首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show that treating human trisomic fibroblasts with anthracyclines - aclarubicin, daunorubicin and idarubicin - leads to certain changes in these cells; namely the activation of caspase 3, morphological changes and an increase in the level of intracellular calcium. These results suggest that anthracycline drugs are also able to induce apoptosis in pathological, trisomic cells.  相似文献   

2.
We measured the glutathione content, and the activity of glutathione-related enzymes and DT-diaphorase in cultured normal (cell line: S-126) and trisomic (cell lines: S-158, S-240) human fibroblasts exposed to daunorubicin (DNR). Determination of reduced and total glutathione levels, and measurement of the activity of glutathione peroxidase, glutathione reductase, glutathione-S-transferase and DT-diaphorase were performed spectrophotometrically. Human fibroblasts were exposed to 4 microm DNR for 2 h, and the cells placed in drug-free medium for 6, 12, 24, 48, and 72 h. Cellular levels of GSH and total glutathione decreased following exposure to DNR. However, the ratio of GSH to total glutathione returned to control levels only in trisomic cells. These changes were concomitant with increasing glutathione-S-transferase and glutathione reductase activities. DNR also significantly increased the activity of Se-independent peroxidase and DT-diaphorase in trisomic fibroblasts. Marked increases in the activity of Se-dependent peroxidase and DT-diaphorase alone were seen in normal cells. The results provide the first evidence that DNR can induce alterations in the level of glutathione and glutathione-dependent enzymes in trisomic fibroblasts as compared to normal cells, which may provide additional protection against daunorubicin-induced oxidative stress in trisomic fibroblasts.  相似文献   

3.
We investigated the effect of daunorubicin on glutathione content and activity of GSH-related enzymes in cultured normal and diabetic human fibroblasts. Cells were incubated with 4 microM daunorubicin (DNR) for 2 h followed by culture in drug-free medium for up to 72 h. Treatment of diabetic cells with the drug caused a time-dependent depletion of intracellular GSH and a decrease of the GSH to total glutathione ratio. GSH depletion was accompanied by apoptotic changes in morphology of the nucleus. Analysis of GSH-related enzymes showed a significant increase of the activities of Se-dependent and Se-independent peroxidases and glutathione S-transferase. In contrast, glutathione reductase activity was reduced by 50%. Significant differences between normal and diabetic cells exposed to DNR were observed in the level of GST and Se-dependent glutathione peroxidase activities. These findings indicated that daunorubicin efficiently affects the GSH antioxidant defense system both in normal and diabetic fibroblasts leading to disturbances in glutathione content as well as in the activity of GSH-related enzymes.  相似文献   

4.
The influence of daunorubicin (DNR) on survival of human normal (S-126) and trisomic, with respect to chromosome 21 (T-164; S-240), skin fibroblasts and some parameters related to it, such as intracellular drug accumulation, distribution and interaction with cell membrane, were studied. The in vitro growth-inhibition assay indicated that DNR was less cytotoxic for trisomic than for normal cells. Comparison of kinetic parameters and intracellular distribution of this compound showed that the uptake and the amount of intracellular free DNR were greater in normal than in trisomic cells. Contrary to this, there were no significant differences between the amount of DNA-bound drug in both types of cells. TMA-DPH and 12-AS fluorescence anisotropy measurements demonstrated that DNR decreased lipid fluidity in the inner hydrophobic region of plasma membrane in both cell types, but did not influence the fluidity of the outer surface of membrane. We conclude that fibroblasts derived from individuals affected with Down's syndrome are better protected from the damage induced by DNR than normal cells.  相似文献   

5.
Uptake and efflux of two anthracyclines, idarubicin (IDA) and daunorubicin (DNR), was studied in childhood acute leukemia samples. A comparison of IDA and DNR transport phenomena in relation to drug cytotoxicity and expression of P-glycoprotein (PGP) was made. Intracellular content of IDA/DNR was determined by flow cytometry using the fluorescent properties of the drugs. In vitro drug cytotoxicity was measured by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay. PGP expression was analysed by flow cytometry. The uptake and efflux rates were non-significantly higher for IDA than DNR. There were no differences between three types of leukemia with respect to drug content during accumulation and retention. After correction for the cell volume, intracellular concentration of both drugs in each moment of uptake and efflux was significantly lower in relapsed ALL and AML samples in comparison with initial ALL cells. Efflux, but not uptake, of both drugs was inversely correlated with PGP expression and IDA, but not DNR, cytotoxicity. The cytotoxicity was correlated with drug accumulation for both drugs and with drug retention for IDA. In conclusion, it seems that (1) intracellular content was related to the lipophilic properties of the drugs rather than to the type of leukemia, (2) decreased intracellular concentration of both drugs might have an impact on compromised therapy results in AML and relapsed ALL children, (3) IDA presents higher cytotoxicity, which possibly might be decreased by the presence of PGP. These results might have a practical impact on the rational design of new chemotherapy protocols.  相似文献   

6.
BACKGROUND: Procaspase 3 is a constitutive proenzyme that is activated by cleavage during apoptosis. The resulting enzyme is able to cleave several target proteins after the second aspartate of a DEVD sequence common to all the substrates of caspases 3 and 7 (DEVDase). Because active caspase 3 is a common effector in several apoptotic pathways, it may be a good marker to detect (pre-)apoptotic cells by flow cytometry (FCM). Materials and Methods Apoptosis was induced in U937 or bone marrow mononuclear cells by daunorubicin (DNR), idarubicin (IDA), or camptothecin (CAM). Viable and apoptotic cells were sorted by FCM on the basis of either fluorescein isothiocyante (FITC)-annexin V binding or DiOC6(3) accumulation. DEVDase activity was measured in sorted populations by spectrofluorometry. Cleaved caspase 3 was labeled in situ with phycoerythrin (PE)-conjugated anti-activated caspase 3 antibodies and analyzed by FCM. RESULTS: DEVDase activity was detected in sorted viable CAM- and DNR-treated U937 cells, demonstrating that a partial caspase activation occurred earlier than phosphatidyl-serine exposure and mitochondrial membrane potential dissipation. The presence of a low amount of active caspase 3 in the treated viable cells was confirmed in situ with PE-conjugated anti-active caspase 3 antibodies. The same antibody was used in combination with FITC-annexin V and CD45-PC5 to study caspase 3 activation in acute leukemia blast cells after in vitro DNR and IDA treatment. Both anthracyclines induced a caspase 3-dependent apoptosis that was more efficient in blast cells than in contaminating lymphocytes. CONCLUSIONS: These results demonstrate that anti-active caspase 3 labeling can be an alternative to fluorogenic substrates to efficiently detect early apoptosis by FCM in heterogeneous samples. They also confirm that anthracyclines induce blast cell apoptosis by a caspase 3-dependent pathway.  相似文献   

7.
Summary.  In daunorubicin resistant Ehrlich ascites tumor cells (DNR), the initial taurine uptake was reduced by 56% as compared to the parental, drug sensitive Ehrlich cells. Kinetic experiments indicated that taurine uptake in Ehrlich cells occurs via both high- and low-affinity transporters. The maximal rate constant for the initial taurine uptake was reduced by 45% (high-affinity system) and 49% (low affinity system) in the resistant subline whereas the affinity of the transporters to taurine was unchanged. By immunoblotting we identified 3 TauT protein bands in the 50–70 kDa region. A visible reduction in the intensity of the band with the lowest molecular weight was observed in resistant cells. Quantitative RT-PCR indicated a significant reduction in the amount of taurine transporter mRNA in the resistant cells. Drug resistance in DNR Ehrlich cells is associated with overexpression of the mdr1 gene product P-glycoprotein (P-gp). Using 5 progressively DNR resistant Ehrlich cell sublines with different P-gp expression pattern no correlation between taurine uptake and P-gp expression was found. Taurine uptake in MDR1 transfected NIH/3T3 mouse fibroblasts was in contrast to the findings in Ehrlich cells increased compared to the parental fibroblasts. It is concluded that the reduced taurine uptake in resistant Ehrlich cells reflects a down regulation of the taurine transporter at the mRNA and protein level and it is most probably not related to P-gp overexpression. Received October 22, 2001 Accepted November 26, 2001  相似文献   

8.
Analysis of aclarubicin-induced cell death in human fibroblasts   总被引:1,自引:0,他引:1  
In the present study we investigated the mode of cell death induced by aclarubicin (ACL) in trisomic (BB) and normal (S-2) human fibroblasts. Cells were incubated with ACL for 2h and then cultured in drug-free medium for up to 96h. Using fluorescence microscopy, agarose gel electrophoresis and comet assay we demonstrate that ACL induced time-dependent morphological and biochemical changes in both cell types. The population of apoptotic cells, analysed by acridine orange and ethidium bromide nuclear staining reached its maximum at 24-48h. Prolonged post-treatment time progressively increased the level of necrotic cells. At 24-48h time points we also observed a significant increase in caspase-3 activity, oligonucleosomal DNA fragmentation and DNA strand breaks. Cotreatment of cells with the specific caspase-3 inhibitor Ac-DEVD-CHO partly reduced the extent of apoptosis and necrosis and DNA degradation. In conclusion, trisomic and normal fibroblasts demonstrate similar response to aclarubicin treatment. Drug induced the apoptotic and necrotic pathway of cell death that was mediated by caspase-3.  相似文献   

9.
The right dose of daunorubicin (DNR) for the treatment of newly diagnosed acute myeloid leukemia (AML) is uncertain. Previous trials have shown conflicting results concerning the efficacy of high or low doses of daunorubicin to induction chemotherapy for newly diagnosed AML. A systematic review and meta-analysis was conducted to resolve this controversial issue. We compared the efficacy and safety of high doses of daunorubicin (HD-DNR) and traditional low doses of daunorubicin (LD-DNR) or idarubicin (IDA) during induction therapy of newly diagnosed AML. Data of 3,824 patients from 1,796 articles in the literature were retrieved and six randomized controlled trials were analyzed. The primary outcomes were overall survival (OS), disease-free survival (DFS), and event-free survival (EFS). The secondary outcomes included complete remission (CR), relapse, and toxicity. The meta-analysis results suggest that comparing HD-DNR with LD-DNR, there were significant differences in CR (RR = 1.19, 95%CI[1.12,1.18], p<0.00001), OS(HR = 0.88, 95%CI[0.79,0.99], p = 0.002), and EFS (HR = 0.86, 95%CI [0.74, 1.00], p = 0.008), but not in DFS, relapse, and toxicity. There were no statistically significant differences in any other outcomes between HD-DNR and IDA. The analysis indicates that compared with LD-DNR, HD-DNR can significantly improve CR, OS and EFS but not DFS, and did not increase occurrence of relapse and toxicity.  相似文献   

10.
Drug-induced interphasic apoptosis in human leukemia cells is mediated through intracellular signaling pathways, of which the most proximal (initiating) event remains unclear. Indeed, both early ceramide generation and procaspase-8 cleavage have been individually identified as the initial apoptotic signaling events which precede the mitochondrial control of the apoptotic execution phase in Type II cells. In order to evaluate whether or not procaspase-8 cleavage is requisite for initial ceramide generation and rapid interphasic apoptosis, we investigated the chronological ordering of early ceramide generation and caspase-8 cleavage induced by daunorubicin (DNR) and 1-beta-D-arabinofuranosylcytosine (Ara-C) in U937 cells. We further evaluated the impact of these two drugs on initial ceramide generation and apoptosis in wild-type Jurkat cells and Jurkat clones mutated for caspase-8 and Fas-associated death domain. We show that while both DNR and Ara-C similarly induced early ceramide generation (within 5-20 min) and interphasic apoptosis in all cell models, caspase-8 cleavage was only observed farther downstream (4.5 h) and only in DNR-treated cells. Furthermore, neither DNR or Ara-C induced caspase-8 activation. These results demonstrate that caspase-8 cleavage is not requisite for the drug-induced activation of the ceramide-mediated interphasic apoptotic pathway in human Type II leukemic cells.  相似文献   

11.
It was previously determined that the site of action of calcitonin gene-related peptide (CGRP) in cardiomyocytes was predominantly at the sarcolemmal calcium release channel, and studies have shown that CGRP has major effects on intracellular cardiomyocyte calcium concentrations. We postulated that CGRP would have similar effects on striated skeletal muscle and determined the effects of CGRP on calcium levels in cultured chick myotubes by fluorescence imaging. Myoblasts were cultured until they were continuous myotubes. Deconvolution fluorescence imaging was employed to visualize subcellular organelles and construct 3D renditions. Myotubes were treated with a high (1 μM) and a low (1 nM) concentration of CGRP for 1 h or 24 h time periods, and real-time fluorescence spectrophotometry with a calcium specific fluoroprobe permitted the acquisition of images and calcium transients. Experiments also used CGRP 8–37 to ensure specificity of action of the full-length neuropeptide. CGRP localizations by image stacking were made using fluorescence deconvolution microscopy and distributions on the myotubes were shown. Myotube contractions and intracellular calcium levels were dose dependent, a high CGRP concentration producing calcium overload. CGRP 8–37 had no effect on contractions or calcium levels. Reconstructed images revealed the neuropeptide to be localized to juxta-nuclear areas, supporting the likelihood of site specific actions. CGRP has dramatic effects on intracellular calcium in striated muscle, high concentrations producing sustained contractions and calcium overload. The results give support to a mechanistic role for CGRP in muscle tension headaches, and underscore the importance in the development of CGRP analogues or receptor antagonists for treatment.  相似文献   

12.
This experiment was conducted to investigate the effects of zinc sulfate and zinc methionine (Zn-Met) and their levels on apoptosis induced by glucocorticoid of thymocytes and the possible mechanism. Dexamethasone was used to make the apoptosis model of thymocytes; zinc sulfate and zinc methionine were supplemented to the medium at levels of 0,50, 100, 500, and 1000 μM. The activity of cells,Cu,Zn superoxide dismutase (Cu,Zn-SOD), DNA ladder pattern, intracellular calcium concentration, and the percentage of apoptosis nuclei were determined. Both ZnSO4 and Zn-Met could modulate apoptosis; they inhibited apoptosis and decreased DNA fragmentation. The regulation was concentration dependent. At levels of 50 and 100 μM, the effect of Zn-Met on inhibiting apoptosis was less efficient than that of ZnSO4 (p<0.05), but the activity of the cells cultured with Zn-Met was higher than those cultured with ZnSO4; they showed no difference in modulating apoptosis when added at levels of 500 and 1000 μM to the medium (p>0.05). Intracellular calcium concentrations of cells cultured with Zn-Met were higher than those cultured with ZnSO4 at the same levels. Zinc supplementation decreased the concentration of intracellular calcium significantly (p<0.05) and increased the activity of Cu,Zn-SOD in the extract of the cells (p<0.05). Both zinc sulfate and Zn-Met could modulate apoptosis of thymocytes induced by glucocorticoid; the mechanism might involve the exchange of intracellular calcium, the redox of cells, and the two forms of zinc might go different ways in the regulations.  相似文献   

13.
The effect of alkaline stress, or an increase in extracellular pH (pHext), on cell viability is poorly defined. Human pulmonary artery endothelial cells (HPAEC) were subjected to alkaline stress using different methods of increasing pHext. Viability and mode of cell death following alkaline stress were determined by assessing nuclear morphology, ultrastructural features, and caspase-3 activity. Incubation of monolayers in media set to different pHext values (7.4–8.4) for 24-h induced morphological changes suggesting apoptosis (35–45% apoptotic cells) following severe alkaline stress. The magnitude of apoptosis was related to the severity of alkaline stress. These findings were confirmed with an assessment of ultrastructural changes and caspase-3 activation. While there was no difference in the intracellular calcium level ([Ca2+]i) in monolayers set to pHext 7.4 versus 8.4 following the first hour of alkaline stress, blockade of calcium uptake with the chelator, EGTA, potentiated the magnitude of apoptosis under these conditions. Potentiation of apoptosis was reduced by calcium supplementation of the media. Finally, alkaline stress was associated with an increase in intracellular pH. This is the first report of apoptosis following alkaline stress in endothelial cells in the absence of other cell death stimuli.  相似文献   

14.
Ultraviolet Al (UVA1) radiation generates reactive oxygen species and the oxidative stress is known as a mediator of DNA damage and of apoptosis. We exposed cultured human cutaneous fibroblasts to UVA1 radiation (wavelengths in the 340–450-nm range with emission peak at 365 nm) and, using the alkaline unwinding method, we showed an immediate significant increase of DNA strand breaks in exposed cells. Apoptosis was determined by detecting cytoplasmic nucleosomes (enzyme-linked immunosorbent assay method) at different time points in fibroblasts exposed to different irradiation doses. In our conditions, UVA1 radiation induced an early (8 h) and a delayed (18 h) apoptosis. Delayed apoptosis increased in a UVA dosedependent manner. Zinc is an important metal for DNA protection and has been shown to have inhibitory effects on apoptosis. The addition of zinc (6.5 mg/L) as zinc chloride to the culture medium significantly decreased immediate DNA strand breaks in human skin fibroblasts. Moreover, zinc chloride significantly decreased UVA1-induced early and delayed apoptosis. Thus, these data show for the first time in normal cutaneous cultured cells that UVA1 radiation induces apoptosis. This apoptosis is biphasic and appears higher 18 h after the stress. Zinc supplementation can prevent both immediate DNA strand breakage and early and delayed apoptosis, suggesting that this metal could be of interest for skin cell protection against UVA1 irradiation.  相似文献   

15.

Background

Cardiac cell apoptosis is the initiating factor of cardiac complications especially diabetic cardiomyopathy. Mitochondria are susceptible to the damaging effects of elevated glucose condition. Calcium overload and oxidative insult are the two mutually non-exclusive phenomena suggested to cause cardiac dysfunction. Here, we examined the effect of high-glucose induced calcium overload in calpain-1 mediated cardiac apoptosis in an in vitro setting.

Methods

H9c2, rat ventricular myoblast cell line was treated with elevated glucose condition and the cellular consequences were studied. Intracellular calcium trafficking, ROS generation, calpain-1 activation and caspase-12 and caspase-9 pathway were studied using flow cytometry, confocal microscopy and Western blot analysis.

Results

High-glucose treatment resulted in increased intracellular calcium ([Ca2 +]i) which was mobilized to the mitochondria. Concomitant intra-mitochondrial calcium ([Ca2 +]m) increase resulted in enhanced reactive oxygen and nitrogen species generation. These events led to mitochondrial dysfunction and apoptosis. Cardiomyocyte death exhibited several classical markers of apoptosis, including activation of caspases, appearance of annexin V on the outer plasma membrane, increased population of cells with sub-G0/G1 DNA content and nuclear condensation. Key findings include elucidation of cell signaling mechanism of high-glucose induced calcium-dependent cysteine protease calpain-1 activation, which triggers non-conventional caspases as alternate mode of cell death.

Conclusion

This information increases the understanding of cardiac cell death under hyperglycemic condition and can possibly be extended for designing new therapeutic strategies for diabetic cardiomyopathy.

General significance

The novel findings of the study reveal that high glucose induces apoptosis by both mitochondria-dependent and independent pathways via concomitant rise in intracellular calcium.  相似文献   

16.
Summary Simple methods are presented for quantitating contraction and intracellular calcium simultaneously in single, cultured smooth muscle cells. These methods are the first to demonstrate that reliable velocities of cell shortening can be measured in cultured smooth muscle cells and that cells in vitro exhibit shortening velocities comparable to those measured in the fastest phasic muscles in situ. Temporal relationships between changes in intracellular calcium and shortening within single cells were determined with a resolution of 100 ms and were consistent with measures in more “classical” preparations. Intracellular calcium rose quickly and transiently 10-fold above the basal level of 80–90 nM in response to the muscarinic agonist, carbachol. Shortening of the cells occurred 200 ms after intracellular calcium began to rise. The sensitivity and reliability of these methods allowed the effects of different stimuli to be easily resolved. The present report demonstrates that genuine contractility need not be ignored in cultured smooth muscle cells and that the temporal relations between shortening and intracellular calcium mobilization can be quantitatively assessed in controlled in vitro environments.  相似文献   

17.
We have studied alterations in the structural state of DNA, the level of membrane Fas-receptor expression, functional activity of caspase-3, the concentration of Ca2+, p53 and cytochrome c proteins in human lymphocyte cells in the dynamics of apoptosis, induced by UV light (240–390 nm) at doses of 151, 1510, and 3020 J/m2 and reactive oxygen species (ROS): superoxide anion radical, hydroxyl radical, hydrogen peroxide, and singlet oxygen. It was established that UV light and ROS induce lymphocyte DNA fragmentation after the incubation of a modified cell for 20 h. It was shown that in 1–5 h after UV light and ROS exposure on lymphocytes, an increase is observed in the level of membrane death Fas-receptors as compared to intact cells. Enhancement was revealed in the functional activity of lymphocyte caspase-3 4 h after the generation of singlet oxygen, hydroxyl radical, and the addition of hydrogen peroxide, as well as 8 and 24 h and 6 and 8 h of UV irradiation of cells at doses of 151 and 1510 J/m2, respectively. Using the DNA comet approach, it was revealed that DNA damage (single-stranded breaks) appears approximately 15–20 min after UV irradiation of lymphocytes at doses of 1510 and 3020 J/m2 and the addition of hydrogen peroxide at a concentration of 10−6 mol/L (comets of the C1 type) and reaches its maximum 6 h after cell modification (comets of the C2 and C3 types). Six hours after exposure of lymphocytes to hydrogen peroxide and UV light at doses of 1510 and 3020 J/m2, it was established that the p53 level increased in the investigated cells. It was established that under UV light exposure and exogenous generation of reactive oxygen species, the increase in the calcium level in lymphocyte cytoplasm is determined by Ca2+ efflux from the intracellular depots as a result of activation of the components of the phosphoinositide information transmission mechanism to a cell. A hypothesis was proposed on the correlation between changes in the calcium level and initiation of programmed cell death in human lymphocytes after UV light and ROS exposure. It was concluded that the lead role is played by receptor-mediated (Fas-dependent) caspase and p53-dependent pathways in the development of lymphocyte apoptosis induced by exposure to UV light at doses of 151 and 1510 J/m2 and reactive oxygen metabolites. A scheme is presented which considers possible intracellular events leading to apoptotic death of lymphocytes after UV irradiation.  相似文献   

18.
The present study was aimed to find out whether an increase of cytosolic free calcium level induces egg apoptosis through mitochondria-caspase mediated pathway. To increase cytosolic free calcium level and morphological apoptotic changes, ovulated eggs were cultured in Ca2+/Mg2+ free media-199 with or without various concentrations of calcium ionophore (0.5, 1, 2, 3, 4 μM) for 3 h in vitro. The morphological apoptotic changes, cytosolic free calcium level, hydrogen peroxide (H2O2) concentration, catalase activity, cytochrome c concentration, caspase-9 and caspase-3 activities and DNA fragmentation were analyzed. Calcium ionophore induced morphological apoptotic features in a concentration-dependent manner followed by degeneration at higher concentrations (3 and 4 μM). Calcium ionophore increased cytosolic free calcium level, induced generation of hydrogen peroxide (H2O2) and inhibited catalase activity in treated eggs. The increased H2O2 concentration was associated with increased cytochrome c concentration, caspase-9 and caspase-3 activities that resulted in the induction of morphological features characteristic of egg apoptosis. The increased caspase-3 activity finally induced DNA fragmentation as evidenced by TUNEL positive staining in calcium ionophore-treated eggs. These findings suggest that high cytosolic free calcium level induces generation of H2O2 that leads to egg apoptosis through mitochondria-caspase mediated pathway.  相似文献   

19.
Y Liu  F Chen  S Wang  X Guo  P Shi  W Wang  B Xu 《Cell death & disease》2013,4(12):e948
Leukemia stem cells (LSCs) are considered to be the main reason for relapse and are also regarded as a major hurdle for the success of acute myeloid leukemia chemotherapy. Thus, new drugs targeting LSCs are urgently needed. Triptolide (TPL) is cytotoxic to LSCs. Low dose of TPL enhances the cytotoxicity of idarubicin (IDA) in LSCs. In this study, the ability of TPL to induce apoptosis in leukemic stem cell (LSC)-like cells derived from acute myeloid leukemia cell line KG1a was investigated. LSC-like cells sorted from KG1a were subjected to cell cycle analysis and different treatments, and then followed by in vitro methyl thiazole tetrazolium bromide cytotoxicity assay. The effects of different drug combinations on cell viability, intracellular reactive-oxygen species (ROS) activity, colony-forming ability and apoptotic status were also examined. Combination index-isobologram analysis indicates a synergistic effect between TPL and IDA, which inhibits the colony-forming ability of LSC-like cells and induces their apoptosis. We further investigated the expression of Nrf2, HIF-1α and their downstream target genes. LSC-like cells treated with both TPL and IDA have increased levels of ROS, decreased expression of Nrf2 and HIF-1α pathways. Our findings indicate that the synergistic cytotoxicity of TPL and IDA in LSCs-like cells may attribute to both induction of ROS and inhibition of the Nrf2 and HIF-1α pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号