首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chloroquine (ClQ) inhibited the repair of DNA damage produced in cultured rat liver cells by methyl methanesulfonate (MMS). MMS caused fragmentation of single-strand DNA in alkaline sucrose gradients. Repair of the damage was followed by observing the restoration of the normal sedimentation pattern at intervals after treatment. Repair was significant by 7 h and nearly complete at 24 h. Addition of ClQ during the repair peiod markedly reduced the rate of repair. Also, ClQ increased the lethality of MMS, which could be due to the inhibition of repair. ClQ was found to inhibit protein synthesis, but the effect on repair is probably not due entirely to this action since comparable inhibition of protein synthesis by cycloheximide produced a lesser degree of delay in repair.  相似文献   

2.
Novobiocin, an effective inhibitor of DNA replicaion in Escherichia coli, is shown to have no effect on the ATP-dependent DNA repair carried out by toluenized cells after ultraviolet irradiation. Therefore novobiocin can be considered a selective inhibitor of replicative DNA synthesis in vitro.  相似文献   

3.
We have recently demonstrated by electron microscopic cytochemical methods that unfixed human fibroblasts exhibit intense MG2+ dependent adenosine triphosphatase (nATPase) activity in circumscribed areas of the cell nucleoli. The nATPase was specific for ATP and dATP and was inhibited by other ribonucleoside triphosphates. Its intranucleolar localization relative to nucleolar chromatin, and segregation into nucleolar zones after actinomycin treatment of the cells, suggested that the reaction took place in fibrillar centers. This ATPase has now been further characterized by electron microscopic cytochemistry. It was determined that short fixation permitted retention of most of the ATPase activity, and that the enzyme was active at high ionic strength (up to 400 mM KCl), but that the enzyme activity was very sensitive to elevated temperatures. DNA dependence of the enzyme was shown by inhibition of the reaction by DNase pretreatment in parallel with the removal of DNA from the cell, while pretreatment with RNase had no significant effect. The nATPase activity was also selectively inhibited by treatment of the cells with antagonists of the B subunit of DNA gyrase, novobiocin, and coumermycin, but not by nalidixic or oxolinic acids, which interfere with the A subunit of gyrase. Inhibitors of RNA synthesis, actinomycin D and aminonucleoside of puromycin, potentiate rather than inhibit nATPase reaction. The results suggest that nATPase functions to alter the degree of supercoiling or catenation of nucleolar organizer DNA, and is in reality a DNA topoisomerase that hydrolyzes ATP during its action.  相似文献   

4.
5.
6.
1. DNA repair was measured in 3 Gy gamma-irradiated human peripheral lymphocyte subpopulations by means of nucleoid sedimentation. 2. The influence of the antibiotic, novobiocin (an inhibitor of inter alia topoisomerase II) on the repair process was investigated. 3. Repair of 33 37% of the DNA lesions induced by gamma-irradiation in enriched B lymphocyte fractions, was retarded by novobiocin. 4. Repair in enriched T lymphocyte fractions was unaffected by novobiocin.  相似文献   

7.
Sea urchins are noted for the absence of neoplastic disease and represent a novel model to investigate cellular and systemic cancer protection mechanisms. Following intracoelomic injection of the DNA alkylating agent methyl methanesulfonate, DNA damage was detected in sea urchin cells and tissues (coelomocytes, muscle, oesophagus, ampullae and gonad) by the alkaline unwinding, fast micromethod. Gene expression analyses of the coelomocytes indicated upregulation of innate immune markers, including genes involved in NF-κB signalling. Results suggest that activation of the innate immune system following DNA damage may contribute to the naturally occurring resistance to neoplastic disease observed in sea urchins.  相似文献   

8.
Persistent hepadnavirus infection leads to oxidative stress and DNA damage through increased production of toxic oxygen radicals. In addition, hepadnaviral DNA integrations into chromosomal DNA can promote the process of hepatocarcinogenesis (M. Feitelson, Clin. Microbiol. Rev. 5:275-301, 1992). While previous studies have identified preferred integration sites in hepadnaviral genomes and suggested integration mechanisms (M. A. Buendia, Adv. Cancer Res. 59:167-226, 1992; C. E. Rogler, Curr. Top. Microbiol. Immunol. 168:103-141, 1991; C. Shih et al., J. Virol. 61:3491-3498, 1987), very little is known about the effects of agents which damage chromosomal DNA on the frequency of hepadnaviral DNA integrations. Using a recently developed subcloning approach to detect stable new integrations of duck hepatitis B virus (DHBV) (S. S. Gong, A. D. Jensen, and C. E. Rogler, J. Virol. 70:2000-2007, 1996), we tested the effects of increased chromosomal DNA damage induced by H2O2, or of the disturbance in DNA repair due to the inhibition of poly(ADP-ribose) polymerase (PARP), on the frequency of DHBV DNA integrations. Subclones of LMH-D21-6 cells, which replicate DHBV, were grown in the presence of various H2O2 concentrations and exhibited up to a threefold increase in viral DNA integration frequency in a dose-dependent manner. Moreover, inhibition of PARP, which plays a role in cellular responses to DNA breakage, by 3-aminobenzamide (3-AB) resulted in a sevenfold increase in the total number of new DHBV DNA integrations into host chromosomal DNA. Removal of either H2O2 or 3-AB from the culture medium in a subsequent cycle of subcloning was accompanied by a reversion back towards the original lower frequency of stable DHBV DNA integrations for LMH-D21-6 cells. These data support the hypothesis that DNA damage sites can serve as sites for hepadnaviral DNA integration, and that increasing the number of DNA damage sites dramatically increases viral integration frequency.  相似文献   

9.
Cloning efficiency and DNA strand breaks induction were compared in human diploid fibroblasts (HSBP) and chinese hamster ovary (CHO) cells treated with various metal salts. Cadmium (Cd2+), nickel (Ni2+) and chromate (Cr2O7) reduced the cloning efficiency of HSBP cells more than that of CHO cells whereas the reverse was true after treatment with mercury (Hg2+), manganese (Mn2+) and cobalt (Co2+). The effects on cloning efficiency did not consistently correlate with DNA strand breaking activity as all metals except Cr(VI) were more effective at producing DNA strand breaks in CHO cells than in human cells. The differential responses of the two cell types was shown to be only partially due to differences in cellular uptake of metals. DNA breaks induced in human cells by Hg2+ and Cr2O7 were shown most likely to be alkaline labile sites rather than true strand breaks since no damage was detected in a nick translation assay which measures the amount of free 3'-OH terminals. Damage induced by Mn2+ and Co2+, however, appeared to be comprised at least in part by true DNA strand breaks. DNA damage was also induced in HSBP cells following treatment with selenium but only in the presence of reduced glutathione. These studies indicate that DNA damage is not as major a consequence following some metal treatments in human cells as it appears to be in rodent cells. This suggests that rodent models for risk estimation of metal-induced tumorigenesis may not always be appropriate for extrapolation to humans.  相似文献   

10.
The tetracyclic diterpenoid, aphidicolin, is an effective inhibitor of DNA repair in human cells following ultraviolet irradiation. This inhibition is very efficient in confluent resting cells but not in rapidly cycling cells as measured by (1) analysis of DNA single-strand breaks by alkaline sucrose sedimentation, (2) chromatographic analysis of pyrimidine-dimer removal, and (3) repair replication using CsCl density centrifugation. The inhibition is reversed by deoxycytidine or thymidine but not by deoxyadenosine or deoxyguanosine during the repair period. The data suggest that differences in deoxynucleoside triphosphate pools between cycling and confluent resting cells determine the different efficacies of the agent in these two situations.  相似文献   

11.
The pcbA1 mutation allows DNA replication dependent on DNA polymerase I at the restrictive temperature in polC(Ts) strains. Cells which carry pcbA1, a functional DNA polymerase I, and a temperature-sensitive DNA polymerase III gene were used to study the role of DNA polymerase III in DNA repair. At the restrictive temperature for DNA polymerase III, these strains were more sensitive to the alkylating agent methyl methanesulfonate (MMS) and hydrogen peroxide than normal cells. The same strains showed no increase in sensitivity to bleomycin, UV light, or psoralen at the restrictive temperature. The sensitivity of these strains to MMS and hydrogen peroxide was not due to the pcbAl allele, and normal sensitivity was restored by the introduction of a chromosomal or cloned DNA polymerase III gene, verifying that the sensitivity was due to loss of DNA polymerase III alpha-subunit activity. A functional DNA polymerase III is required for the reformation of high-molecular-weight DNA after treatment of cells with MMS or hydrogen peroxide, as demonstrated by alkaline sucrose sedimentation results. Thus, it appears that a functional DNA polymerase III is required for the optimal repair of DNA damage by MMS or hydrogen peroxide.  相似文献   

12.
In mammalian cells, both semiconservative DNA replication and the DNA repair patch synthesis induced by high doses of ultraviolet radiation are known to be inhibited by aphidicolin, indicating the involvement in these processes of one or both of the aphidicolin-sensitive DNA polymerases, alpha and/or delta. In this paper, N2-(p-n-butylphenyl)-2'-deoxyguanosine-5'-triphosphate, a strong inhibitor of polymerase alpha and a weak inhibitor of polymerase delta, is used to further characterize the DNA polymerase(s) involved in these two forms of nuclear DNA synthesis. In permeable human fibroblasts, DNA replication and ultraviolet-induced DNA repair synthesis are more resistant to the inhibitor than DNA polymerase alpha by factors of approximately 500 and 3000, respectively. These findings are most consistent with the involvement of DNA polymerase delta in these processes.  相似文献   

13.
Repair of UV damage in plasmid DNA by human fibroblasts   总被引:1,自引:0,他引:1  
Summary Plasmid DNA from Bacillus subtilis was introduced into monolayers of human fibroblasts by means of a modification of the calcium phosphate coprecipitation technique, comprising centrifugation of the coprecipitate onto the cells and treatment with polyethyleneglycol. The amount of DNA resistant to removal from the monolayers ranged from 10% to 15% of the input DNA. By determination of the biological activity of the plasmid DNA, re-extracted after various periods following entry into the fibroblasts and subsequently used as donor for B. subtilis protoplasts, it was shown that the activity of the plasmid DNA was gradually lost. When ultraviolet light-inactivated plasmid DNA was used as donor, reactivation of the plasmid was observed, which was completed within 2 h. The dose-dependent incorporation of [14C]-thymidine suggests that DNA repair processes were involved in reactivation of the plasmid DNA.  相似文献   

14.
N3-methyl-adenine (3MeA) is the major cytotoxic lesion formed in DNA by SN2 methylating agents. The lesion presumably blocks progression of cellular replicases because the N3-methyl group hinders interactions between the polymerase and the minor groove of DNA. However, this hypothesis has yet to be rigorously proven, as 3MeA is intrinsically unstable and is converted to an abasic site, which itself is a blocking lesion. To circumvent these problems, we have chemically synthesized a 3-deaza analog of 3MeA (3dMeA) as a stable phosphoramidite and have incorporated the analog into synthetic oligonucleotides that have been used in vitro as templates for DNA replication. As expected, the 3dMeA lesion blocked both human DNA polymerases α and δ. In contrast, human polymerases η, ι and κ, as well as Saccharomyces cerevisiae polη were able to bypass the lesion, albeit with varying efficiencies and accuracy. To confirm the physiological relevance of our findings, we show that in S. cerevisiae lacking Mag1-dependent 3MeA repair, polη (Rad30) contributes to the survival of cells exposed to methyl methanesulfonate (MMS) and in the absence of Mag1, Rad30 and Rev3, human polymerases η, ι and κ are capable of restoring MMS-resistance to the normally MMS-sensitive strain.  相似文献   

15.
We have examined nucleotide excision repair synthesis in confluent human diploid fibroblasts permeabilized with lysolecithin. Following a UV dose of 12 J/m2, maximal incorporation of [alpha 35S]dNTPs occurred at a lysolecithin concentration (approximately 80 micrograms/ml) where slightly more than 90% of the cells were initially permeable to trypan blue. However, autoradiography of cells, permeabilized at this lysolecithin concentration, demonstrated that only about 20% of the total cell population incorporated significant levels of 35S into DNA. This result presumably reflected the fact that approximately 20% of the total cell population remained permeable for much longer periods of time (up to 2 h) than the remaining cell population (less than 20 min). The incorporation of dNTPs by UV-irradiated, permeabilized cells appeared to be bona fide excision repair synthesis since: (1) Incorporation was completely absent in unirradiated, permeabilized cells and in irradiated, permeabilized repair-deficient cells. (2) Nucleotides incorporated in the presence of BrdUTP were associated with normal density DNA. (3) The apparent Km for all 4 dNTPs was 50-100 nM, in agreement with past reports on human fibroblasts irreversibly permeabilized by cell lysis. (4) DNA associated with the newly incorporated dNTPs underwent ligation and rearrangements in chromatin structure analogous to what is observed in intact human cells. Repair incorporation of dNTPs was rapid and linear during the first 2 h after UV irradiation and permeabilization. After this time, incorporation ceased or continued at a much slower rate. Cell viability experiments and autoradiography demonstrated that the cells permeabilized to [3H]dNTPs were capable of carrying out DNA replication and cell division. Thus, confluent human diploid fibroblasts can be reversibly permeabilized to labeled dNTPs by lysolecithin for the study of excision repair following physiologic doses of UV radiation. However, under these conditions, only a fraction of the cells remain permeable for an extended period of time.  相似文献   

16.
Ether-permeabilized (nucleotide-permeable) cells of Escherichia coli show excision repair of their DNA after having been exposed to the carcinogens N-methyl-N-nitrosourea (MeNOUr), N-ethyl-N-nitrosourea (EtNOUr) and methyl methanesulfonate (MeSO2OMe) which are known to bind covalently to DNA. Defect mutations in genes uvrA, uvrB, uvrC, recA, recB, recC and rep did not inhibit this excision repair. Enzymic activities involved in this repair were identified by measuring size reduction of DNA, DNA degradation to acid-soluble nucleotides and repair polymerization. 1. In permeabilized cells methyl and ethyl nitrosourea induced endonucleolytic cleavage of endogenous DNA, as determined by size reduction of denatured DNA in neutral and alkaline sucrose gradients. An enzymic activity from E. coli K-12 cell extracts was purified (greater than 2000-fold) and was found to cleave preferentially methyl-nitrosourea-treated DNA and to convert the methylated supercoiled DNA duplex (RFI) of phage phiX 174 into the nicked circular form. 2. Degradation of alkylated cellular DNA to acid solubility was diminished in a mutant lacking the 5' leads to 3' exonucleolytic activity of DNA polymerase I but was not affected in a mutant which lacked the DNA polymerizing but retained the 5' leads 3' exonucleolytic activity of DNA polymerase I. 3. An easily measurable effect is carcinogen-induced repair polymerization, making it suitable for detection of covalent binding of carcinogens and potentially carcinogenic compounds.  相似文献   

17.
This study was designed to examine the effect of aqueous extract of Crocus sativus stigmas (CSE) and crocin (trans-crocin 4) on methyl methanesulfonate (MMS)-induced DNA damage in multiple mice organs using the comet assay. Adult male NMRI mice in different groups were treated with either physiological saline (10 mL/Kg, intraperitoneal [ip]), CSE (80 mg/Kg, ip), crocin (400 mg/Kg, ip), MMS (120 mg/Kg, ip), and CSE (5, 20, and 80 mg/Kg, ip) 45 min prior to MMS administration or crocin (50, 200, and 400 mg/Kg, ip) 45 min prior to MMS administration. Mice were sacrificed about 3 h after each different treatment, and the alkaline comet assay was used to evaluate the effect of these compounds on DNA damage in different mice organs. The percent of DNA in the comet tail (% tail DNA) was measured. A significant increase in the % tail DNA was seen in nuclei of different organs of MMS-treated mice. In control groups, no significant difference was found in the % tail DNA between CSE- or crocin-pretreated and saline-pretreated mice. The MMS-induced DNA damage in CSE-pretreated mice (80 mg/Kg) was decreased between 2.67-fold (kidney) and 4.48-fold (lung) compared to those of MMS-treated animals alone (p < 0.001). This suppression of DNA damage by CSE was found to be depended on the dose, which pretreatment with CSE (5 mg/Kg) only reduced DNA damage by 6.97%, 6.57%, 7.27%, and 9.90% in liver, lung, kidney, and spleen, respectively (p > 0.05 as compared with MMS-treated group). Crocin also significantly decreased DNA damage by MMS (between 4.69-fold for liver and 6.55-fold for spleen, 400 mg/Kg), in a dose-dependent manner. These data indicate that there is a genoprotective property in CSE and crocin, as revealed by the comet assay, in vivo.  相似文献   

18.
DNA repair synthesis in human fibroblasts requires DNA polymerase delta   总被引:34,自引:0,他引:34  
When UV-irradiated cultured diploid human fibroblasts were permeabilized with Brij-58 then separated from soluble material by centrifugation, conservative DNA repair synthesis could be restored by a soluble factor obtained from the supernatant of similarly treated HeLa cells. Extensive purification of this factor yielded a 10.2 S, 220,000-dalton polypeptide with the DNA polymerase and 3'- to 5'-exonuclease activities reported for DNA polymerase delta II (Crute, J. J., Wahl, A. F., and Bambara, R. A. (1986) Biochemistry 25, 26-36). Monoclonal antibody to KB cell DNA polymerase alpha, while binding to HeLa DNA polymerase alpha, did not bind to the HeLa DNA polymerase delta. Moreover, at micromolar concentrations N2-(p-n-butylphenyl)-2'-deoxyguanosine 5'-triphosphate (BuPdGTP) and 2-(p-n-butylanilino)-2'-deoxyadenosine 5'-triphosphate (BuAdATP) were potent inhibitors of DNA polymerase alpha, but did not inhibit the DNA polymerase delta. Neither purified DNA polymerase alpha nor beta could promote repair DNA synthesis in the permeabilized cells. Furthermore, under conditions which inhibited purified DNA polymerase alpha by greater than 90%, neither monoclonal antibodies to DNA polymerase alpha, BuPdGTP, nor BuAdATP was able to inhibit significantly the DNA repair synthesis mediated by the DNA polymerase delta. Thus, it appears that a major portion of DNA repair synthesis induced by UV irradiation might be catalyzed by DNA polymerase delta. When xeroderma pigmentosum human diploid fibroblasts were utilized, DNA repair synthesis dependent upon ultraviolet light could be restored by addition of both T4 endonuclease V and DNA polymerase delta, but not by addition of either one alone. This result suggests that cytosol-depleted permeabilized DNA repair-defective human fibroblasts and HeLa DNA polymerase delta might be exploited to provide a functional assay for purifying active DNA repair factors from DNA repair-proficient cells without a preknowledge of their function.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号