregulated under the conditions studied. When transferring cells from anaerobic to respiration-permissive conditions, lactose-assimilating strains exhibited a long and non-reproducible lag phase. Through systematic preculture experiments, the presence of galactose in the precultures was correlated to short and reproducible lag phases in respiration-permissive main cultivations. For starter culture production, the presence of galactose during propagation of dairy strains can provide a physiological marker for short culture lag phase in lactose-grown cultures.

  相似文献   

11.
Zárate G  Chaia AP 《Anaerobe》2012,18(1):25-30
Dairy propionibacteria are microorganisms of interest for their role as starters in cheese technology and as well as their functions as probiotics. Previous studies have demonstrated that Propionibacterium acidipropionici metabolize lactose by a β-galactosidase that resists the gastrointestinal transit and the manufacture of a Swiss-type cheese, so that could be considered for their inclusion in a probiotic product assigned to intolerant individuals. In the present work we studied the effect of the sequential addition of lactose and lactate as first or second energy sources on the growth and β-galactosidase activity of P. acidipropionici Q4. The highest β-galactosidase activity was observed in a medium containing only lactate whereas higher final biomass was obtained in a medium with lactose. When lactate was used by this strain as a second energy source, a marked increase of the intracellular pyruvate level was observed, followed by lactate consumption and increase of specific β-galactosidase activity whereas lactose consumption became negligible. On the contrary, when lactose was provided as second energy source, lactic acid stopped to be metabolized, a decrease of the intracellular pyruvate concentration was observed and β-galactosidase activity sharply returned to a value that resembled the observed during the growth on lactose alone. Results suggest that the relative concentration of each substrate in the culture medium and the intracellular pyruvate level were decisive for both the choice of the energetic substrate and the β-galactosidase activity in propionibacteria. This information should be useful to decide the most appropriate vehicle to deliver propionibacteria to the host in order to obtain the highest β-galactosidase activity.  相似文献   

12.
Continuous mix batch bioreactors were used to study the kinetic parameters of lactic acid fermentation in microaerated-nutrient supplemented, lactose concentrated cheese whey using Lactobacillus helveticus. Four initial lactose concentrations ranging from 50 to 150 g l–1 were first used with no microaeration and no yeast extract added to establish the substrate concentration above which inhibition will occur and then the effects of microaeration and yeast extract on the process kinetic parameters were investigated. The experiments were conducted under controlled pH (5.5) and temperature (42 °C) conditions. The results indicated that higher concentrations of lactose had an inhibitory effect as they increased the lag period and the fermentation time; and decreased the specific growth rate, the maximum cell number, the lactose utilization rate, and the lactic acid production rate. The maximum lactic acid conversion efficiency (75.8%) was achieved with the 75 g l–1 initial lactose concentration. The optimum lactose concentration for lactic acid production was 75 g l–1 although Lactobacillus helveticus appeared to tolerate up to 100 g l–1 lactose concentration. Since the lactic acid productivity is of a minor importance compared to lactic acid concentration when considering the economic feasibility of lactic acid production from cheese whey using Lactobacillus helveticus, a lactose concentration of up to 100 g l–1 is recommended. Using yeast extract and/or microaeration increased the cell number, specific growth rate, cell yield, lactose consumption, lactic acid utilization rate, lactic acid concentration and lactic acid yield; and reduced the lag period, fermentation time and residual lactose. Combined yeast extract and microaeration produced better results than each one alone. From the results it appears that the energy uncoupling of anabolism and catabolism is the major bottleneck of the process. Besides lactic acid production, lactose may also be hydrolysed into glucose and galactose. The -galactosidase activity in the medium is caused by cell lysis during the exponential growth phase. The metabolic activities of Lactobacillus helveticus in the presence of these three sugars need further investigation.  相似文献   

13.
A practical purification method for a non-digestible disaccharide, epilactose (4-O-β-galactosyl-D-mannose), was established. Epilactose was synthesized from lactose with cellobiose 2-epimerase and purified by the following procedure: (i) removal of lactose by crystallization, (ii) hydrolysis of lactose by β-galactosidase, (iii) digestion of monosaccharides by yeast, and (iv) column chromatography with Na-form cation exchange resin. Epilactose of 91.1% purity was recovered at 42.5% yield.  相似文献   

14.
Bacillus amyloliquefaciens harboring recombinant plasmid pHG5, which encodes B. stearothermophilus β-galactosidase, was cultured in a jar fermentor. By feeding lactose a considerable concentration of the enzyme was produced, but the cells stopped growing at an OD660 of about 30. On the other hand, the microorganism grew to a very high cell concentration with an OD660 of around 110 with glucose as a carbon source, but the enzyme specific activity was a half of the maximum value with lactose. Based on these facts, B. amyloliquefaciens was first grown using glucose, and the carbon source was then switched to lactose to induce β-galactosidase production. By this two-step culture method, both good cell growth and high enzyme productivity were obtained.  相似文献   

15.
The endogenous β-galactosidase expressed in intestinal microbes is demonstrated to help humans in lactose usage, and treatment associated with the promotion of beneficial microorganism in the gut is correlated with lactose tolerance. From this point, a kind of recombinant live β-galactosidase delivery system using food-grade protein expression techniques and selected probiotics as vehicle was promoted by us for the purpose of application in lactose intolerance subjects. Previously, a recombinant Lactococcus lactis MG1363 strain expressing food-grade β-galactosidase, the L. lactis MG1363/FGZW, was successfully constructed and evaluated in vitro. This study was conducted to in vivo evaluate its efficacy on alleviating lactose intolerance symptoms in post-weaning Balb/c mice, which were orally administered with 1?×?106?CFU or 1?×?108?CFU of L. lactis MG1363/FGZW daily for 4?weeks before lactose challenge. In comparison with na?ve mice, the mice administered with L. lactis MG1363/FGZW showed significant alleviation of diarrhea symptoms in less total feces weight within 6?h post-challenge and suppressed intestinal motility after lactose challenge, although there was no significant increase of β-galactosidase activity in small intestine. The alleviation also correlated with higher species abundance, more Bifidobacterium colonization, and stronger colonization resistance in mice intestinal microflora. Therefore, this recombinant L. lactis strain effectively alleviated diarrhea symptom induced by lactose uptake in lactose intolerance model mice with the probable mechanism of promotion of lactic acid bacteria to differentiate and predominantly colonize in gut microbial community, thus making it a promising probiotic for lactose intolerance subjects.  相似文献   

16.
Lac+ recombinant plasmids encoding a β-galactosidase fused protein and lactose permease of Escherichia coli were introduced Zymomonas mobilis. The fused protein was expressed with 450 to 5,860 Miller units of β-galactosidase activity, and functioned as lactase. Raffinose uptake by Z. mobilis CP4 was enhanced in the plasmid-carrying strain over the plasmid-free strain, suggesting that the lactose permease was functioning in the organism. Z. mobilis carrying the plasmid could produce ethanol from lactose and whey, but could not grow on lactose as the sole carbon source. It was found that the growth of the organism was inhibited by either galactose of the galactose liberated from lactose.  相似文献   

17.
Summary The thermotolerant yeast strain,Kluyveromyces marxianus IMB3 was shown to be capable of growth and ethanol production on lactose containing media at 45°C. On media containing 4% (w/v) lactose, ethanol production increased to 6.0g/l within 50h and this represented 29% of theoretical yield. During growth on lactose containing media the organism was shown to produce a cell-associated β-galactosidase and no significant enzyme could be detected in the extracellular culture filtrate. Addition of β-galactosidase, released fromKluyveromyces marxianus IMB3 cells, to active fermentations, resulted in increasing ethanol production to 53% of theoretical yield at 45°C.  相似文献   

18.
β-Galactosidase enzymes continue to play an important role in food and pharmaceutical industries. These enzymes hydrolyze lactose in its constituent monosaccharides, glucose and galactose. The industrial use of enzymes presents an increase in process costs reflecting in higher final product value. An alternative to enhance processes’ productivity and yield would be the use of recombinant enzymes and their large-scale fed-batch production. The overexpression of recombinant β-galactosidase from Kluyveromyces sp. was carried out in 2-L bioreactors using Escherichia coli strain BL21 (DE3) as host. Effect of induction time on recombinant enzyme expression was studied by adding 1?mM isopropyl thiogalactoside (IPTG) at 12?h, 18?h and 24?h of cultivation. Glucose feeding strategies were compared employing feedback-controlled DO-stat and ascendant linear pump feeding in bioreactor fed-batch cultivations. Linear feeding strategy with IPTG addition at 18?h of cultivation resulted in approximately 20?g/L and 17,745?U/L of biomass and β-galactosidase activity, respectively. On the other hand, although the feedback-controlled DO-stat feeding strategy induced at 12?h of cultivation led to lower final biomass of 18?g/L, it presented an approximately 2.5 increase in enzymatic activity, resulting in 42,367?U/L, and most importantly it led to the most prominent specific enzymatic activity of approximately 40?U/mgprotein. Comparing to previous results, these results suggest that the DO-stat feeding is a promising strategy for recombinant β-galactosidase enzyme production.  相似文献   

19.
《Anaerobe》2002,8(5):259-267
In the present study, factors influencing the synthesis and activity of β-galactosidase of two strains of Propionibacterium acidipropionici with some probiotic properties are described for the first time. The enzyme 6-phospho-β-D-galactosidase of the PEP-PTS system was not detected, suggesting that P. acidipropionici metabolize lactose only by using β-galactosidase. The highest enzymatic activities were obtained from cultures developed in a basal broth medium containing 1.0% sodium lactate or 0.25% lactose. Maximum β-galactosidase activity from cell-free extracts of the strains was obtained at pH 7.0 and 50°C, but a high activity was even detected at 37°C. The enzyme was competitively inhibited by lactose and activated by glucose and sodium lactate. The remaining activities after heating cell-free extracts up to 20 min at 60°C were 70% and 25% of untreated control activities for P. acidipropionici Q4 and CRL 1198, respectively. Cations like Mg2+, Mn2+, Li+, Na+, and K+ acted as stimulators of the β-galactosidase activity whereas Ca2+, Co2+, Ni2+, Hg2+ and Cu2+ showed inhibitory effect in different extent. These results suggest that the environmental conditions commonly present in the human's intestine may be adequate for the synthesis and activity of β-galactosidase from these strains of Propionibacterium. The enzyme resist the cooking temperature of Swiss-type cheeses in different extent depending on the strain tested and most of the cations present in milk stimulate the enzymatic activity. Our results suggest that a cheese would be an appropriate vehicle for delivery of β-galactosidase from propionibacteria to the host and efforts to develop a Swiss-type probiotic cheese for lactose intolerant persons should be done.  相似文献   

20.
Of three β-galactosidases from Aspergillus oryzae, Kluyveromyces lactis and Bacillus sp., used for the production of low-content galacto- oligosaccharides (GOS) from lactose, the latter produced the highest yield of trisaccharides and tetrasaccharides. GOS production was enhanced by mixing β-galactosidase glucose oxidase. The low-content GOS syrups, produced either by β-galactosidase alone or by the mixed enzyme system, were subjected to the fermentation by Kluyveromyces marxianus, whereby glucose, galactose, lactose and other disaccharides were depleted, resulting in up to 97% and 98% on a dry weight basis of high-content GOS with the yields of 31% and 32%, respectively. An erratum to this article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号