首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Supramembrane structures that connect conjugating agrobacterial cells were visualized for the first time by transmission electron microscopy. The primary contact of cells during conjugation was shown to occur through the formation of long pili containing no VirB1 protein. Pretreatment of agrobacterial cells with acetosyringone resulted in a six- to tenfold increase in the transfer frequency of the plasmid pTd33 at 19-25 degrees C and had almost no effect at 30 degrees C. The transfer of the plasmid pTd33 from A. tumefaciens strain GV3101 to plasmid-free A. tumefaciens strain UBAPF-2 was 16 times decreased after the centrifugation of cells. The transfer efficiency of the plasmid pTd33 from A. tumefaciens strain LBA2525 (virB2::lacZ) to plasmid-free A. tumefaciens strain UBAPF-2 was one order of magnitude lower than the transfer from the wild-type A. tumefaciens strain GV3101. Treatment of donor cells with 0.01% SDS before mating decreased the transfer efficiency by a factor of 26. The role of pili in the establishment of contact between conjugating cells of agrobacteria is discussed.  相似文献   

2.
Exocellular structures containing VirB2 proteins were, for the first time, localized on the surface of Agrobacterium by transmission electron microscopy. Using colloidal gold (CG)-labeled VirB2-specific antibodies, it was shown that VirB2 proteins enter into the composition of short surface pili, which emerge at the poles of acetosyringone (AS)-induced Agrobacterium cells. However, cells of the Ti plasmidless A. tumefaciens strain UBAPF-2 and cells not induced with AS were incapable of pilus synthesis. In suspension, mating Agrobacterium cells were connected together by short thick bridges. It was found that these bridges did not include as part of their structure CG-labeled VirB1 and VirB2 proteins. We did not find the tetracycline-resistant transconjugants after mating of A. tumefaciens donor cells harboring binary systems with plasmid-free A. tumefaciens GM-I 9023 in vir-induced and vir-uninduced conditions. However, the same strains can transfer pSUP106 plasmid via a vir-dependent way. We found that activated vir genes slightly stimulate pTd33 plasmid transfer via a tra-dependent pathway to plasmid-free strain UBAPF-2. It seems, that vir-induced T-DNA/plasmid DNA transfer machinery is not essential for the conjugation process between agrobacterial cells but may participate in this process.  相似文献   

3.
Supramembrane structures that connect conjugating agrobacterial cells were visualized for the first time by transmission electron microscopy. The primary contact of cells during conjugation was shown to occur through the formation of long pili containing no VirB1 protein. Pretreatment of agrobacterial cells with acetosyringone resulted in a six-to tenfold increase in the transfer frequency of plasmid pTd33 at 19–25°C and had almost no effect at 30°C. The transfer of plasmid pTd33 fromA. tumefaciens strain GV3101 to plasmid-freeA. tumefaciens strain UBAPF-2 was 16 times decreased after the centrifugation of cells. The transfer efficiency of plasmid pTd33 fromA. tumefaciens strain LBA2525 (virB2::lacZ) to plasmid-freeA. tumefaciens strain UBAPF-2 was one order of magnitude lower than the transfer from the wild-typeA. tumefaciens strain GV3101. Treatment of donor cells with 0.01% SDS before mating decreased the transfer efficiency by a factor of 26. The role of pili in the establishment of contact between conjugating cells of agrobacteria is discussed.  相似文献   

4.
Using colloidal gold-labelled VirB1-specific antibodies, it was found that VirB1 proteins are included into the composition of short pilus-like structures, which emerge at the poles of acetosyringone (AS)-induced agrobacterial cells.  相似文献   

5.
Using transmission electron immunomicroscopy, VirB2 protein has been revealed at the surface of acetosyringon-treated A. tumefaciens cells. VirB2 was seen within long flexible and short structures localized at the opposite poles of the cells. These structures were not observed in cells not treated with acetosyringon and in agrobacterial cells treated with this reagent but carrying no Ti-plasmid. Labeled complexes [antibodies to virB2 protein + (A protein + colloidal gold)] bound to pili at a certain periodicity.  相似文献   

6.
The Agrobacterium tumefaciens VirB4 ATPase functions with other VirB proteins to export T-DNA to susceptible plant cells and other DNA substrates to a variety of prokaryotic and eukaryotic cells. Previous studies have demonstrated that VirB4 mutants with defects in the Walker A nucleotide-binding motif are non-functional and exert a dominant negative phenotype when synthesized in wild-type cells. This study characterized the oligomeric structure of VirB4 and examined the effects of Walker A sequence mutations on complex formation and transporter activity. VirB4 directed dimer formation when fused to the amino-terminal portion of cI repressor protein, as shown by immunity of Escherichia coli cells to lambda phage infection. VirB4 also dimerized in Agrobacterium tumefaciens, as demonstrated by the recovery of a detergent-resistant complex of native protein and a functional, histidine-tagged derivative by precipitation with anti-His6 antibodies and by Co2+ affinity chromatography. Walker A sequence mutants directed repressor dimerization in E. coli and interacted with His-VirB4 in A. tumefaciens, indicating that ATP binding is not required for self-association. A dimerization domain was localized to a proposed N-terminal membrane-spanning region of VirB4, as shown by the dominance of an allele coding for the N-terminal 312 residues and phage immunity of host cells expressing cI repressor fusions to alleles for the first 237 or 312 residues. A recent study reported that the synthesis of a subset of VirB proteins, including VirB4, in agrobacterial recipients has a pronounced stimulatory effect on the virB-dependent conjugal transfer of plasmid RSF1010 by agrobacterial donors. VirB4'312 suppressed the stimulatory effect of VirB proteins for DNA uptake when synthesized in recipient cells. In striking contrast, Walker A sequence mutants contributed to the stimulatory effect of VirB proteins to the same extent as native VirB4. These findings indicate that the oligomeric structure of VirB4, but not its capacity to bind ATP, is important for the assembly of VirB proteins as a DNA uptake system. The results of these studies support a model in which VirB4 dimers or homomultimers contribute structural information for the assembly of a transenvelope channel competent for bidirectional DNA transfer, whereas an ATP-dependent activity is required for configuring this channel as a dedicated export machine.  相似文献   

7.
Chumakov  M. I.  Dykman  L. A.  Bogatyrev  V. A.  Kurbanova  I. V. 《Microbiology》2001,70(2):232-238
Agrobacterial cells produced straight microfibrils not only when in contact with wheat seedling roots, but also when in contact with each other. After 2 h of incubation, agrobacterial cells were found to form aggregates, in which the cells were in contact either directly or through thick straight microfibrils (bridges) of an unknown composition. The majority of the microfibrils were susceptible to attack by cellulase, although some of them showed resistance to this enzyme. Like the wild-type flagellated agrobacteria, their bald mutants produced long straight microfibrils. The cell surface structures of agrobacteria were examined by labeling them immunocytochemically with colloidal gold–conjugated antibodies against O-specific lipopolysaccharides, Vir proteins, and cellulase. Agrobacterial cells treated with acetosyringone and brought into contact were found to contain subpolar and polar cell surface structures. Antibodies against the VirB2 protein were able to interact with a tuft of thin microfibrils located on one pole of the agrobacterial cell whose virgenes were induced by acetosyringone but were unable to interact with the surface structures of the agrobacterial cells aggregated in liquid medium in the absence of wheat seedlings.  相似文献   

8.
The VirB11 ATPase is a subunit of the Agrobacterium tumefaciens transfer DNA (T-DNA) transfer system, a type IV secretion pathway required for delivery of T-DNA and effector proteins to plant cells during infection. In this study, we examined the effects of virB11 mutations on VirB protein accumulation, T-pilus production, and substrate translocation. Strains synthesizing VirB11 derivatives with mutations in the nucleoside triphosphate binding site (Walker A motif) accumulated wild-type levels of VirB proteins but failed to produce the T-pilus or export substrates at detectable levels, establishing the importance of nucleoside triphosphate binding or hydrolysis for T-pilus biogenesis. Similar findings were obtained for VirB4, a second ATPase of this transfer system. Analyses of strains expressing virB11 dominant alleles in general showed that T-pilus production is correlated with substrate translocation. Notably, strains expressing dominant alleles previously designated class II (dominant and nonfunctional) neither transferred T-DNA nor elaborated detectable levels of the T-pilus. By contrast, strains expressing most dominant alleles designated class III (dominant and functional) efficiently translocated T-DNA and synthesized abundant levels of T pilus. We did, however, identify four types of virB11 mutations or strain genotypes that selectively disrupted substrate translocation or T-pilus production: (i) virB11/virB11* merodiploid strains expressing all class II and III dominant alleles were strongly suppressed for T-DNA translocation but efficiently mobilized an IncQ plasmid to agrobacterial recipients and also elaborated abundant levels of T pilus; (ii) strains synthesizing two class III mutant proteins, VirB11, V258G and VirB11.I265T, efficiently transferred both DNA substrates but produced low and undetectable levels of T pilus, respectively; (iii) a strain synthesizing the class II mutant protein VirB11.I103T/M301L efficiently exported VirE2 but produced undetectable levels of T pilus; (iv) strains synthesizing three VirB11 derivatives with a four-residue (HMVD) insertion (L75.i4, C168.i4, and L302.i4) neither transferred T-DNA nor produced detectable levels of T pilus but efficiently transferred VirE2 to plants and the IncQ plasmid to agrobacterial recipient cells. Together, our findings support a model in which the VirB11 ATPase contributes at two levels to type IV secretion, T-pilus morphogenesis, and substrate selection. Furthermore, the contributions of VirB11 to machine assembly and substrate transfer can be uncoupled by mutagenesis.  相似文献   

9.
That gene transfer to plant cells is a temperature-sensitive process has been known for more than 50 years. Previous work indicated that this sensitivity results from the inability to assemble a functional T pilus required for T-DNA and protein transfer to recipient cells. The studies reported here extend these observations and more clearly define the molecular basis of this assembly and transfer defect. T-pilus assembly and virulence protein accumulation were monitored in Agrobacterium tumefaciens strain C58 at different temperatures ranging from 20 degrees C to growth-inhibitory 37 degrees C. Incubation at 28 degrees C but not at 26 degrees C strongly inhibited extracellular assembly of the major T-pilus component VirB2 as well as of pilus-associated protein VirB5, and the highest amounts of T pili were detected at 20 degrees C. Analysis of temperature effects on the cell-bound virulence machinery revealed three classes of virulence proteins. Whereas class I proteins (VirB2, VirB7, VirB9, and VirB10) were readily detected at 28 degrees C, class II proteins (VirB1, VirB4, VirB5, VirB6, VirB8, VirB11, VirD2, and VirE2) were only detected after cell growth below 26 degrees C. Significant levels of class III proteins (VirB3 and VirD4) were only detected at 20 degrees C and not at higher temperatures. Shift of virulence-induced agrobacteria from 20 to 28 or 37 degrees C had no immediate effect on cell-bound T pili or on stability of most virulence proteins. However, the temperature shift caused a rapid decrease in the amount of cell-bound VirB3 and VirD4, and VirB4 and VirB11 levels decreased next. To assess whether destabilization of virulence proteins constitutes a general phenomenon, levels of virulence proteins and of extracellular T pili were monitored in different A. tumefaciens and Agrobacterium vitis strains grown at 20 and 28 degrees C. Levels of many virulence proteins were strongly reduced at 28 degrees C compared to 20 degrees C, and T-pilus assembly did not occur in all strains except "temperature-resistant" Ach5 and Chry5. Virulence protein levels correlated well with bacterial virulence at elevated temperature, suggesting that degradation of a limited set of virulence proteins accounts for the temperature sensitivity of gene transfer to plants.  相似文献   

10.
Agrobacterial cells produced straight microfibrils not only when in contact with wheat seedling roots, but also when in contact with each other. After 2 h of incubation, agrobacterial cells were found to form aggregates, in which the cells were in contact either directly or through thick straight microfibrils (bridges) of an unknown composition. The majority of the microfibrils were susceptible to attack by cellulase, although some of them showed resistance to this enzyme. Like the wild-type flagellated agrobacteria, their bald mutants produced long straight microfibrils. The cells surface structures of agrobacteria were examined by labeling them immunocytochemically with colloidal gold conjugated antibodies against O-specific lipopolysaccharides, Vir proteins, and cellulase. Agrobacterial cells treated with acetosyringone and brought into contact were found to contain subpolar and polar cell surface structures. Antibodies against the VirB2 protein were able to interact with a tuft of thin microfibrils located on one pole of the agrobacterial cell, whose vir genes were induced by acetosyringone, but were unable to interact with the surface structures of the agrobacterial cells aggregated in liquid medium in the absence of wheat seedlings.  相似文献   

11.
Discusses probable routes of agrobacterial penetration through the plant integumental tissues, cell wall, and plant cell plasmodesma. Analyzes the contribution of extracellular structures of agrobacteria in penetration through barriers of a plant cell, primary contact (adhesion), and during DNA transfer from bacterial (E. coli, A. tumefaciens) to recipient (bacterial or plant) cells. Discusses the relationship between donor cell adhesion to recipient cell surface and the infectious and conjugation processes. Considers the probable role of piles in conjugative transfer of agrobacterial DNA through membranes of donor and recipient (bacterial and plant) cells. Analyzes the contribution of the plant cell cytoskeleton to T-DNA transfer. Suggests a model of transport of T-DNA-VirD2 complex and VirE2 proteins through independent channels consisting of vir-coded proteins.  相似文献   

12.
This study characterized the contribution of Agrobacterium tumefaciens VirB6, a polytopic inner membrane protein, to the formation of outer membrane VirB7 lipoprotein and VirB9 protein multimers required for type IV secretion. VirB7 assembles as a disulfide cross-linked homodimer that associates with the T pilus and a VirB7-VirB9 heterodimer that stabilizes other VirB proteins during biogenesis of the secretion machine. Two presumptive VirB protein complexes, composed of VirB6, VirB7, and VirB9 and of VirB7, VirB9, and VirB10, were isolated by immunoprecipitation or glutathione S-transferase pulldown assays from detergent-solubilized membrane extracts of wild-type A348 and a strain producing only VirB6 through VirB10 among the VirB proteins. To examine the biological importance of VirB6 complex formation for type IV secretion, we monitored the effects of nonstoichiometric VirB6 production and the synthesis of VirB6 derivatives with 4-residue insertions (VirB6.i4) on VirB7 and VirB9 multimerization, T-pilus assembly, and substrate transfer. A virB6 gene deletion mutant accumulated VirB7 dimers at diminished steady-state levels, whereas complementation with a plasmid bearing wild-type virB6 partially restored accumulation of the dimers. VirB6 overproduction was correlated with formation of higher-order VirB9 complexes or aggregates and also blocked substrate transfer without a detectable disruption of T-pilus production; these phenotypes were displayed by cells grown at 28 degrees C, a temperature that favors VirB protein turnover, but not by cells grown at 20 degrees C. Strains producing several VirB6.i4 mutant proteins assembled novel VirB7 and VirB9 complexes detectable by nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and two strains producing the D60.i4 and L191.i4 mutant proteins translocated IncQ plasmid and VirE2 effector protein substrates in the absence of a detectable T pilus. Our findings support a model that VirB6 mediates formation of VirB7 and VirB9 complexes required for biogenesis of the T pilus and the secretion channel.  相似文献   

13.
Agrobacteria have Ti plasmid DNA delivering systems for the transfer to recipient cells by the conjugation mechanism. This transfer is absolutely dependent on induction tra genes. It is not clear which tra-dependent surface (extracellular) proteins (structures) are involved in the transport mechanism and whether these proteins also play a role in the contact formation. SDS-PAGE electrophoresis of proteins released from the cell showed disappearance of 63 and 67 kD proteins in R1(delta traR) strain, which were found in the growth medium and triton extract from the outer membrane of Ti plasmid-harboring A. tumefaciens R10 strains. The traR defective mutant did not express these proteins and had a higher hemagglutination and flocculation capacity than the wild strain. On the other hand, the wild strain showed D-galactose and N-acetyl-galactosamine specific hemagglutination which was not shown by traR mutant. Motility and chemotactic behavior of traR mutant in semisolid medium were defective. As a rule, one (or rarely two) thread-like connections in vir(-) and tra(+) conditions were observed on the agrobacterial cell surface. SDS pretreatment of agrobacterial cells had a significant effect on the expression of tra-dependent surface structures.  相似文献   

14.
The review deals with the supramembrane and membrane structures involved in the initial contact (attachment) of an agrobacterial cell with a bacterial or plant cell during the transfer of the agrobacterial genetic information. The relationships between the donor cell attachment to the recipient cell surface and the infection and conjugation processes are discussed. Experimental data on the recently found agrobacterial pili and surface protein rhicadhesin, which are involved in the conjugative transfer of the plasmid between agrobacteria, are considered. The role of adhesive and conjugative pili of E. coli in the initial and tight contacts is analyzed in the context of the recently proved similarity between the mechanisms of agrobacterial transformation in plants and conjugative transfer in bacteria. Possible involvement of the pilus in the conjugative transfer of agrobacterial DNA across the membranes of donor and recipient (bacterial and plant) cells is discussed.  相似文献   

15.
Type IV secretion systems mediate conjugative plasmid transfer as well as the translocation of virulence factors from various gram-negative pathogens to eukaryotic host cells. The translocation apparatus consists of 9 to 12 components, and the components from different organisms are believed to have similar functions. However, orthologs to proteins of the prototypical type IV system, VirB of Agrobacterium tumefaciens, typically share only 15 to 30% identical amino acids, and functional complementation between components of different type IV secretion systems has not been achieved. We here report a heterologous complementation in the case of A. tumefaciens virB1 defects with its orthologs from Brucella suis (VirB1s) and the IncN plasmid pKM101 (TraL). In contrast, expression of the genes encoding the VirB1 orthologs from the IncF plasmid (open reading frame 169) and from the Helicobacter pylori cag pathogenicity island (HP0523) did not complement VirB1 functions. The complementation of VirB1 activity was assessed by T-pilus formation, by tumor formation on wounded plants, by IncQ plasmid transfer, and by IncQ plasmid recipient assay. Replacement of the key active-site Glu residue by Ala abolished the complementation by VirB1 from B. suis and by TraL, demonstrating that heterologous complementation requires an intact lytic transglycosylase active site. In contrast, the VirB1 active-site mutant from A. tumefaciens retained considerable residual activity in various activity assays, implying that this protein exerts additional effects during the type IV secretion process.  相似文献   

16.
The translocation of DNA across biological membranes is an essential process for many living organisms. In bacteria, type IV secretion systems (T4SS) are used to deliver DNA as well as protein substrates from donor to target cells. The T4SS are structurally complex machines assembled from a dozen or more membrane proteins in response to environmental signals. In Gram-negative bacteria, the conjugation machines are composed of a cell envelope-spanning secretion channel and an extracellular pilus. These dynamic structures (i) direct formation of stable contacts-the mating junction-between donor and recipient cell membranes, (ii) transmit single-stranded DNA as a nucleoprotein particle, as well as protein substrates, across donor and recipient cell membranes, and (iii) mediate disassembly of the mating junction following substrate transfer. This review summarizes recent progress in our understanding of the mechanistic details of DNA trafficking with a focus on the paradigmatic Agrobacterium tumefaciens VirB/D4 T4SS and related conjugation systems.  相似文献   

17.
Several octopine strains of Agrobacterium tumefaciens were tested for Ti plasmid (pTi) transfer after induction by 400 micrograms of octopine per ml for 24 h. The strains could be divided into two groups, transfer efficient (Trae) and transfer inefficient (Traie); the respective rates of transfer were 0.77 x 10(-2) to 1.14 x 10(-2) and 0.33 x 10(-6) to 9.8 x 10(-6) plasmid transconjugant per donor cell. Transfer efficiencies of Traie strains were greatly increased when the time of induction was 72 h. A diffusible conjugation factor (CF) that can enhance conjugal transfer of pTi in A. tumefaciens was discovered when both Trae and Traie donor strains were induced in the same plate. The evidence indicates that CF is a key factor affecting transfer efficiency of pTi but is not sufficient by itself to induce transfer. Trac mutants can produce CF constitutively, and Trae strains can produce it after induction by low octopine concentrations. The transfer efficiency of Traie strains was greatly increased by adding CF to the induction medium. The thermosensitive strain B6S, which normally cannot conjugate at temperatures above 30 degrees C, could transfer pTi efficiently at 32 and 34 degrees C in the presence of CF. Production of CF is dependent on the presence of pTi but appears to be common for different opine strains; it was first detected in octopine strains, but nopaline strains also produced the same or a similar compound. CF is very biologically active, affecting donor but not recipient bacterial cells, but CF does not promote aggregation. Data suggest that CF might be an activator or derepressor in the conjugation system of A. tumefaciens. CF is a dialyzable small molecule and is resistant to DNase, RNase, protease, and heating to 100 degrees C for 10 min, but autoclaving (121 degrees C for 15 min) and alkaline treatment removed all activity.  相似文献   

18.
Liu Z  Binns AN 《Journal of bacteriology》2003,185(11):3259-3269
The virB-encoded type IV transport complex of Agrobacterium tumefaciens mediates the transfer of DNA and proteins into plant cells, as well as the conjugal transfer of IncQ plasmids, such as RSF1010, between Agrobacterium strains. While several studies have indicated that there are physical interactions among the 11 VirB proteins, the functional significance of the interactions has been difficult to establish since all of the proteins are required for substrate transfer. Our previous studies, however, indicated that although all of the VirB proteins are required for the capacity of a strain to serve as an RSF1010 donor, only a subset of these proteins in the recipient is necessary to increase the conjugal frequency by 3 to 4 logs. The roles of particular groups of VirB proteins in this increased recipient activity were examined in the study reported here. Examination of the expression of subgroups of virB genes revealed that translation of virB6 is necessary for expression of downstream open reading frames. Expression of limited subsets of the VirB proteins in a recipient strain lacking the Ti plasmid revealed that the VirB7 to VirB10 proteins yield a subcomplex that is functional in the recipient assay but that the VirB1 to VirB4 proteins, as a group, dramatically increase this activity in strains expressing VirB7 to VirB10. Finally, the membrane distribution and cross-linking patterns of VirB10, but not of VirB8 or VirB9, in a strain expressing only VirB7 to VirB10 are significantly altered compared to the patterns of the wild type. These characteristics are, however, restored to the wild-type status by coexpression of VirB1 to VirB3. Taken together, these results define subsets of type IV transport complex proteins that are critical in allowing a strain to participate as a recipient in virB-mediated conjugal RSF1010 transfer.  相似文献   

19.
Agrobacterium tumefaciens and Agrobacterium rhizogenes transfer plasmid-encoded genes and virulence (Vir) proteins into plant cells. The transferred DNA (T-DNA) is stably inherited and expressed in plant cells, causing crown gall or hairy root disease. DNA transfer from A. tumefaciens into plant cells resembles plasmid conjugation; single-stranded DNA (ssDNA) is exported from the bacteria via a type IV secretion system comprised of VirB1 through VirB11 and VirD4. Bacteria also secrete certain Vir proteins into plant cells via this pore. One of these, VirE2, is an ssDNA-binding protein crucial for efficient T-DNA transfer and integration. VirE2 binds incoming ssT-DNA and helps target it into the nucleus. Some strains of A. rhizogenes lack VirE2, but they still transfer T-DNA efficiently. We isolated a novel gene from A. rhizogenes that restored pathogenicity to virE2 mutant A. tumefaciens. The GALLS gene was essential for pathogenicity of A. rhizogenes. Unlike VirE2, GALLS contains a nucleoside triphosphate binding motif similar to one in TraA, a strand transferase conjugation protein. Despite their lack of similarity, GALLS substituted for VirE2.  相似文献   

20.
Two DNA transfer systems encoded by the tumor-inducing (Ti) plasmid have been previously identified in Agrobacterium tumefaciens. The virB operon is required for the transfer of transferred DNA to the plant host, and the trb system encodes functions required for the conjugal transfer of the Ti plasmid between cells of Agrobacterium. Recent availability of the genome sequence of Agrobacterium allowed us to identify a third system that is most similar to the VirB type IV secretion system of Bartonella henselae. We have designated this system avhB for Agrobacterium virulence homologue virB. The avhB loci reside on pAtC58 and encode at least 10 proteins (AvhB2 through AvhB11), 7 of which display significant similarity to the corresponding virulence-associated VirB proteins of the Ti plasmid. However, the AvhB system is not required for tumor formation; rather, it mediates the conjugal transfer of the pAtC58 cryptic plasmid between cells of Agrobacterium. This transfer occurs in the absence of the Ti plasmid-encoded VirB and Trb systems. Like the VirB system, AvhB products promote the conjugal transfer of the IncQ plasmid RSF1010, suggesting that these products comprise a mating-pair formation system. The presence of plasmid TiC58 or plasmid RSF1010 reduces the conjugal transfer efficiency of pAtC58 10- or 1,000-fold, respectively. These data suggest that complex substrate interactions exist among the three DNA transfer systems of Agrobacterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号