首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
18Beta-glycyrrhetinic acid (18beta-GA) regulates serine/threonine dephosphorylation of connexin43 (Cx43). Phospho-specific antibodies were used here to determine the effect of 18beta-GA on serine 368-phosphorylated Cx43 (pSer368Cx43) in cultured rat neonatal cardiomyocytes by immunofluorescence microscopy and immunoblot analyses. 18beta-GA caused a time-dependent increase in pSer368Cx43 levels and induced gap junction disassembly, shown by a change in pSer368Cx43 immunostaining from large aggregates to dispersed punctates at cell-cell contact areas. 18beta-GA also induced a time-dependent increase in the levels of serine 729-phosphorylated PKCepsilon, the active form of PKCepsilon. The 18beta-GA-induced increase in pSer368Cx43 levels and changes in pSer368Cx43 staining pattern were abolished by the PKC inhibitor, chelerythrine. Furthermore, 18beta-GA increased the co-immunoprecipitation of Cx43 with PKCepsilon. However, the 18beta-GA-induced increase in pSer368Cx43 levels and increased association of Cx43 with PKCepsilon were inhibited by co-treatment with the protein phosphatase type 1 and type 2A inhibitor, calyculin A. We conclude that 18beta-GA induces Ser368 phosphorylation of Cx43 via PKCepsilon.  相似文献   

2.
Connexin 43 (Cx43) is present at the sarcolemma and the inner membrane of cardiomyocyte subsarcolemmal mitochondria (SSM). Lack or inhibition of mitochondrial Cx43 is associated with reduced mitochondrial potassium influx, which might affect mitochondrial respiration. Therefore, we analysed the importance of mitochondrial Cx43 for oxygen consumption. Acute inhibition of Cx43 in rat left ventricular (LV) SSM by 18α glycyrrhetinic acid (GA) or Cx43 mimetic peptides (Cx43-MP) reduced ADP-stimulated complex I respiration and ATP generation. Chronic reduction of Cx43 in conditional knockout mice (Cx43(Cre-ER(T)/fl) + 4-OHT, 5-10% of Cx43 protein compared with control Cx43(fl/fl) mitochondria) reduced ADP-stimulated complex I respiration of LV SSM to 47.8 ± 2.4 nmol O(2)/min.*mg protein (n = 8) from 61.9 ± 7.4 nmol O(2)/min.*mg protein in Cx43(fl/fl) mitochondria (n = 10, P < 0.05), while complex II respiration remained unchanged. The LV complex I activities (% of citrate synthase activity) of Cx43(Cre-ER(T)/fl) +4-OHT mice (16.1 ± 0.9%, n = 9) were lower than in Cx43(fl/fl) mice (19.8 ± 1.3%, n = 8, P < 0.05); complex II activities were similar between genotypes. Supporting the importance of Cx43 for respiration, in Cx43-overexpressing HL-1 cardiomyocytes complex I respiration was increased, whereas complex II respiration remained unaffected. Taken together, mitochondrial Cx43 is required for optimal complex I activity and respiration and thus mitochondrial ATP-production.  相似文献   

3.
For the reason that adult Sertoli cell specific connexin 43 knockout (SCCx43KO) mice show arrested spermatogenesis at spermatogonial level or Sertoli cell only tubules and significantly reduced germ cell (GC) numbers, the aims of the present study were (1) to characterize the remaining GC population and (2) to elucidate possible mechanisms of their fading. Apoptosis was analyzed in both, KO and wild type (WT) male littermates during postnatal development and in adulthood using TUNEL. Although GC numbers were significantly reduced in KO at 2 and 8 days postpartum (dpp) when compared to WT, no differences were found concerning apoptotic incidence between genotypes. From 10 dpp, the substantial GC deficiency became more obvious. However, significantly higher apoptotic GC numbers were seen in WT during this period, possibly related to the first wave of spermatogenesis, a known phenomenon in normal pubertal testes associated with increased apoptosis. Characterization of residual spermatogonia in postnatal to adult KO and WT mice was performed by immunohistochemical reaction against VASA (marker of GCs in general), Lin28 and Fox01 (markers for undifferentiated spermatogonia) and Stra8 (marker for differentiating spermatogonia and early spermatocytes). During puberty, the GC component in SCCx43KO mice consisted likely of undifferentiated spermatogonia, few differentiating spermatogonia and very few early spermatocytes, which seemed to be rapidly cleared by apoptosis. In adult KOs, spermatogenesis was arrested at the level of undifferentiated spermatogonia. Overall, our data indicate that Cx43 gap junctions in SCs influence male GC development and differentiation rather than their survival.  相似文献   

4.
Caveolin-3, the major caveolin isoform in cardiomyocytes, plays an important role in the rapid signaling pathways initiated by stimulation of the membrane-associated molecules. To examine the role of caveolin-3 in regulating estrogen receptor α in cardiomyocytes, we investigate whether the membrane estrogen receptor α associates with caveolin-3 and whether this association is linked to the 17β-estradiol-mediated signals. In control cardiomyocytes, following discontinuous sucrose gradient centrifugation, caveolin-3 was found predominantly in the lipid raft buoyant fractions, whereas it was distributed to both the buoyant and non-lipid raft heavy fractions following metabolic inhibition treatment. Confocal microscopy showed that estrogen receptor α co-localized with caveolin-3 on the plasma membrane of neonatal and adult rat cardiomyocytes. This membrane labeling of estrogen receptor α was not seen following treatment with the cholesterol-depleting agent methyl-β-cyclodextrin (5 mM), whereas metabolic inhibition had little effect on the membrane distribution of estrogen receptor α. Metabolic inhibition induced tyrosine phosphorylation of caveolin-3 and decreased its association with estrogen receptor α, both effects being mediated via a Src activation mechanism, since they were inhibited by the selective tyrosine kinase inhibitor PP2. Metabolic inhibition also induced tyrosine phosphorylation of connexin43 and increased its association with c-Src, both effects being prevented by 17β-estradiol (200 nM). The effect of 17β-estradiol on metabolic inhibition-induced tyrosine phosphorylation of connexin43 was inhibited by the specific estrogen receptor antagonist ICI182780. These data identify cardiac caveolin-3 as juxtamembrane scaffolding for estrogen receptor α docking at caveolae, which provide a unique compartment for conveying 17β-estradiol-elicited, rapid signaling to regulate connexin43 phosphorylation during ischemia.  相似文献   

5.
Oval cells constitute a heterogeneous population of proliferating progenitors found in rat livers following carcinogenic treatment (2-acetylaminofluorene and 70% hepatectomy). The aim of this study was to investigate the cellular pattern of various differentiation and cell type markers in this model of liver regeneration. Immunophenotypic characterisation revealed at least two subtypes emerging from the portal field. First, a population of oval cells formed duct-like structures and expressed bile duct (CD49f) as well as hepatocytic markers (α-foetoprotein, CD26). Second, a population of non-ductular oval cells was detected between and distally from the ductules expressing the neural marker nestin and the haematopoietic marker Thy1. Following oval cell isolation, a subset of the nestin-positive cells was shown to co-express hepatocytic and epithelial markers (albumin, CD26, pancytokeratin) and could be clearly distinguished from anti-desmin reactive hepatic stellate cells. The gene expression profiles (RT-PCR) of isolated oval cells and oval cell liver tissue were found to be similar to foetal liver (ED14). The present results suggest that the two oval cell populations are organised in a zonal hierarchy with a marker gradient from the inner (displaying hepatocytic and biliary markers) to the outer zone (showing hepatocytic and extrahepatic progenitor markers) of the proliferating progeny clusters.  相似文献   

6.
Bone cells form a functional syncytium as they are coupled by gap junctions composed mainly of connexin 43 (Cx43). To further understand the role of Cx43 in bone cell growth and differentiation, we stably transfected Cx45-expressing UMR 106-01 cells with Cx43 using an expression vector containing rat Cx43 cDNA. Three stably transfected clones were analyzed, all of which showed altered expression of Cx43 and/or Cx45 as was obvious from immunocytochemistry and Northern blotting. Double whole-cell patch clamping revealed single-channel conductances of 20 (Cx45) and 60 pS (Cx43). The overexpression of Cx43 led to an increase in dye coupling concomitant with elevated gap-junctional conductance. The phenotype of the transfected clones was characterized by an increased proliferation (4- to 7-fold) compared to controls. Moreover, a transfectant clone with 10- to 12-fold enhanced Cx43 expression showed a significantly increased calcium content of the extracellular matrix and enlarged mineralization nodules, while alkaline phosphatase was moderately increased. We conclude that enhanced gap-junctional coupling via Cx43 significantly promotes proliferation and differentiation of UMR cells.  相似文献   

7.
目的探讨复方861对大鼠肝脏卵圆细胞分化的影响,了解其在肝纤维化治疗过程中促进肝细胞再生的可能机制。方法不同浓度(1.95,3.90,7.81,15.62,31.25,62.50,125,250,500,1000μg/mL)的复方861在无血清培养条件下作用于WB-F344细胞24 h,MTT法分析法检测细胞生长情况。500μg/mL复方861在无血清条件下作用WB-F344细胞72 h后,通过RT-PCR观察CK-19、AFP、ALB、αmRNA表达的变化。以同期未作处理的WB-F344作为空白对照组。结果 WB-F344细胞经过不同复方861作用后,除1000μg/mL外,各组细胞生长均未受到抑制,500μg/mL时细胞生存活性最佳。无血清条件下作用72 h后,半定量RT-PCR发现861组AFP mRNA的表达显著增加,CK-19 mRNA的表达显著减少,同时发现861组有ALB mRNA的表达。结论复方861可能诱导WB-F344细胞主要向肝细胞方向分化。  相似文献   

8.
9.
10.
11.
The present immunocytochemical study examines in the rat ovary the pattern of expression of connexin 43 (Cx43), a subunit of gap junctions. Using a well-characterized specific antiserum against rat Cx43, immunoreactivity was not detected in the fetal ovary, i.e., prior to follicular formation. However, in the ovary of 20-day-old, 35-day-old, and adult rats, strong Cx43-immunore-activity was associated with the cell borders of the follicular epithelium/granulosa cells of all developmental stages (primordial follicles, preantral and antral secondary follicles). In general, immunoreactivity of the granulosa cells of large antral follicles appeared more intense than the one of smaller follicles. Staining was also seen in oocytes (cytoplasmic staining). Theca cells of large antral follicles, but not of small follicles were immunoreactive. Immunoreactive interstitial cells were not seen in ovaries of 20- and 35-day-old animals, but staining in these cells was present in adult rats. In large follicles with signs of atresia, granulosa cells lacked Cx43-immunoreactivity, whereas Cx43-immunoreactivity in their theca interna strikingly increased. Corpora lutea in the cyclic adult rats were heterogeneously stained, with either no detectable immunoreactivity, staining of cell borders of most luteal cells, or with conspicuous staining of only a few cells. In the pregnant animals on gestation days (GD) 12, 14, and 17, all luteal cells stained strongly for Cx43 at the cell surface. Shortly before delivery (GD 21), however, the staining pattern vanished and only few, presumably luteal cells remained immunoreactive. In Western blots (using homogenates of whole ovaries), the Cx43 antiserum recognized a major band of approximate Mr 43 × 103, together with minor bands, which may reflect the presence of several differently phosphorylated Cx43 forms. This is indicated by treatment with alkaline phosphatase, which reduced the banding pattern to one single band. In summary, the gap junction molecule Cx43 is abundantly expressed in all endocrine compartments of the rat ovary. The staining pattern obtained in the present study indicates that Cx43 and presumably gap-junctional communication are associated with follicular development, atresia, and the development of the interstitial gland, as well as with the development and regression of the corpus luteum. The heterogeneous staining within the ovary furthermore hints to a contribution of the local intraovarian factors in the regulation of Cx43 expression. © 1995 Wiley-Liss, Inc.  相似文献   

12.
Histological analysis revealed that Sertoli cell specific knockout of the predominant testicular gap junction protein connexin 43 results in a spermatogenic arrest at the level of spermatogonia or Sertoli cell-only syndrome, intratubular cell clusters and still proliferating adult Sertoli cells, implying an important role for connexin 43 in the Sertoli and germ cell development. This study aimed to determine the (1) Sertoli cell maturation state, (2) time of occurrence and (3) composition, differentiation and fate of clustered cells in knockout mice. Using immunohistochemistry connexin 43 deficient Sertoli cells showed an accurate start of the mature markers androgen receptor and GATA-1 during puberty and a vimentin expression from neonatal to adult. Expression of anti-Muellerian hormone, as a marker of Sertoli cell immaturity, was finally down-regulated during puberty, but its disappearance was delayed. This observed extended anti-Müllerian hormone synthesis during puberty was confirmed by western blot and Real-Time PCR and suggests a partial alteration in the Sertoli cell differentiation program. Additionally, Sertoli cells of adult knockouts showed a permanent and uniform expression of GATA-1 at protein and mRNA level, maybe caused by the lack of maturing germ cells and missing negative feedback signals. At ultrastructural level, basally located adult Sertoli cells obtained their mature appearance, demonstrated by the tripartite nucleolus as a typical feature of differentiated Sertoli cells. Intratubular clustered cells were mainly formed by abnormal Sertoli cells and single attached apoptotic germ cells, verified by immunohistochemistry, TUNEL staining and transmission electron microscopy. Clusters first appeared during puberty and became more numerous in adulthood with increasing cell numbers per cluster suggesting an age-related process. In conclusion, adult connexin 43 deficient Sertoli cells seem to proliferate while maintaining expression of mature markers and their adult morphology, indicating a unique and abnormal intermediate phenotype with characteristics common to both undifferentiated and differentiated Sertoli cells.  相似文献   

13.
It has been suggested that β-carotene itself is unstable under certain conditions and that a combination of antioxidants may prevent the pro-oxidative effects of β-carotene. Thus, the present study aimed to investigate the interaction of β-carotene with three flavonoids—naringin, rutin and quercetin—on DNA damage induced by ultraviolet A (UVA) in C3H10T1/2 cells, a mouse embryo fibroblast. The cells were preincubated with β-carotene and/or flavonoid for 1 h followed by UVA irradiation, and DNA damage was measured using comet assay. We showed that β-carotene at 20 μM enhanced DNA damage (by 35%; P<.05) induced by UVA (7.6 kJ/m2), whereas naringin, rutin and quercetin significantly decreased UVA-induced DNA damage. When each flavonoid was combined with β-carotene during preincubation, UVA-induced cellular DNA damage was significantly suppressed and the effects were in the order of naringin≥rutin>quercetin. The flavonoids decreased UVA-induced oxidation of preincorporated β-carotene in the same order. Using electron spin resonance spectroscopy, we showed that the ability of these flavonoids to quench singlet oxygen was consistent with protection against DNA damage and β-carotene oxidation. All three flavonoids had some absorption at the UVA range (320–380 nm), but the effects were opposite to those on DNA damage and β-carotene oxidation. Taken together, this cell culture study demonstrates an interaction between flavonoids and β-carotene in UVA-induced DNA damage, and the results suggest that a combination of β-carotene with naringin, rutin or quercetin may increase the safety of β-carotene.  相似文献   

14.
Connexins are gap-junction proteins forming hexameric structures in the plasma membranes of adjacent cells, thereby creating intercellular channels. Connexin 43 (CX43) is expressed in pulp tissue. However, its function in dental pulp tissue has yet to be fully investigated. We have employed antisense oligonucleotides (AS) against rat CX43 to study the role of CX43 in dental pulp cells. Cultured dental pulp cells were treated with AS or sense (S) oligonucleotides. The number of cells in the AS-treated groups was approximately 1.3-fold that in the S-treated controls. Growth rates were significantly different between the AS- and S-treated groups at 48 h (P < 0.01). An alkaline phosphatase assay revealed that AS-treated pulp cells dramatically decreased at 48 h after AS incorporation, whereas S-treated pulp cells showed no marked changes. Western blot analysis revealed that heat-shock protein 25 was highly expressed in S-treated cells but was only weakly expressed in AS-treated cells at 48 h. Furthermore, AS-treated cells highly expressed CX45, whereas S-treated cells exhibited high expression of CX32. These results suggest that CX43 is involved in cell growth, mineralization, and differentiation to odontoblasts in rat pulp cells, and that CX43 plays the opposite role to that of CX45.  相似文献   

15.
16.
17.
The spatio-temporal expression of gap junction connexins (Cx) was investigated and correlated with the progression of cell cycle control in regenerating soleus muscle of Wistar rats. Notexin caused a selective myonecrosis followed by the complete recapitulation of muscle differentiation in vivo, including the activation, commitment, proliferation, differentiation and fusion of myogenic cells. In regenerating skeletal muscle, only Cx43 protein, out of Cx-s 26, –32, –37, –40, –43 and –45, was detected in desmin positive cells. Early expression of Cx43 in the proliferating single myogenic progenitors was followed by a progressive upregulation in interacting myoblasts until syncytial fusion, and then by a rapid decline in multinucleate myotubes. The significant upregulation of Cx43 gap junctions in aligned myoblasts preceding fusion was accompanied by the widespread nuclear expression of cyclin-dependent kinase inhibitors p21waf1/Cip1 and p27kip1 and the complete loss of Ki67 protein. The synchronized exit of myoblasts from the cell cycle following extensive gap junction formation suggests a role for Cx43 channels in the regulation of cell cycle control. The potential of Cx43 channels to stimulate p21waf1/Cip1 and p27kip1 is known. In the muscle, proving the involvement of Cx43 in either a direct or a bystander cell cycle regulation requires functional investigations.  相似文献   

18.
Hepatic blood vessels consist of the hepatic artery and three types of venous channels (the portal veins, the sinusoids, and the hepatic veins). This study was undertaken to analyze, by immunohistochemistry, connexin expression throughout the vascular development of the fetal mouse liver with special attention being given to portal vein development. In the adult liver, connexin37 and connexin40 were expressed in the endothelium of the portal vein and hepatic artery, but not in those of the hepatic vein and sinusoids. Connexin43 was expressed in mesothelial cells and smooth muscle cells of the portal veins. The preferential expression of connexin37 and connexin40 in portal veins was seen throughout liver development, including its primordium formation stage (10.5-day or 11.5-day stage), although connexin37 expression was transiently seen in free nonparenchymal cells in fetal stages. The differentiation of each blood vessel in the hepatic vascular system may occur in early developmental stages, soon after hepatic primordium formation. This work was supported by Special Coordination Funds for Promoting Science and Technology from the Ministry of Education, Culture, Sports, Science and Technology, Japan.  相似文献   

19.
The change of connexin 43 (Cx43) expression and the biological behaviors of Cx43 in rat heart cell line H9c2, expressing Wnt-3a (wingless-type MMTV integration site family, member 3A) were evaluated in the present study. Plasmid pcDNA3.1/Wnt-3a was constructed and transferred into H9c2 cells. The cell model Wnt-3a~ -H9c2 steadily expressing Wnt-3a was obtained. Compared with H9c2 and pcDNA3.1-H9c2 cells, the expression of Cx43 in Wnt-3a~ -H9c2 cells was clearly increased, the proliferation of Wnt-3a~ -H9c2 cells was significantly changed, and cell migration abilities were also improved (P<0.05). In comparison with H9c2 and pcDNA3.1-H9c2 cells, the G_2 phase of the cell cycle increased by 11% in Wnt-3a~ -H9c2 cells. Thus, Wnt-3a overexpression is associated with an increase in Cx43 expression and altered migratory and proliferative activity in H9c2 cells. Cx43 might be one of the downstream target genes regulated by Wnt-3a.  相似文献   

20.
We studied the effect of bone morphogenetic protein-2 (BMP-2) and vitamin D3 on the osteogenic differentiation of adipose stem cells (ASCs). ASCs were treated with 10, 50, and 100 ng/ml of BMP-2, and 10−8, 10−7, 10−6 M vitamin D3. Then, to investigate the effects of combined treatment, ASCs were treated with BMP-2 and vitamin D3 dose-dependently and time-dependently. The osteogenic differentiation was assessed by alkaline phosphatase (ALP) activities/staining and the mineralization was evaluated by Alizarin red S staining. ALP activity and mineralization dose-dependently increased in early stages (ALP on 7th day and mineralization on the 14th day) while all three doses of BMP-2 or vitamin D3 showed comparable effects in late stages (ALP on the 14th day and mineralization on the 21st day) in ASCs. BMP-2 and vitamin D3 had synergistic effect on the osteogenic differentiation of ASCs. While all three doses of BMP-2 acted similarly in reinforcing the effect of vitamin D3, vitamin D3 dose-dependently augmented the osteogenic effect of BMP-2. When BMP-2 was constantly treated, vitamin D3 effect did not differ depending on the period of vitamin D3 treatment. However, when vitamin D3 was constantly treated, the BMP was more effective when treated for the last 7 days than when treated for the first 7 days. In conclusion, BMP-2 and vitamin D3 promote osteogenic differentiation of ASCs, and can work synergistically. These results can be used to induce effective and economical osteogenic induction of ASCs for bone tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号