首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The various pathways of pollen development were investigatedin cultured anthers of Lolium temulentum, Festuca pratensisand the L. multiflorum x F. pratensis hybrid ‘Elmet’.In all three, development from the vegetative cell was the predominantpathway of pollen callus development. However, there were characteristicdifferences in the behaviour of the generative cell. In L. temulentumit remained attached to the pollen wall and degenerated, whereasin F. pratensis it divided. In ‘Elmet’ it detachedfrom the pollen wall and remained undivided. Both polarizedand unpolarized partitioned calluses were observed. Developmentof the fusion product of the vegetative and generative nucleiwere also observed in anthers of L. temulentum. Anomalous grainswere not found to be major source of pollen calluses. Sections of anthers of L. temulentum were used to investigatethe origin of S pollen grains, the small pale-staining grainswhich denote pollen dimorphism. Such grains form out of contactwith the tapetum and are therefore determined before or duringmeiosis (i.e. before harvest of anthers for culture). Sectionswere also used to demonstrate the influence of the durationof pretreatment on the development of the middle layer of theanther wall. Festuca pratensis, Lolium temulentum, Lolium x Festuca, anther culture, haploid, microspore, pollen  相似文献   

2.
It has been reported that in species of Plumbaginaceae, Chenopodiaceae,Cruciferae and Amaryllidaceae a ‘male germ unit’is formed in which the two male gametes remain inter-connected,with one of the pair linked intimately to the vegetative nucleus.In two species the unit has been shown to remain intact in thepollen tube, and some accounts imply that it is polarized inits movement, the vegetative nucleus leading in the tube. Evidence given in this paper indicates that such a unit is unlikelyto be present in Helleborus foetidus L. (Ranunculaceae). Applicationof an optical sectioning technique has shown that at no timeis there a persistent linkage between the generative cell andthe vegetative nucleus in unhydrated, hydrated and germinatingpollen, nor is one present in the early pollen tube. Furthermore,no inter-connections between the two entities were seen in protoplastsfrom living, hydrated and incipiently germinating grains isolatedmechanically in an osmotically balancing medium. Following germination,the vegetative nucleus leaves the grain in advance of the generativecell in most instances, but in the samples examined the generativecell led in about 30 per cent of the tubes. Assembling a polarisedmale germ unit in these circumstances would require (a) theformation of an inter-connection between the vegetative nucleusand the generative cell or one of the gametes derived from itduring passage through the tube, and (b) where the generativecell initially leads in the tube, an exchange in relative positions.It is considered improbable that these conditions could consistentlybe met. Mature, incipiently germinating pollen of H. foetidus releasesa fibrillar component when extruded into suitable media. Websor clusters of fibrils are commonly seen to be associated withboth the vegetative nucleus and the generative cell. The possibilitythat the fibrils are composed of aggregates of microfilamentsis considered. Helleborus foetidus L., pollen germination, generative cell, vegetative nucleus, male germ unit  相似文献   

3.
The present paper deals with the experimental researches on the gametophytic and sporophytic pathways of pollen development in Oryza sativa L. Subsp. Keng, Cultivar Jinghong No. 2. Three methods of culture were used: (1) The lemma, palea and pistil of excised spikelets were removed and the pedicel was inserted vertically into the medium with the intact stamens standing freely above the medium surface (vertical culture). (2) The spikelets were manipulated similarly but placed horizontally on the medium so that their anthers were directly contacted with the latter ('horizontal culture'). (3) The anthers were excised and inoculated separately (anther culture). In all cases the pollen stage at inoculation was in late uninucleate. N6 basic medium supplemented with or without MCPA (2 ppm) was used. After inoculation the samples were collected periodically for cytological observation. In all cases the pollen passed a short stage of gametophytic development, forming a vegetative and a generative cell, then various pathways commenced in different cultures. In vertical culture, most of the pollen went on .along. the gametophytic pathway up to normal 3-celled stage, but some showed anomalous divisions of vegetative or/and generative nuclei, indicating an initiation of sporophytic development. In horizontal culture, the sporophytic deve]opment went on further, producing some calluses, though the main pollen population remained as gametophyte. In anther culture, the gametophytic pathway to a mature 3-celled pollen was blocked, the unique pathway being sporophytic. In rice, the pollen developed along sporophytic path- way mainly via A route. These comparative investigations indicate that there are two chief factors concerning the switch of pollen development from one pathway to another: first, to be freed from the in vivo restrictions, which, as suggested by Sunderland and as sup- ported by the results of vertical culture in our experiments, is sufficient to trigger the first sporophytic division, and second, 'direct contact with the medium, which is necessary to support the successive growth of multicellular grains and calluses. As to the exogenous hormone, rather than functioning as an agent triggering sporophytic development, it plays an important role in increasing eventual induction frequency, growth rates and differentiating ability of calluses.  相似文献   

4.
Mixed fluorescence/bright field microscopy of Rhododendron pollentubes in the first 72 h after germination reveals a lens-shapedgenerative cell which divides to give two associated spermswithin the original cell boundary. The generative cell is closelyassociated with the vegetative nucleus which precedes it in92 per cent of pollen tubes. Three-dimensional reconstruction from serial thin sections ofa pollen tube fixed 24 h after germination shows that the associationbetween the generative cell and vegetative nucleus is extremelycomplex. Elongated tails of the generative cell physically enfoldthe vegetative nucleus and penetrate into enclaves within it.The association has been clarified by use of the periodic acid-phosphotungsticacid-chromic acid technique to enhance electron contrast ofthe plasma membranes surrounding the generative cell. In thisbicellular system, the male germ unit association is apparentlyinitiated after pollen maturity but prior to generative celldivision. Pollen tube, generative cell, male germ unit, plasma membrane, vegetative nucleus, Rhododendron, Ericaceae  相似文献   

5.
Generative cell division in tricellular pollen grains of Sambucusnigra L. (Caprifoliaceae) has been examined with light and electronmicroscopy. During division the generative cell is located inthe centre of the pollen grain, near to the nucleus of a surroundingvegetative cell. Conventional mitosis of the generative cellis followed by cytokinesis through centrifugal cell plate formation.Two sister sperm cells remain in spatial contact with each otherand are surrounded, as formerly their progenitor cell was, bythe vegetative cell. From the changes of shape of the generativecell during division and of the sperm cells it may be assumedthat the space between these cells and the vegetative one containsa labile, non-rigid, wall material. No plastids have been observedin the generative cell and its mitochondria appear to be unequallydistributed between the two future sperm cells during division. Sambucus nigra L., generative cell division, pollen, sperm cell association  相似文献   

6.
Nuclear DNA content in mature pollen was measured with a flowcytometer Pollen of Lilium longiflorum, Dendranthema grandiflora(syn Chrysanthemum monfolium) and Zea mays was chopped and stainedwith the DNA fluorochrome DAPI DNA levels, expressed as arbitraryC values, were compared with those of nuclei isolated from leafor root material of the same plants In mature tricellulate pollen the generative cell is dividedafter second pollen mitosis into two sperm cells Tricellulatepollen from maize and chrysanthemum gave rise to one large 1Cpeak and, only in the case of chrysanthemum, a much smallerone at the 2C level These results suggest that the haploid nucleiof the vegetative as well as both sperm cells in tricellulatepollen are arrested in the G1 stage of nuclear division Thesmall 2C peak in the case of chrysanthemum probably arose froma fraction of pollen with the sporophytic chromosome number(2n pollen) In contrast to this, mature bicellulate lily pollengave rise to two identical peaks at the 1C and the 2C levelFrom this result it was concluded that in bicellulate pollen,the 1C peak is caused by the signal of the haploid vegetativenucleus arrested in the G1 stage of nuclear division, whereasthe 2C peak originates from the haploid generative nucleus whichhas already undergone DNA synthesis and is arrested in G2 Lilium longiflorumThunb, lily, Dendranthema grandiflora Tzelev (syn Chrysanthemum morifolium Ramat ), chrysanthemum, Zea maysL, maize, male gametophytic cells, vegetative cells, generative cells, sperm cells, unreduced pollen, sporophytic cells, relative nuclear DNA contents, replication stage  相似文献   

7.
栽培甜菜花粉发育过程的超微结构   总被引:3,自引:0,他引:3  
利用透射电镜技术对栽培甜菜(Beta vulgaris)花粉发育过程进行了超微结构观察。结果表明, 在小孢子母细胞减数分裂期间, 细胞内发生了“细胞质改组”, 主要表现在核糖体减少, 质体和线粒体结构发生了规律性变化。末期I 不形成细胞板,而是在2个子核间形成“细胞器带”。“细胞器带”的存在起到类似细胞板的作用, 暂时将细胞质分隔成两部分。四分体呈四面体型, 被胼胝质壁包围。小孢子外壁的沉积始于四分体晚期, 至小孢子晚期外壁已基本发育完全。单核小孢子时期, 细胞核大, 细胞器丰富。二细胞花粉发育主要表现在生殖细胞壁的变化上, 生殖细胞壁上不具有胞间连丝。成熟花粉为三细胞型, 含有1个营养细胞和2个精细胞。精细胞具有短尾突, 无壁, 为裸细胞, 每个精细胞通过2层质膜与营养细胞的细胞质分开。生殖细胞与精细胞里缺乏质体。  相似文献   

8.
利用透射电镜技术对栽培甜菜(Beta vuigaris)花粉发育过程进行了超微结构观察。结果表明,在小孢子母细胞减数分裂期间,细胞内发生了“细胞质改组”,主要表现在核糖体减少,质体和线粒体结构发生了规律性变化。末期1不形成细胞板,而是在2个子核间形成“细胞器带”。“细胞器带”的存在起到类似细胞板的作用,暂时将细胞质分隔成两部分。四分体呈四面体型,被胼胝质壁包围。小孢子外壁的沉积始于四分体晚期,至小孢子晚期外壁已基本发育完全。单核小孢子时期,细胞核大,细胞器丰富。二细胞花粉发育主要表现在生殖细胞壁的变化上,生殖细胞壁上不具有胞间连丝。成熟花粉为三细胞型,含有1个营养细胞和2个精细胞。精细胞具有短尾突,无壁,为裸细胞,每个精细胞通过2层质膜与营养细胞的细胞质分开。生殖细胞与精细胞里缺乏质体。  相似文献   

9.
Recently several DNA-binding fluotochromes have been used for demonstrating pollennuclei. However, the autofluorescence of pollen wall often obscured the fluorescence of nuclei, thus limited the use of this method. Methyl salicylate (MS) as a clearing agent has shownexcellent effect for observing embryo sac in whole-mounted ovules. This aroused me to trya combination of fluorescent staining with MS clearing in orded to make a better demonstration of the pollen nuclei. Mature 2-celled or 3-celled pollen of several angiosperm species stained with Hoechst 33258(H33258) and cleared (via ethanol dehydration) with MS showed clearcut fluorescence oftheir generative or sperm nuclei and vegetative nucleus. MS greatly decreased the wall fluorescence and increased the transparency of the pollen contents, meanwhile maintained the H33258stained fluorescence, consequently made the nuclei brighter under a darkened background. For example, in sunflower pollen a pair of elongated and winding sperm nuclei whichcould not be identified after simple H33258 staining were quite visible after MS clearing, inartificially germinated pollen tubes, the locomotion of nuclei from pollen grain into the tube,the sequence of generative and vegetative nucle travelling along the tube and the division of generative nucleus into two sperm nuclei could be well followed by this method. The present technique may be adoptable for observations on the processes of microsporogenesis and male gametophyte development, and rogenesis in cultured anthers, and also possiblyfor tracing the nuclear events during pollination-fertilization.  相似文献   

10.
HORNER  M.; STREET  H. E. 《Annals of botany》1978,42(4):763-771
Pollen dimorphism during the ripening of Nicotiana tabacum antherstakes the form of differentiation at the binucleate pollen stageinto normal (N) grains, characterized by their high frequency,larger size, densely–staining cytoplasm and high starchcontent and into smaller (S) grains characterized by their variableand low frequency and weakly–staining cytoplasm. Mostof the S grains show distinctive vegetative and generative nuclei(A grains); a small number have two vegetative–type nuclei(B grains). Evidence is presented that when excised anthersare cultured, pollen plants arise only from S grains. It issuggested that the differentiation into N and S grains arisesby an abnormal second meiotic division in the pollen mothercells. Nicotiana tabacum, tobacco, pollen dimorphism, anther culture  相似文献   

11.
The sequence of pollen development from the tetrad stage to the mature tricellular grain was studied in freshly harvested anthers of Sorghum bicolor. This pattern of development was then compared with that occurring during panicle pretreatment and subsequent anther incubation in vitro. It was found that during pretreatment at 7° C mitoses of the vegetative cell were induced in up to 30% of the pollen. During anther incubation procallus development was highly polarised with contributions from both the generative and vegetative cells. After pretreatment at 14 or 20° C the generative cell became detached from the pollen wall and it was not possible to determine whether subsequent development involved only the vegetative cell or both the vegetative and generative cells.Although retarded pollen grains were observed both in vivo and in vitro, and were occasionally seen to divide in culture, they did not appear to be the source of the procalluses produced.  相似文献   

12.
土麦冬离体萌发花粉管中生殖细胞与营养核的动态变化   总被引:7,自引:0,他引:7  
主要报道了土麦冬人工培养萌发花粉管中生殖细胞与营养核的动态变化。多数花粉管中,生殖细胞与营养核贴合后,开始进行有丝分裂,贴合时,营养核略呈弥散状态。在分裂早中期,生殖细胞与营养核分开,从贴合到分开大约经历3-5h,精子形成后,不与营养核连接。DAPI对生殖细胞的有丝分裂有抑制作用。少数花粉管中,生殖细胞核进行无丝分裂,有缢裂和劈裂两种方式。生殖细胞核发生缢裂的花粉管中,未观察到生殖细胞与营养核的贴  相似文献   

13.
高等植物花药结构复杂,其发育更是一个迅速、多变的过程,如小孢子母细胞减数分裂期间的细胞质改组、胼胝质壁的形成与降解、大液泡的形成与消失、花粉内外壁的形成、绒毡层细胞的降解、营养物质的积累与转化等。除了上述花药组成细胞的形态和结构发生明显变化外。花药发育的另一个显著特点是以花粉为中心的营养物质单向运输和转化,尤其是小孢子有丝分裂形成二胞花粉后开始积累大量的营养储存物以供成熟花粉萌发时利用。  相似文献   

14.
We examined changes in the localization of cytoplasmic rRNA during pollen development inNicotiana tabacum SR-1. The rRNA was visualized byin situ hybridization, and the signal intensity of rRNA in microspore, vegetative and generative cell was quantified by microphotometry. The amount of rRNA per microspore or pollen section increased about 5 times from microspore to mature pollen grain and kept increasing even in the late stage of pollen development after PMI. The increase of rRNA occur in both vegetative and generative cells. The results suggest that synthesis of rRNA occur even after PM I in both vegetative and generative cells.  相似文献   

15.
The generative cell (GC) development during three sequentialstages of Magnolia x soulangeana pollen grain maturation wasinvestigated by light and electron microscopy. Plastids werenot identified in this cell but mitochondria, Golgi bodies andvesicles as well as rough endoplasmic reticulum profiles werealways present. Microtubules were also present, their numberincreasing and their disposition varying during GC maturation.The most conspicuous components of the GC cytoplasm were themicrobodies. The latter were few in number in the newly formedGC, and the appearance of their matrix was different from laterdevelopmental stages. A clear microbodial proliferation occurredin the GC during an intermediate stage of pollen maturation.Then, the microbody matrix was either fibrillar to granularas in the vegetative cell microbodies or very dense and compact.The polymorphism and size range and the frequent aggregationof these organelles in one or more clusters were also noteworthy.Tilting of semithin sections as well as the analysis of serialsections suggested that a number or enlarged and irregularlyshaped microbodies co-exist with smaller and more sphericalones, the latter probably originating by budding. In the GCof the mature pollen the microbody-like organelles were in generalmore uniform both in shape and size. The cytochemical test ofDAB was positive in the microbodies of both the pollen cells,thus demonstrating their peroxisomic nature. The function ofthe microbodies in the GC is not clear. In this cell, a fewlipid droplets only exist during the first developmental stageand the microbodies were apparently unrelated to any other organelle.Possibly, these are unspecialized microbodies which are paternallytransmitted, but it is not excluded that, temporarily, theymay play some special role during GC maturation.Copyright 1994,1999 Academic Press Peroxisomes, generative cell, pollen maturation, Magnolia x soulangeana Soul.-Bod  相似文献   

16.
This paper deals with the comportmem of the vegetative nucleus and its spatial association with the generative cell and sperm cells in the artificially germinated pollen tubes of Zephyranthes candida (Lindl.) Herb. before and after generative cell mitosis with the use of DNA-specific fluochrome 4′,6-diamidino-2-phenylindole (DAPI). The induction of amitosis and abnormal mitosis of generative cell nuclei by cold-pretreatment of the pollen prior to germination was studied in particular. In normal case, the generative cell, after appressing to the vegetative nucleus for certain time, underwent mitosis to form two sperms, while the vegetative nucleus became markedly elongated, diffused, and exhibited blurring of its fluorescence. After division, a pair of sperms remained shortly in close connexion with the vegetative nucleus. Then the vegetative nucleus returned to its original state. In the pollen tubes germinated from cold-pretreated pollen, amitosis of some generative cell nuclei were frequently observed. Amitosis took place via either equal or unequal division with a mode of constriction. During amitosis, the dynamic change of vegetative nucleus and its intimate association with generative cell afore described did not occur. Sperm nuclei produced from amitosis could farther undergo amitisis resulting in micronnclei. Factors affecting the amitosic rate of generative cells, such as pollen developmental stage, temperature and duration of cold-pretreatment, were studied. Besides amitosis, cold-pretreatment also induced some abnormal mitotic behavior leading to the formation of micronuclei. Based on our observations and previously reported facts in other plant materials, it is inferred that the vegetative nucleus plays an important role in normal mitosis of generative cell and development of sperms.  相似文献   

17.
The fates of mitochondrial and plastid nucleoids during pollen development in six angiosperm species (Antirrhinum majus, Glycine max, Medicago sativa, Nicotiana tabacum, Pisum sativum, and Trifolium pratense) were examined using epifluorescence microscopy after double staining with 4',6-diamidino-2- phenylindole (DAPI) to stain DNA and with a potentiometric dye (either DiOC7 or rhodamine 123) for visualization of metabolically active mitochondria. From the pollen mother cell stage to the microspore stage of pollen development, mitochondria and plastids both contained DNA detectable by DAPI staining. However, during the further maturation preceding anthesis, mitochondrial DNA became undetectable cytologically in either the generative or the vegetative cell of mature pollen; even in germinated pollen tubes containing hundreds of metabolically active mitochondria undergoing cytoplasmic streaming, vital staining with DAPI failed to reveal mitochondrial DNA. By the mature pollen stage, plastid DNA also became undetectable by DAPI staining in the vegetative cell. However, in the generative cell of mature pollen the timing of plastid DNA disappearance as detected by DAPI varied with the species. Plastid DNA remained detectable only in the generative cells of pollen grains from species known or suspected to have biparental transmission of plastids. The apparent absence of cytologically detectable organelle genomes in living pollen was further examined using molecular methods by hybridizing organelle DNA-specific probes to digests of total DNA from mature pollen and from other organs of A. majus and N. tabacum, both known to be maternal for organelle inheritance. Mitochondrial DNA was detected in pollen of both species; thus the cytological alteration of mitochondrial genomes during pollen development does not correspond with total mtDNA loss from the pollen. Plastid DNA was detectable with molecular probes in N. tabacum pollen but not in A. majus pollen. Since the organelle DNA detected by molecular methods in mature pollen may lie solely in the vegetative cell, further study of the basis of maternal inheritance of mitochondria and plastids will require molecular methods which distinguish vegetative cell from reproductive cell organelle genomes. The biological effect of the striking morphological alteration of organelle genomes during later stages of pollen development, which leaves them detectable by molecular methods but not by DAPI staining, is as yet unknown.  相似文献   

18.
Pollen Bud Formation and its Role in Ophiorrhiza spp.   总被引:2,自引:0,他引:2  
The anther in Ophiorrhiza is dithecous and tetralocular, itsdevelopment being of the dicotyledonous type. The anther wallcomprises epidermis, endothecium, middle layer and secretorytapetum. The pollen grains are tricolpate and triporate. Themicrospore nucleus undergoes division to form a vegetative nucleusand a generative nucleus and protrusions (pollen buds) are formedfrom the germ pores after the first division of the microsporenucleus. The vegetative nucleus moves into one of these budsor first breaks into a number of irregularly sized nuclear particleswhich enter into one, two or into all three buds, where theydegenerate. Then the pollen buds are separated and the generativenucleus divides inside the pollen tube to form two sperms. Ophiorrhiza harrisiana, Ophiorrhiza hirsutula, microsporogenesis, pollen buds, vegetative nucleus  相似文献   

19.
The present study of the formation of the generative and vegetative cells in wheat has demonstrated some cytological details at the ultrastructural level. The phragmoplast formed in telophase of the first microsporic mitosis extended centrifugally until it connected with the intine of the pollen grain. A new cell wall was then formed to separate the generative and the vegetative cells. By unequal cytokinesis the former is small and the latter large. In early developmental stage of male gametophyte, the organelles in the cytoplasm of the generaVive cell and the vegetative cells are similar, including mitochondria, dictyosomes, rough endoplasmic retieulum, free and clustered ribosomes and plastids, but microtubules were observed only in the early cytokinesis stage. In the further developmental stage of the male gemetophyte, the generative cell gradually detached from the intine of pollen grain and grew inward to the cytoplasm of the vegetation cell. When the generative cell became round and free in the cytoplasm of the vegetative cell, the wall materials between plasma membranes of the cytoplasm of the generative and the vegetative cells disappeared completely, so that it was a naked cell with a double-layer membrane at this time. The heterogeneity between both cells was then very conspiceous. The organelles in the cytoplasm of the generative cell have hardly any changed besides the degeneration of plastids, but in vegetative cytoplasm the mitochondria and plastids increased dramatically both in number and size. The rapid deposition of starch in the plastids of the cytoplasm of the vegetative cell made the most conspicuous feature of the vegetative cell in mature pollen grain. The significance of the presence of a temporary cell wall in generative cell and heterogeneity between generative and vegetative cells are discussed.  相似文献   

20.
利用绿色荧光蛋白基因结合鼠Talin基因表达技术及水稻转基因技术,在未成熟花粉发育期(即生殖细胞在形成后从靠壁部位移向中央部位的阶段)的水稻(Oryza sativa L.)内发现了一系列前人未曾报道过的微丝骨架的形成和多变过程。在这一发育阶段,未成熟花粉内的生殖细胞呈圆形,中央部位存有一个大液泡,大量微丝在细胞的中央胞质内形成。微丝首先在营养核的核膜表面形成两个集结中心,中心内的微丝呈短粗状。尔后,中心微丝不断瞎长,最终在细胞中央的胞质内形成一个非常 类似多个纺锤体结合在一起的网络结构。这一网络的中间部位经常包围着营养核和生殖细胞,网络的部分微丝则与存在周缘细胞质(或称周质)的微丝网络形成连接,在连接点部位则形成一些由微丝环状组成的结构。未成熟花粉中央的微丝网络可能与营养核和生殖细胞在未成熟花粉内的运动有密切关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号