首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The most frequently observed K+ channel in the tonoplast of Characean giant internodal cells with a large conductance (ca. 170 pS; Lühring, 1986; Laver & Walker, 1987) behaves, although inwardly rectifying, like animal maxi-K channels. This channel is accessible for patch–clamp techniques by preparation of cytoplasmic droplets, where the tonoplast forms the membrane delineating the droplet. Lowering the pH of the bathing solution, that virtually mimicks the vacuolar environment, from an almost neutral level to values below pH 7, induced a significant but reversible decrease in channel activity, whereas channel conductance remained largely unaffected. Acidification (pH 5) on both sides of the membrane decreased open probability from a maximum of 80% to less than 20%. Decreasing pH at the cytosolic side inhibited channel activity cooperatively with a slope of 2.05 and a pK a 6.56. In addition, low pH at the vacuolar face shifted the activating voltage into a positive direction by almost 100 mV. This is the first report about an effect of extraplasmatic pH on gating of a maxi-K channel. It is suggested that the Chara maxi-K channel possesses an S4-like voltage sensor and negatively charged residues in neighboring transmembrane domains whose S4-stabilizing function may be altered by protonation. It was previously shown that gating kinetics of this channel respond to cytosolic Ca2+ (Laver & Walker, 1991). With regard to natural conditions, pH effects are discussed as contributing mainly to channel regulation at the vacuolar membrane face, whereas at the cytosolic side Ca2+ affects the channel. An attempt was made to ascribe structural mechanisms to different states of a presumptive gating reaction scheme. Received: 8 May 1998/Revised: 18 September 1998  相似文献   

2.
The pharmacological profile of a voltage-independent Ca2+-activated potassium channel of intermediate conductance (IK(Ca2+)) present in bovine aortic endothelial cells (BAEC) was investigated in a series of inside-out and outside-out patch-clamp experiments. Channel inhibition was observed in response to external application of ChTX with a half inhibition concentration of 3.3 ± 0.3 nm (n= 4). This channel was insensitive to IbTX, but channel block was detected following external application of MgTX and StK leading to the rank order toxin potency ChTX > StK > MgTX >>IbTX. A reduction of the channel unitary current amplitude was also measured in the presence of external TEA, with half reduction occurring at 23 ± 3 mm TEA (n= 3). The effect of TEA was voltage insensitive, an indication that TEA may bind to a site located on external side of the pore region of this channel. Similarly, the addition of d-TC to the external medium caused a reduction of the channel unitary current amplitude with half reduction at 4.4 ± 0.3 mm (n= 4). In contrast, application of d-TC to the bathing medium in inside-out experiments led to the appearance of long silent periods, typical of a slow blocking process. Finally, the IK(Ca2+) in BAEC was found to be inhibited by NS1619, an activator of the Ca2+-activated potassium channel of large conductance (Maxi K(Ca2+)), with a half inhibition value of 11 ± 0.8 μm (n= 4). These results provide evidence for a pharmacological profile distinct from that reported for the Maxi K(Ca2+) channel, with some features attributed to the voltage-gated KV1.2 potassium channel. Received: 6 November 1997/Revised: 19 February 1998  相似文献   

3.
The actions of clotrimazole and cetiedil, two drugs known to inhibit the Gardos channel, have been studied on single intermediate conductance calcium-activated potassium (IKCa) channels in inside out patches from human red blood cells, and compared with those of TEA and Ba2+ applied to the cytoplasmic face of the membrane. TEA produced a fast block which was observed as a reduction in the amplitude of the single channel current. This effect was weakly voltage dependent with the fraction of the membrane potential sensed by TEA at its binding site (δ) of 0.18 and a K d at 0 mV of 20.5 mm. Ba2+ was a very potent blocker of the channel, breaking the single channel activity up into bursts, interspersed with silent periods lasting several seconds. The effect of Ba2+ was very voltage sensitive, δ= 0.44, and a K d at 0 mV of 0.15 μm. Clotrimazole applied to the inner face of the membrane at a concentration ≤1 μm produced a slow block resulting in bursts of channel activity separated by quiescent periods lasting many seconds. The effect of clotrimazole was mimicked by a quaternary derivative UCL 1559, in keeping with an action at the cytoplasmic face of the channel. A high concentration of cetiedil (100 μm) produced only a weak block of the channel. The kinetics of this action were very slow, with burst and inter-burst intervals lasting several minutes. While inhibition of the Gardos channel by cetiedil is unlikely to involve an intracellular site of action, if clotrimazole is able to penetrate the membrane, part of its effect may result from binding to an intracellular site on the channel. Received; 18 February 1998/Received: 5 June 1998  相似文献   

4.
Calcium channels in the plasma membrane of root cells fulfill both nutritional and signaling roles. The permeability of these channels to different cations determines the magnitude of their cation conductances, their effects on cell membrane potential and their contribution to cation toxicities. The selectivity of the rca channel, a Ca2+-permeable channel from the plasma membrane of wheat (Triticum aestivum L.) roots, was studied following its incorporation into planar lipid bilayers. The permeation of K+, Na+, Ca2+ and Mg2+ through the pore of the rca channel was modeled. It was assumed that cations permeated in single file through a pore with three energy barriers and two ion-binding sites. Differences in permeation between divalent and monovalent cations were attributed largely to the affinity of the ion binding sites. The model suggested that significant negative surface charge was present in the vestibules to the pore and that the pore could accommodate two cations simultaneously, which repelled each other strongly. The pore structure of the rca channel appeared to differ from that of L-type calcium channels from animal cell membranes since its ion binding sites had a lower affinity for divalent cations. The model adequately accounted for the diverse permeation phenomena observed for the rca channel. It described the apparent submillimolar K m for the relationship between unitary conductance and Ca2+ activity, the differences in selectivity sequences obtained from measurements of conductance and permeability ratios, the changes in relative cation permeabilities with solution ionic composition, and the complex effects of Ca2+ on K+ and Na+ currents through the channel. Having established the adequacy of the model, it was used to predict the unitary currents that would be observed under the ionic conditions employed in patch-clamp experiments and to demonstrate the high selectivity of the rca channel for Ca2+ influx under physiological conditions. Received: 23 August 1999/Revised: 12 November 1999  相似文献   

5.
We have investigated the interaction of two peptides (ShB — net charge +3 and ShB:E12KD13K — net charge +7) derived from the NH2-terminal domain of the Shaker K+ channel with purified, ryanodine-modified, cardiac Ca2+-release channels (RyR). Both peptides produced well resolved blocking events from the cytosolic face of the channel. At a holding potential of +60 mV the relationship between the probability of block and peptide concentration was described by a single-site binding scheme with 50% saturation occurring at 5.92 ± 1.06 μm for ShB and 0.59 ± 0.14 nm for ShB:E12KD13K. The association rates of both peptides varied with concentration (4.0 ± 0.4 sec−1μm −1 for ShB and 2000 ± 200 sec−1μm −1 for ShB:E12KD13K); dissociation rates were independent of concentration. The interaction of both peptides was influenced by applied potential with the bulk of the voltage-dependence residing in Koff. The effectiveness of the inactivation peptides as blockers of RyR is enhanced by an increase in net positive charge. As is the case with inactivation and block of K+ channels, this is mediated by a large increase in Kon. These observations are consistent with the proposal that the conduction pathway of RyR contains negatively charged sites which will contribute to the ion handling properties of this channel. Received: 15 December 1997/Revised: 13 March 1998  相似文献   

6.
Melanoma cells are transformed melanocytes of neural crest origin. K+ channel blockers have been reported to inhibit melanoma cell proliferation. We used whole-cell recording to characterize ion channels in four different human melanoma cell lines (C8161, C832C, C8146, and SK28). Protocols were used to identify voltage-gated (KV), Ca2+-activated (KCa), and inwardly rectifying (KIR) K+ channels; swelling-sensitive Cl channels (Clswell); voltage-gated Ca2+ channels (CaV) and Ca2+ channels activated by depletion of intracellular Ca2+ stores (CRAC); and voltage-gated Na+ channels (NaV). The presence of Ca2+ channels activated by intracellular store depletion was further tested using thapsigargin to elicit a rise in [Ca2+] i . The expression of K+ channels varied widely between different cell lines and was also influenced by culture conditions. KIR channels were found in all cell lines, but with varying abundance. Whole-cell conductance levels for KIR differed between C8161 (100 pS/pF) and SK28 (360 pS/pF). KCa channels in C8161 cells were blocked by 10 nm apamin, but were unaffected by charybdotoxin (CTX). KCa channels in C8146 and SK28 cells were sensitive to CTX (K d = 4 nm), but were unaffected by apamin. KV channels, found only in C8146 cells, activated at ∼−20 mV and showed use dependence. All melanoma lines tested expressed CRAC channels and a novel Clswell channel. Clswell current developed at 30 pS/sec when the cells were bathed in 80% Ringer solution, and was strongly outwardly rectifying (4:1 in symmetrical Cl). We conclude that different melanoma cell lines express a diversity of ion channel types. Received: 2 April 1996/Revised: 22 August 1996  相似文献   

7.
Two inward-rectifier K+ channels, ROMK2 (Kir1.1b) and IRK1 (Kir2.1), were expressed in Xenopus oocytes and their gating properties were studied in cell-attached membrane patches. The gating properties depended strongly on the ion being conducted (K+, NH4 +, Rb+, or Tl+), suggesting tight coupling between permeation and gating. Mean open times were strongly dependent on the nature of the conducted ion. For ROMK2 the order from the longest to the shortest times was K+ > Rb+ > Tl+ > NH4 +. For IRK1 the sequence was K+ > NH4 + > Tl+. In both cases the open times decreased monotonically as the membrane voltage was hyperpolarized. Both the absolute values and the voltage dependence of closed times were dependent on the conducted species. ROMK2 showed a single closed state whose mean lifetimes were biphasic functions of voltage. The maxima were at various voltages for different ions. IRK1 had at least two closed states whose lifetimes decreased monotonically with K+, increased monotonically with Tl+, and were relatively constant with NH4 + as the conducted ion. We explain the ion-dependence of gating by assuming that the ions bind to a site within the permeation pathway, resulting in a stable, ion-dependent, closed state of the channel. The patterns of voltage-dependence of closed-state lifetimes, which are specific for different ions, can be explained by variations in the rate at which the bound ions leave the pore toward the inside or the outside of the cell. Received: 18 April 2001/Revised: 28 June 2001  相似文献   

8.
P2X2 purinoceptors are cation-selective channels activated by ATP and its analogues. Using single channel measurements we studied the channel's selectivity for the alkali metal ions and organic monovalent cations NMDG+, Tris+, TMA+, and TEA+. The selectivity sequence for currents carried by alkali metal ions is: K+ > Rb+ > Cs+ > Na+ > Li+, which is Eisenman sequence IV. This is different from the mobility sequence of the ions in free solution suggesting there is weak interaction between the ions and the channel interior. The relative conductance for alkali ions increases linearly in relation to the Stokes radius. The organic ions NMDG+, Tris+, TMA+ and TEA+ were virtually impermeant. The divalent ions (Mn2+, Mg2+, Ca2+ and Ba2+) induced a fast block visible as a reduction in amplitude of the unitary currents. Using a single-site binding model, the divalent ions exhibited an equilibrium affinity sequence of Mn2+ > Mg2+ > Ca2+ > Ba2+. Received: 3 May 1999/Revised: 23 August 1999  相似文献   

9.
The depolarization-activated, high-conductance ``maxi' cation channel in the plasma membrane of rye (Secale cereale L.) roots is permeable to a wide variety of monovalent and divalent cations. The permeation of K+, Na+, Ca2+ and Ba2+ through the pore could be simulated using a model composed of three energy barriers and two ion binding sites (a 3B2S model), which assumed single-file permeation and the possibility of double cation occupancy. The model had an asymmetrical free energy profile. Differences in permeation between cations were attributed primarily to differences in their free energy profiles in the regions of the pore adjacent to the extracellular solution. In particular, the height of the central free energy peak differed between cations, and cations differed in their affinities for ion binding sites. Significant ion repulsion occurred within the pore, and the mouths of the pore had considerable surface charge. The model adequately described the diverse current vs. voltage (I/V) relationships obtained over a wide variety of experimental conditions. It described the phenomena of non-Michaelian unitary conductance vs. activity relationships for K+, Na+ and Ca2+, differences in selectivity sequences obtained from measurements of conductance and permeability ratios, changes in relative cation permeabilities with solution composition, and the complex effects of Ba2+ and Ca2+ on K+ currents through the channel. The model enabled the prediction of unitary currents and ion fluxes through the maxi cation channel under physiological conditions. It could be used, in combination with data on the kinetics of the channel, as input to electrocoupling models allowing the relationships between membrane voltage, Ca2+ influx and Ca2+ signaling to be studied theoretically. Received: 29 April 1998/Revised: 20 November 1998  相似文献   

10.
Chloride channels in the sarcoplasmic reticulum (SR) are thought to play an essential role in excitation-contraction (E-C) coupling by balancing charge movement during calcium release and uptake. In this study the nucleotide-sensitivity of Cl channels in the SR from rabbit skeletal muscle was investigated using the lipid bilayer technique. Two distinct ATP-sensitive Cl channels that differ in their conductance and kinetic properties and in the mechanism of ATP-induced channel inhibition were observed. The first, a nonfrequent 150 pS channel was inhibited by trans (luminal) ATP, and the second, a common 75 pS small chloride (SCl) channel was inhibited by cis (cytoplasmic) ATP. In the case of the SCl channel the ATP-induced reversible decline in the values of current (maximal current amplitude, I max and integral current, I′) and kinetic parameters (frequency of opening F O , probability of the channel being open P O , mean open T O and closed T c times) show a nonspecific block of the voltage- and Ca2+-dependent SCl channel. ATP was a more potent blocker from the cytoplasmic side than from the luminal side of the channel. The SCl channel block was not due to Ca2+ chelation by ATP, nor to phosphorylation of the channel protein. The inhibitory action of ATP was mimicked by the nonhydrolyzable analogue adenylylimidodiphosphate (AMP-PNP) in the absence of Mg2+. The inhibitory potency of the adenine nucleotides was charge dependent in the following order ATP4− > ADP3− > > > AMP2−. The data suggest that ATP-induced effects are mediated via an open channel block mechanism. Modulation of the SCl channel by [ATP] cis and [Ca2+] cis indicates that (i) this channel senses the bioenergetic state of the muscle fiber and (ii) it is linked to the ATP-dependent cycling of the Ca2+ between the SR and the sarcoplasm. Received: 4 September 1996/Revised: 6 December 1996  相似文献   

11.
The modulation of I A K+ current by ten trivalent lanthanide (Ln3+) cations spanning the series with ionic radii ranging from 0.99 ? to 1.14 ? was characterized by the whole-cell patch clamp technique in bovine adrenal zona fasciculata (AZF) cells. Each of the ten Ln3+s reduced I A amplitude measured at +20 mV in a concentration-dependent manner. Smaller Ln3+s were the most potent and half-maximally effective concentrations (EC50s) varied inversely with ionic radius for the larger elements. Estimation of EC50s yielded the following potency sequence: Lu3+ (EC50= 3.0 μm) ≈ Yb3+ (EC50= 2.7 μm) > Er3+ (EC50= 3.7 μm) ≥ Dy3+ (EC50= 4.7 μm) > Gd3+ (EC50= 6.7 μm) ≈ Sm3+ (EC50= 6.9 μm) > Nd3+ (EC50= 11.2 μm) > Pr3+ (EC50= 22.3 μm) > Ce3+ (EC50= 28.0 μm) > La3+ (EC50= 33.7 μm). Ln3+s altered selected voltage-dependent gating and kinetic parameters of I A with a potency and order of effectiveness that paralleled the reduction of I A amplitude. Ln3+s markedly slowed activation kinetics and shifted the voltage-dependence of I A gating such that activation and steady-state inactivation occurred at more depolarized potentials. In contrast, Ln3+s did not measurably alter inactivation or deactivation kinetics and only slightly slowed kinetics of inactivated channels returning to the closed state. Replacement of external Ca2+ with Mg2+ had no effect on the concentration-dependent inhibition of I A by Ln3+s. In contrast to their action on I A K+ current, Ln3+s inhibited T-type Ca2+ currents in AZF cells without slowing activation kinetics. These results indicate that Ln3+ modulate I A K+ channels through binding to a site on I A channels located within the electric field but which is not specific for Ca2+. They are consistent with a model where Ln3+ binding to negative charges on the gating apparatus alters the voltage-dependence and kinetics of channel opening. Ln3+s modulate transient K+ and Ca2+ currents by two fundamentally different mechanisms. Received: 21 January 1997/Revised: 3 April 1998  相似文献   

12.
We investigated the properties of calcium-activated chloride channels in inside-out membrane patches from the dendritic knobs of acutely dissociated rat olfactory receptor neurons. Patches typically contained large calcium-activated currents, with total conductances in the range 30–75 nS. The dose response curve for calcium exhibited an EC50 of about 26 μm. In symmetrical NaCl solutions, the current-voltage relationship reversed at 0 mV and was linear between −80 and +70 mV. When the intracellular NaCl concentration was progressively reduced from 150 to 25 mM, the reversal potential changed in a manner consistent with a chloride-selective conductance. Indeed, modeling these data with the Goldman-Hodgkin-Katz equation revealed a PNa/PCl of 0.034. The halide permeability sequence was PCl > PF > PI > PBr indicating that permeation through the channel was dominated by ion binding sites with a high field strength. The channels were also permeable to the large organic anions, SCN, acetate, and gluconate, with the permeability sequence PCl > PSCN > Pacetate > Pgluconate. Significant permeation to gluconate ions suggested that the channel pore had a minimum diameter of at least 5.8 \A. Received: 16 April 1997/Revised: 3 October 1997  相似文献   

13.
Mechanosensitive channels appear ubiquitous but they have not been well characterized in cells directly responding to mechanical stimuli. Here, we identified tension-sensitive channel currents on the cell body of Chlamydomonas, a protist that shows a marked behavioral response to mechanical stimulation. When a negative pressure was applied to the cell body with a patch clamp electrode, single-ion-channel currents of 2.4 pA in amplitude were observed. The currents were inhibited by 10 μm gadolinium, a general blocker of mechanosensitive channels. The currents were most likely due to Ca2+ influxes because the current was absent in Ca2+-free solutions and the reversal potential was 98 mV positive to the resting potential. The distribution of channel-open times conformed to a single exponential component and that of closed times to two exponential components. This mechanosensitive channel was similar to the one found in the flagella in the following respects: both channels were inhibited by Gd3+ at 10 μm but not at 1 μm; both passed Ca2+ and Ba2+; their kinetic parameters for channel opening were similar. These observations raise the possibility that identical mechanosensitive channels may function both in the behavioral control through the mechanoreception by the flagella and in the regulation of cellular physiology in response to mechanical perturbation on the cell body. Received: 13 May 1998/Revised: 2 September 1998  相似文献   

14.
The gating and conduction properties of a channel activated by intracellular Na+ were studied by recording unitary currents in inside-out patches excised from lobster olfactory receptor neurons. Channel openings to a single conductance level of 104 pS occurred in bursts. The open probability of the channel increased with increasing concentrations of Na+. At 210 mm Na+, membrane depolarization increased the open probability e-fold per 36.6 mV. The distribution of channel open times could be fit by a single exponential with a time constant of 4.09 msec at −60 mV and 90 mm Na+. The open time constant was not affected by the concentration of Na+, but was increased by membrane depolarization. At 180 mm Na+ and −60 mV, the distribution of channel closed times could be fit by the sum of four exponentials with time constants of 0.20, 1.46, 8.92 and 69.9 msec, respectively. The three longer time constants decreased, while the shortest time constant did not vary with the concentration of Na+. Membrane depolarization decreased all four closed time constants. Burst duration was unaffected by the concentration of Na+, but was increased by membrane depolarization. Permeability for monovalent cations relative to that of Na+ (P X /P Na ), calculated from the reversal potential, was: Li+ (1.11) > Na+ (1.0) > K+ (0.54) > Rb+ (0.36) > Cs+ (0.20). Extracellular divalent cations (10 mm) blocked the inward Na+ current at −60 mV according to the following sequence: Mn2+ > Ca2+ > Sr2+ > Mg2+ > Ba2+. Relative permeabilities for divalent cations (P Y /P Na ) were Ca2+ (39.0) > Mg2+ (34.1) > Mn2+ (15.5) > Ba2+ (13.8) > Na+ (1.0). Both the reversal potential and the conductance determined in divalent cation-free mixtures of Na+ and Cs+ or Li+ were monotonic functions of the mole fraction, suggesting that the channel is a single-ion pore that behaves as a multi-ion pore when the current is carried exclusively by divalent cations. The properties of the channel are consistent with the channel playing a role in odor activation of these primary receptor neurons. Received: 17 September 1996/Revised: 15 November 1996  相似文献   

15.
In the first part of this study, photofrin II sensitized membrane modifications of OK-cells were investigated at the level of macroscopic membrane currents. In this second part, the inside-out configuration of the patch-clamp technique is applied to analyze the phenomena at the microscopic level. It is shown that the characteristic single channel fluctuations of the electric current disappear after the start of illumination of membrane patches in the presence of photofrin II. This holds for all three types of ion channels investigated: the large-conductance Ca2+-dependent K+ channel (maxi-KCa), a K+ channel of small conductance (sK), and a stretch-activated nonselective cation channel (SA-cat). Part of the experiments show a transient activation of the channels (indicated by an increase of the probability in the open-channel state) before the channels are converted into a closed nonconductive state. Inactivation of all three channel types proceeds by a continuous reduction of their open probability, while the single channel conductance values are not affected. The process of photodynamically induced channel inactivation is followed by a pronounced increase of the leak conductance of the plasma membrane. The latter process — after light-induced initiation — is found to continue in the dark. The ionic pathways underlying the leak conductance also allow permeation of Ca2+ ions. The resulting Ca2+-flux may contribute to the photodynamically induced increase of the intracellular Ca2+ concentration observed in various cell lines. Received: 26 May 1998/Revised: 8 September 1998  相似文献   

16.
A plant hyperpolarization-activating K+ channel, KAT1, is highly selective for K+ over Na+ and is little affected by external Na+, which is crucial to take up K+ effectively in a Na+-containing environment. It has been shown that a mutation at the location (Thr256) preceding the selectivity signature sequence dramatically enhanced the sensitivity of the KAT1 channel to external Na+. We report here electrophysiological experiments for the mechanism of action of external Na+ on KAT1 channels. The Thr256 residue was substituted with either glutamine (Q) or glutamate (E). The wild-type channel was insensitive to external Na+. However, the activity of both mutant channels was significantly depressed by Na+ with apparent dissociation constants of 6.7 mm and 11.3 mm for T256Q and T256E, respectively. The instantaneous current-voltage relationships revealed distinct blocking mechanisms for these mutants. For T256Q a typical voltage-dependent fast blocking was shown. On the other hand, the blocking for the T256E mutant was voltage-independent at low Na+ concentrations and became voltage-dependent at higher concentrations. At extreme hyperpolarization the blocking was relieved significantly. These data strongly suggest that the mutation at the end of the pore helix rearranged the selectivity filter and allows Na+ to penetrate into the pore. Received: 16 October 2000/Revised: 20 February 2001  相似文献   

17.
A Paramecium cell responded to heat and cold stimuli, exhibiting increased frequency of directional changes in its swimming behavior. The increase in the frequency of directional changes was maintained during heating, but was transient during cooling. Although variations were large, as expected with this type of electrophysiological recording, results consistently showed a sustained depolarization of deciliated cells in response to heating. Depolarizations were also consistently observed upon cooling. However, these depolarizations were transient and not continuous throughout the cooling period. These depolarizations were lost or became small in Ca2+-free solutions. In a voltage-clamped cell, heating induced a continuous inward current and cooling induced a transient inward current under conditions where K+ currents were suppressed. The heat-induced inward current was not affected significantly by replacing extracellular Ca2+ with equimolar concentrations of Ba2+, Sr2+, Mg2+, or Mn2+, and was lost upon replacing with equimolar concentration of Ni2+. On the other hand, the cold-induced inward current was not affected significantly by Ba2+, or Sr2+, however the decay of the inward current was slowed and was lost or became small upon replacing with equimolar concentrations of Mg2+, Mn2+, or Ni2+. These results indicate that Paramecium cells have heat-activated Ca2+ channels and cold-activated Ca2+ channels and that the cold-activated Ca2+ channel is different from the heat-activated Ca2+ channel in the ion selectivity and the calcium-dependent inactivation. Received: 9 September 1998/Revised: 22 January 1999  相似文献   

18.
Block of K+ channels can be influenced by the ability of charged residues on the protein surface to accumulate cationic blocking ions to concentrations greater than those in bulk solution. We examined the ionic strength dependence of extracellular block of Shaker K+ channels by tetraethylammonium ions (TEA+) and by a trivalent quaternary ammonium ion, gallamine3+. Wild-type and mutant channels were expressed in Xenopus oocytes and currents recorded with the cut-open oocyte technique. Channel block by both compounds was substantially increased when the bathing electrolyte ionic strength was lowered, but with a much larger effect for trivalent gallamine. These data were quantitatively well described by a simple electrostatic model, accounting for accumulation of blocking ions near the pore of the channel by surface charges. The surface charge density of the wild-type channel consistent with the results was −0.1 e nm−2. Shaker channels with T449Y mutations have an increased affinity for both TEA and gallamine but the ionic strength dependence of block was described with the same surface charge density as wild-type channels. Much of the increased sensitivity of Shaker K+ channels to gallamine may be due to a larger local accumulation of the trivalent ion. The negative charge at position 431 contributes to the sensitivity of channels to TEA (MacKinnon & Yellen, 1990). A charge reversal mutation at this location had little effect on the ionic strength dependence of quaternary ammonium ion block, suggesting that the charge on this amino acid may directly affect binding affinity but not local ion accumulation. Received: 7 December 2000/Revised: 27 April 2001  相似文献   

19.
We have expressed recombinant α-subunits of hH1 (human heart subtype 1), rSkM1 (rat skeletal muscle subtype 1) and hSkM1 (human skeletal muscle) sodium channels in human embryonic kidney cell line, namely the tsA201 cells and compared the effects of ATX II on these sodium channel subtypes. ATX II slows the inactivation phase of hH1 with little or no effect on activation. At intermediate concentrations of ATX II the time course of inactivation is biexponential due to the mixture of free (fast component, τfast h ) and toxin-bound (slow component, τslow h ) channels. The relative amplitude of τslow h allows an estimate of the IC50 values ∼11 nm. The slowing of inactivation in the presence of ATX II is consistent with destabilization of the inactivated state by toxin binding. Further evidence for this conclusion is: (i) The voltage-dependence of the current decay time constants (τ h ) is lost or possibly reversed (time constants plateau or increase at more positive voltages in contrast to these of untreated channels). (ii) The single channel mean open times are increased by a factor of two in the presence of ATX II. (iii) The recovery from inactivation is faster in the presence of ATX II. Similar effects of ATX II on rSkM1 channel behavior occur, but only at higher concentrations of toxin (IC50= 51 nm). The slowing of inactivation on hSkM1 is comparable to the one seen with rSkM1. A residual or window current appears in the presence of ATX II that is similar to that observed in channels containing mutations associated with some of the familial periodic paralyses. Received: 5 December 1995/Revised: 1 March 1996  相似文献   

20.
The patch-clamp technique was used to investigate regulation of anion channel activity in the tonoplast of Chara corallina in response to changing proton and calcium concentrations on both sides of the membrane. These channels are known to be Ca2+-dependent, with conductances in the range of 37 to 48 pS at pH 7.4. By using low pH at the vacuolar side (either pHvac 5.3 or 6.0) and a cytosolic pH (pHcyt) varying in a range of 4.3 to 9.0, anion channel activity and single-channel conductance could be reversibly modulated. In addition, Ca2+-sensitivity of the channels was markedly influenced by pH changes. At pHcyt values of 7.2 and 7.4 the half-maximal concentration (EC 50) for calcium activation was 100–200 μm, whereas an EC 50 of about 5 μm was found at a pHcyt of 6.0. This suggests an improved binding of Ca2+ ions to the channel protein at more acidic cytoplasm. At low pHcyt, anion channel activity and mean open times were voltage-dependent. At pipette potentials (V p) of +100 mV, channel activity was approximately 15-fold higher than activity at negative pipette potentials and the mean open time of the channel increased. In contrast, at pHcyt 7.2, anion channel activity and the opening behavior seemed to be independent of the applied V p. The kinetics of the channel could be further controlled by the Ca2+ concentration at the cytosolic membrane side: the mean open time significantly increased in the presence of a high cytosolic Ca2+ concentration. These results show that tonoplast anion channels are maintained in a highly active state in a narrow pH range, below the resting pHcyt. A putative physiological role of the pH-dependent modulation of these anion channels is discussed. Received: 14 March 2001/Revised: 16 July 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号