首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Patterns of polymorphism and divergence in Drosophila protein-coding genes suggest that a considerable fraction of amino acid differences between species can be attributed to positive selection and that genes with sex-biased expression, that is, those expressed predominantly in one sex, have especially high rates of adaptive evolution. Previous studies, however, have been restricted to autosomal sex-biased genes and, thus, do not provide a complete picture of the evolutionary forces acting on sex-biased genes across the genome. To determine the effects of X-linkage on sex-biased gene evolution, we surveyed DNA sequence polymorphism and divergence in 45 X-linked genes, including 17 with male-biased expression, 13 with female-biased expression, and 15 with equal expression in the 2 sexes. Using both single- and multilocus tests for selection, we found evidence for adaptive evolution in both groups of sex-biased genes. The signal of adaptive evolution was particularly strong for X-linked male-biased genes. A comparison with data from 91 autosomal genes revealed a "fast-X" effect, in which the rate of adaptive evolution was greater for X-linked than for autosomal genes. This effect was strongest for male-biased genes but could be seen in the other groups as well. A genome-wide analysis of coding sequence divergence that accounted for sex-biased expression also uncovered a fast-X effect for male-biased and unbiased genes, suggesting that recessive beneficial mutations play an important role in adaptation.  相似文献   

2.
Male genes: X‐pelled or X‐cluded?   总被引:3,自引:0,他引:3  
Two recent studies by Parisi et al. and Ranz et al., catalogue sex differences in gene expression across the whole genome of the fruit fly Drosophila melanogaster. Both report striking associations of sex-biased gene expression with the X chromosome. Genes with male-biased expression are depauperate on the X chromosome, whereas genes with female-biased expression show weaker evidence of being in excess. A number of evolutionary hypotheses for the expulsion or exclusion of male-biased genes from the X chromosome have been suggested. None is entirely consistent with the available evidence.  相似文献   

3.
4.
Studies of morphology, interspecific hybridization, protein/DNA sequences, and levels of gene expression have suggested that sex-related characters (particularly those involved in male reproduction) evolve rapidly relative to non-sex-related characters. Here we report a general comparison of evolutionary rates of sex-biased genes using data from cDNA microarray experiments and comparative genomic studies of Drosophila. Comparisons of nonsynonymous/synonymous substitution rates (d(N)/d(S)) between species of the D. melanogaster subgroup revealed that genes with male-biased expression had significantly faster rates of evolution than genes with female-biased or unbiased expression. The difference was caused primarily by a higher d(N) in the male-biased genes. The same pattern was observed for comparisons among more distantly related species. In comparisons between D. melanogaster and D. pseudoobscura, genes with highly biased male expression were significantly more divergent than genes with highly biased female expression. In many cases, orthologs of D. melanogaster male-biased genes could not be identified in D. pseudoobscura through a Blast search. In contrast to the male-biased genes, there was no clear evidence for accelerated rates of evolution in female-biased genes, and most comparisons indicated a reduced rate of evolution in female-biased genes relative to unbiased genes. Male-biased genes did not show an increased ratio of nonsynonymous/synonymous polymorphism within D. melanogaster, and comparisons of polymorphism/divergence ratios suggest that the rapid evolution of male-biased genes is caused by positive selection.  相似文献   

5.
Several lines of evidence suggest that the X chromosome of various animal species has an unusual complement of genes with sex-biased or sex-specific expression. However, the study of the X chromosome gene content in different organisms provided conflicting results. The most striking contrast concerns the male-biased genes, which were reported to be almost depleted from the X chromosome in Drosophila but overrepresented on the X chromosome in mammals. To elucidate the reason for these discrepancies, we analysed the gene content of the Z chromosome in chicken. Our analysis of the publicly available expressed sequence tags (EST) data and genome draft sequence revealed a significant underrepresentation of ovary-specific genes on the chicken Z chromosome. For the brain-expressed genes, we found a significant enrichment of male-biased genes but an indication of underrepresentation of female-biased genes on the Z chromosome. This is the first report on the nonrandom gene content in a homogametic sex chromosome of a species with heterogametic female individuals. Further comparison of gene contents of the independently evolved X and Z sex chromosomes may offer new insight into the evolutionary processes leading to the nonrandom genomic distribution of sex-biased and sex-specific genes. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Manyuan Long]  相似文献   

6.
Li Y  Zhang L  Zhang D  Zhang X  Lu X 《遗传学报》2010,37(10):695-702
It has been shown that duplicate genes on the X chromosome evolve much faster than duplicate genes on autosomes in Drosophila melanogaster.However,whether this phenomenon is general and can be applied to other species is not known.Here we examined this issue in chicken that have heterogametic females(females have ZW sex chromosome).We compared sequence divergence of duplicate genes on the Z chromosome with those on autosomes.We found that duplications on the Z chromosome indeed evolved faster than those on autosomes and show distinct patterns of molecular evolution from autosomal duplications.Examination of the expression of duplicate genes revealed an enrichment of duplications on the Z chromosome having male-biased expression and an enrichment of duplications on the autosomes having female-biased expression.These results suggest an evolutionary trend of the recruitment of duplicate genes towards reproduction-specific function.The faster evolution of duplications on Z than on the autosomes is most likely contributed by the selective forces driving the fixation of adaptive mutations on Z.Therefore,the common phenomena observed in both flies and chicken suggest that duplicate genes on sex chromosomes have distinct dynamics and are more influenced by natural selection than antosomal duplications,regardless of the kind of sex determination systems.  相似文献   

7.
Previous studies on organisms with well-differentiated X and Y chromosomes, such as Drosophila and mammals, consistently detected an excess of genes moving out of the X chromosome and gaining testis-biased expression. Several selective evolutionary mechanisms were shown to be associated with this nonrandom gene traffic, which contributed to the evolution of the X chromosome and autosomes. If selection drives gene traffic, such traffic should also exist in species with Z and W chromosomes, where the females are the heterogametic sex. However, no previous studies on gene traffic in species with female heterogamety have found any nonrandom chromosomal gene movement. Here, we report an excess of retrogenes moving out of the Z chromosome in an organism with the ZW sex determination system, Bombyx mori. In addition, we showed that those "out of Z" retrogenes tended to have ovary-biased expression, which is consistent with the pattern of non-retrogene traffic recently reported in birds and symmetrical to the retrogene movement in mammals and fruit flies out of the X chromosome evolving testis functions. These properties of gene traffic in the ZW system suggest a general role for the heterogamety of sex chromosomes in determining the chromosomal locations and the evolution of sex-biased genes.  相似文献   

8.
Hambuch TM  Parsch J 《Genetics》2005,170(4):1691-1700
The nonrandom use of synonymous codons (codon bias) is a well-established phenomenon in Drosophila. Recent reports suggest that levels of codon bias differ among genes that are differentially expressed between the sexes, with male-expressed genes showing less codon bias than female-expressed genes. To examine the relationship between sex-biased gene expression and level of codon bias on a genomic scale, we surveyed synonymous codon usage in 7276 D. melanogaster genes that were classified as male-, female-, or non-sex-biased in their expression in microarray experiments. We found that male-biased genes have significantly less codon bias than both female- and non-sex-biased genes. This pattern holds for both germline and somatically expressed genes. Furthermore, we find a significantly negative correlation between level of codon bias and degree of sex-biased expression for male-biased genes. In contrast, female-biased genes do not differ from non-sex-biased genes in their level of codon bias and show a significantly positive correlation between codon bias and degree of sex-biased expression. These observations cannot be explained by differences in chromosomal distribution, mutational processes, recombinational environment, gene length, or absolute expression level among genes of the different expression classes. We propose that the observed codon bias differences result from differences in selection at synonymous and/or linked nonsynonymous sites between genes with male- and female-biased expression.  相似文献   

9.
A faster rate of adaptive evolution of X-linked genes compared with autosomal genes may be caused by the fixation of new recessive or partially recessive advantageous mutations (the Faster-X effect). This effect is expected to be largest for mutations that affect only male fitness and absent for mutations that affect only female fitness. We tested these predictions in Drosophila melanogaster by using genes with different levels of sex-biased expression and by estimating the extent of adaptive evolution of non-synonymous mutations from polymorphism and divergence data. We detected both a Faster-X effect and an effect of male-biased gene expression. There was no evidence for a strong association between the two effects—modest levels of male-biased gene expression increased the rate of adaptive evolution on both the autosomes and the X chromosome, but a Faster-X effect occurred for both unbiased genes and female-biased genes. The rate of genetic recombination did not influence the magnitude of the Faster-X effect, ruling out the possibility that it reflects less Hill–Robertson interference for X-linked genes.  相似文献   

10.
11.

Background  

Genes with sex-biased expression often show rapid molecular evolution between species. Previous population genetic and comparative genomic studies of Drosophila melanogaster and D. simulans revealed that male-biased genes have especially high rates of adaptive evolution. To test if this is also the case for other lineages within the melanogaster group, we investigated gene expression in D. ananassae, a species that occurs in structured populations in tropical and subtropical regions. We used custom-made microarrays and published microarray data to characterize the sex-biased expression of 129 D. ananassae genes whose D. melanogaster orthologs had been classified previously as male-biased, female-biased, or unbiased in their expression and had been studied extensively at the population-genetic level. For 43 of these genes we surveyed DNA sequence polymorphism in a natural population of D. ananassae and determined divergence to the sister species D. atripex and D. phaeopleura.  相似文献   

12.
13.
14.
15.
The evolution of a pair of chromosomes that differ in appearance between males and females (heteromorphic sex chromosomes) has occurred repeatedly across plants and animals. Recent work has shown that the male heterogametic (XY) and female heterogametic (ZW) sex chromosomes evolved independently from different pairs of homomorphic autosomes in the common ancestor of birds and mammals but also that X and Z chromosomes share many convergent molecular features. However, little is known about how often heteromorphic sex chromosomes have either evolved convergently from different autosomes or in parallel from the same pair of autosomes and how universal patterns of molecular evolution on sex chromosomes really are. Among winged insects with sequenced genomes, there are male heterogametic species in both the Diptera (e.g., Drosophila melanogaster) and the Coleoptera (Tribolium castaneum), female heterogametic species in the Lepidoptera (Bombyx mori), and haplodiploid species in the Hymenoptera (e.g., Nasonia vitripennis). By determining orthologous relationships among genes on the X and Z chromosomes of insects with sequenced genomes, we are able to show that these chromosomes are not homologous to one another but are homologous to autosomes in each of the other species. These results strongly imply that heteromorphic sex chromosomes have evolved independently from different pairs of ancestral chromosomes in each of the insect orders studied. We also find that the convergently evolved X chromosomes of Diptera and Coleoptera share genomic features with each other and with vertebrate X chromosomes, including excess gene movement from the X to the autosomes. However, other patterns of molecular evolution--such as increased codon bias, decreased gene density, and the paucity of male-biased genes on the X--differ among the insect X and Z chromosomes. Our results provide evidence for both differences and nearly universal similarities in patterns of evolution among independently derived sex chromosomes.  相似文献   

16.
Evolutionary theory predicts that sexually antagonistic mutations accumulate differentially on the X chromosome and autosomes in species with an XY sex-determination system, with effects (masculinization or feminization of the X) depending on the dominance of mutations. Organisms with alternative modes of inheritance of sex chromosomes offer interesting opportunities for studying sexual conflicts and their resolution, because expectations for the preferred genomic location of sexually antagonistic alleles may differ from standard systems. Aphids display an XX/X0 system and combine an unusual inheritance of the X chromosome with the alternation of sexual and asexual reproduction. In this study, we first investigated theoretically the accumulation of sexually antagonistic mutations on the aphid X chromosome. Our results show that i) the X is always more favourable to the spread of male-beneficial alleles than autosomes, and should thus be enriched in sexually antagonistic alleles beneficial for males, ii) sexually antagonistic mutations beneficial for asexual females accumulate preferentially on autosomes, iii) in contrast to predictions for standard systems, these qualitative results are not affected by the dominance of mutations. Under the assumption that sex-biased gene expression evolves to solve conflicts raised by the spread of sexually antagonistic alleles, one expects that male-biased genes should be enriched on the X while asexual female-biased genes should be enriched on autosomes. Using gene expression data (RNA-Seq) in males, sexual females and asexual females of the pea aphid, we confirm these theoretical predictions. Although other mechanisms than the resolution of sexual antagonism may lead to sex-biased gene expression, we argue that they could hardly explain the observed difference between X and autosomes. On top of reporting a strong masculinization of the aphid X chromosome, our study highlights the relevance of organisms displaying an alternative mode of sex chromosome inheritance to understanding the forces shaping chromosome evolution.  相似文献   

17.
Sexually dimorphic traits are often subject to diversifying selection. Genes with a male-biased gene expression also are probably affected by sexual selection and have a high rate of protein evolution. We used SAGE to measure sex-biased gene expression in Drosophila pseudoobscura. Consistent with previous results from D. melanogaster, a larger number of genes were male biased (402 genes) than female biased (138 genes). About 34% of the genes changed the sex-related expression pattern between D. melanogaster and D. pseudoobscura. Combining gene expression with protein divergence between both species, we observed a striking difference in the rate of evolution for genes with a male-biased gene expression in one species only. Contrary to expectations, D. pseudoobscura genes in this category showed no accelerated rate of protein evolution, while D. melanogaster genes did. If sexual selection is driving molecular evolution of male-biased genes, our data imply a radically different selection regime in D. pseudoobscura.  相似文献   

18.
ABSTRACT: BACKGROUND: Several studies in Drosophila have shown excessive movement of retrogenes from the X chromosome to autosomes, and that these genes are frequently expressed in the testis. This phenomenon has led to several hypotheses invoking natural selection as the process driving male-biased genes to the autosomes. Metta and Schlotterer (BMC Evol Biol 2010, 10:114) analyzed a set of retrogenes where the parental gene has been subsequently lost. They assumed that this class of retrogenes replaced the ancestral functions of the parental gene, and reported that these retrogenes, although mostly originating from movement out of the X chromosome, showed female-biased or unbiased expression. These observations led the authors to suggest that selective forces (such as meiotic sex chromosome inactivation and sexual antagonism) were not responsible for the observed pattern of retrogene movement out of the X chromosome. RESULTS: We reanalyzed the dataset published by Metta and Schlotterer and found several issues that led us to a different conclusion. In particular, Metta and Schlotterer used a dataset combined with expression data in which significant sex-biased expression is not detectable. First, the authors used a segmental dataset where the genes selected for analysis were less testis-biased in expression than those that were excluded from the study. Second, sex-biased expression was defined by comparing male and female whole-body data and not the expression of these genes in gonadal tissues. This approach significantly reduces the probability of detecting sex-biased expressed genes, which explains why the vast majority of the genes analyzed (parental and retrogenes) were equally expressed in both males and females. Third, the female-biased expression observed by Metta and Schlotterer is mostly found for parental genes located on the X chromosome, which is known to be enriched with genes with female-biased expression. Fourth, using additional gonad expression data, we found that autosomal genes analyzed by Metta and Schlotterer are less up regulated in ovaries and have higher chance to be expressed in meiotic cells of spermatogenesis when compared to X-linked genes. CONCLUSIONS: The criteria used to select retrogenes and the sex-biased expression data based on whole adult flies generated a segmental dataset of female-biased and unbiased expressed genes that was unable to detect the higher propensity of autosomal retrogenes to be expressed in males. Thus, there is no support for the authors' view that the movement of new retrogenes, which originated from X-linked parental genes, was not driven by selection. Therefore, selection-based genetic models remain the most parsimonious explanations for the observed chromosomal distribution of retrogenes.  相似文献   

19.
20.
《遗传学报》2022,49(2):109-119
Many paleognaths (ratites and tinamous) have a pair of homomorphic ZW sex chromosomes in contrast to the highly differentiated sex chromosomes of most other birds. To understand the evolutionary causes for the different tempos of sex chromosome evolution, we produced female genomes of 12 paleognathous species and reconstructed the phylogeny and the evolutionary history of paleognathous sex chromosomes. We uncovered that Palaeognathae sex chromosomes had undergone stepwise recombination suppression and formed a pattern of “evolutionary strata”. Nine of the 15 studied species' sex chromosomes have maintained homologous recombination in their long pseudoautosomal regions extending more than half of the entire chromosome length. We found that in the older strata, the W chromosome suffered more serious functional gene loss. Their homologous Z-linked regions, compared with other genomic regions, have produced an excess of species-specific autosomal duplicated genes that evolved female-specific expression, in contrast to their broadly expressed progenitors. We speculate such “defeminization” of Z chromosome with underrepresentation of female-biased genes and slow divergence of sex chromosomes of paleognaths might be related to their distinctive mode of sexual selection targeting females rather than males, which evolved in their common ancestors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号