首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A mutation in the ilvU locus of Escherichia coli has led to a complex phenotype that included resistance to thiaisoleucine, a loss of derepressibility of isoleucyl tRNA synthetase, and an alteration of the RPC-5 chromatographic profile of the branched-chain aminoacyl-tRNA's. The alterations were manifest in an increase in the amount of Species 2 of both tRNAIle and tRNAVal at the expense of Species 1. A similar alteration, but independent of (and additive to) that caused by the ilvU mutation, was observed upon limitation of either isoleucine or valine. The shift in profile caused by limitation was also independent of the reduced growth rate or the derepression of the isoleucine and valine biosynthetic enzymes that also result from limitation. During chloramphenicol treatment nearly all tRNAIle and tRNAVal formed appears as species 2. Upon recovery from chloramphenicol, Species 2 of both acceptors are converted to Species 1. It is proposed that the ilvU product not only allows derepression of isoleucyl-tRNA synthetase but also retards the conversion of tRNA2Ile to tRNA1Ile and that of tRNA2Val to tRNA1Val. The mutated ilvU loci abolish the derepression and are more efficient in retarding the conversion.  相似文献   

3.
The dnaA and dnaC genes are thought to code for two proteins required for the initiation of chromosomal deoxyribonucleic acid replication in Escherichia coli. When a strain carrying a mutation in either of these genes is shifted from a permissive to a restrictive temperature, chromosome replication ceases after a period of residual synthesis. When the strains are reincubated at the permissive temperature, replication again resumes after a short lag. This reinitiation does not require either protein synthesis (as measured by resistance to chloramphenicol) or ribonucleic acid synthesis (as measured by resistance to rifampin). Thus, if there is a requirement for the synthesis of a specific ribonucleic acid to initiate deoxyribonucleic acid replication, this ribonucleic acid can be synthesized prior to the time of initiation and is relatively stable. Furthermore, the synthesis of this hypothetical ribonucleic acid does not require either the dnaA of dnaC gene products. The buildup at the restrictive temperature of the potential to reinitiate deoxyribonucleic acid synthesis at the permissive temperature shows rather complex kinetics the buildup roughly parallels the rate of mass increase of the culture for at least the first mass doubling at the restrictive temperature. At later times there appears to be a gradual loss of initiation potential despite a continued increase in mass. Under optimal conditions the increase in initiation potential can equal, but not exceed, the increase in cell division at the restrictive temperature. These results are most easily interpreted according to models that postulate a relationship between the initiation of deoxyribonucleic acid synthesis and the processes leading to cell division.  相似文献   

4.
Examination of the transfer ribonucleic acid (tRNA) produced by starving, relaxed-control (rel minus) strains of Escherichia coli for required amino acids revealed the occurrence of a number of chromatographically unique subspecies. Leucine starvation results in the formation of new isoacceptor species of leucine-, histidine-, arginine-, valine-, and phenylalanine-specific tRNA and quantitative changes in the column profiles of serine, glycine, and isoleucine tRNA. Evidence that the unique tRNA species are synthesized de novo during amino acid starvation comes from the findings that the major unique leucine isoacceptor species is not formed in stringent control cells or in rel minus cells starved for uracil or treated with rifampin. Furthermore, heat treatment of the unique leucine tRNA does not alter its chromatographic behavior, indicating that the species is not an aggregate or nuclease-damaged form of a normal isoacceptor tRNA. The methyl acceptor activities of tRNA from leucine-starved and nonstarved rel+ or rel minus cells were found to be essentially the same. This result and the finding that the chromatographic behavior of the unique leucine-specific tRNA was not altered after treatment with tRNA methylase suggests that gross methyl deficiency is probably not the biochemical basis for the occurrence of the unique species.  相似文献   

5.
Three thermosensitive deoxyribonucleic acid (DNA) initiation mutants of Escherichia coli exposed to the restrictive temperature for one to two generations were examined for the ability to reinitiate DNA replication after returning to the permissive temperature in the presence of rifampin, chloramphenicol, or nalidixic acid. Reinitiation in the dnaA mutant was inhibited by rifampin but not by chloramphenicol, whereas renitiation was not inhibited by rifampin but not by chloramphenicol, whereas reinitiation was not inhibited in two dnaC mutants by either rifampin or chloramphenicol. To observe the rifampin inhibition, the antibiotic must be added at least 10 min before return to the permissive temperature. The rifampin inhibition of reinitiation was not observed when a rifampin-resistant ribonucleic acid ((RNA) polymerase gene was introduced into the dnaA mutant, demonstrating that RNA polymerase synthesizes one or more RNA species required for the initation of DNA replication (origin-RNA). Reinitiation at 30 degrees C was not inhibited by streptolydigin in a stretolydigin-sensitive dnaA muntant. Incubation in the presence of nalidixic acid prevented subsequent reinitiation in the dnaC28 mutant but did not inhibit reinitiation in the dnaA5 muntant. These results demonstrate that the dnaA gene product acts before or during the synthesis of an origin-RNA, RNA polymerase synthesizes this origin RNA, and the dnaC gene product is involved in a step after this RNA synthesis event. Furthermore, these results suggest that the dnaC gene product is involved in the first deoxyribounucleotide polymerization event wheareas the dnaA gene product acts prior to this event. A model is presented describing the temporal sequence of events that occur during initiation of a round of DNA replication, based on results in this and the accompanying paper.  相似文献   

6.
Glutamine phosphoribosylpyrophosphate amidotransferase (ATase) activity is rapidly inactivated in stationary-phase cells of Bacillus subtilis. The inactivation of APase requires both the cessation of rapid cell growth and the presence of oxygen. ATase is inactivated in two protease-deficient mutant strains at a rate similar to that seen in the wild type, and is stable in anaerobic cell-free extracts of the parent strain. These results suggest that the inactivation of ATase is not the result of general proteolysis. The inactivation of ATase in stationary-phase cultures can be inhibited by oxygen starvation. This oxygen requirement does not reflect a dependence on the generation of metabolic energy, but appears to be a direct requirement for molecular oxygen. ATase synthesis is repressed by the addition of adenosine, and is inactivated only after the cessation of exponential growth. Addition of chloramphenicol or rifampin to exponential- and stationary-phase cells does not inhibit ATase inactivation, suggesting that protein or ribonucleic acid synthesis is not required for inactivation. ATase is inactivated at the end of exponential growth in cells that have exhausted a required amino acid.  相似文献   

7.
The effects of rifampin and streptolydigin, inhibitors of ribonucleic acid (RNA) synthesis, on the production of F pili by Escherichia coli were studied by electron microscopy. The inhibition of RNA synthesis reduces the number of new pili produced by depiliated cells, but does not affect their length or the number of pili present at the time of inhibition or the retraction of pili. We suggest that the rifampin-sensitive step may be linked to the establishement of a site for pili production. Evidence is provided that chloramphenicol inhibits retraction. We suggest that retraction requires some protein whose pool size is limited.  相似文献   

8.
The phenylalanine tRNA of Rhodopseudomonas sphaeroides was fractionated on benzoylated diethylaminoethyl-cellulose into four isoaccepting species (tRNAPheI to IV). tRNAPheIII represented 80% of the total tRNAPhe in anaerobic, photosynthetically grown organisms, whereas in cultures grown aerobically for prolonged periods, tRNAPheII represented 80% of the total. In cultures adapting to aerobic growth, the addition of rifampin resulted in a tRNAPhe profile characteristic of anaerobic-photosynthetic conditions due to the conversion of tRNAPheII to tRNAPheIII. In fully adapted aerobic cultures, this conversion was inhibited in the presence of chloramphenicol or rifampin. The conversion of tRNAPheIII to tRNAPheII was not observable in vivo. It is proposed that an enzymic activity synthesized during anaerobic-photosynthetic growth was responsible for the conversion.  相似文献   

9.
The effects of rifampin and chloramphenicol on the transfer of ColIdrd-1 have been examined to determined whether transfer requires the synthesis of an untranslated species of ribonucleic acid (RNA), as proposed in models for the transfer of another IncIalpha plasmid, R64drd-11. When RNA synthesis was inhibited throughout mating by rifampin, ColI transfer between dna+ bacteria occurred at the normal rate for about 10 min and then stopped abruptly. Conjugational deoxyribonucleic acid (DNA) synthesis in dnaB mutants indicates that plasmid DNA was made in the rifampin-treated donors to replace the transferred material but the DNA tended to be unstable. In the presence of chloramphenicol, transfer of ColI gradually diminished over a longer period. Rifampin, but not chloramphenicol, was found to have unpredicted effects on chromosomal DNA metabolism in unmated dna+ and dnaB bacteria when they harbor any of three IncIalpha plasmids (ColIdrd-1, R144drd-3, and R64drd-11). Replication of the bacterial chromosome in such cells stopped abruptly about 15 min after the addition of rifampin, and at 41 degrees C, but not 37 degrees C, this was followed by extensive DNA breakdown. These findings suggest that curtailment of IncIalpha plasmid transfer by the drug results from a general disruption of DNA metabolism rather than from inhibition of a species of RNA essential for transfer.  相似文献   

10.
11.
Cell-free extracts of miniature Escherichia coli cells deficient in deoxyribonucleic acid (DNA) and DNA-dependent ribonucleic acid polymerase have been shown to be capable of polyuridylic acid-directed [(14)C]phenylalanine incorporation.  相似文献   

12.
To elucidate subtle functions of transfer ribonucleic acid (tRNA) modifications in protein synthesis, pairs of tRNA's that differ in modifications at specific positions were prepared from Bacillus subtilis. The tRNA's differ in modifications in the anticodon loop, the extra arm, and the TUC loop. The functional properties of these species were compared in aminoacylation, as well as in initiation and peptide bond formation, at programmed ribosomes. These experiments demonstrated the following. (i) In tRNA(f) (Met) the methylation of guanosine 46 in the extra arm to 7-methylguanosine by the 7-methylguanosine-forming enzyme from Escherichia coli changes the aminoacylation kinetics for the B. subtilis methionyl-tRNA synthetase. In repeated experiments the V(max) value is decreased by one-half. (ii) tRNA(f) (Met) species with ribothymidine at position 54 (rT54) or uridine at position 54 (U54) were obtained from untreated or trimethoprim-treated B. subtilis. The formylated fMet-tRNA(f) (Met) species with U54 and rT54, respectively, function equally well in an in vitro initiation system containing AUG, initiation factors, and 70s ribosomes. The unformylated Met-tRNA(t) (Met) species, however, differ from each other: "Met-tRNA(f) (Met) rT" is inactive, whereas the U54 counter-upart effectively forms the initiation complex. (iii) Two isoacceptors, tRNA(1) (Phe) and tRNA(2) (Phe), were obtained from B. subtilis. tRNA(1) (Phe) accumulates only under special growth conditions and is an incompletely modified precursor oftRNA(2) (Phe): in the first position of the anticodon, guanosine replaces Gm, and next to the 3' end of the anticodon (isopentenyl)adenosine replaces 2-thiomethyl-N(6)-(isopentenyl)adenosine. Both tRNA's behave identically in aminoacylation kinetics. In the factor-dependent AUGU(3)-directed formation of fMet-Phe, the undermodified tRNA(1) (Phe) is always less efficient at Mg(2+) concentrations between 5 and 15 mM than its mature counterpart.  相似文献   

13.
Escherichia coli grown in chemically produced iron-deficient media have well characterized alterations in the chromatographic properties of tRNAs containing the modified nucleoside 2-methylthio-N6-(delta2-isopentenyl) adenosine. The present report shows that similar tRNA alterations occur in enteropathogenic E. coli inhibited by human milk and bovine colostrum, the inhibited bacteria containing 10% or less of the normal tRNA species. Adding sufficient iron to saturate the iron-binding capacity of the lactoferrin present in milk and colostrum reversed these changes which are probably due to a failure to methylthiolate the isopentenyladenosine. Although adding iron led to a rapid replacement of abnormal tRNA by the chromatographically normal species, and to a resumption of multiplication, the tRNA alterations are not directly related to the inhibition of growth. Strains of E. coli which grew normally in milk, colostrum and in defined media containing the iron-binding protein transferrin or ovotransferrin also contained about 90% of the abnormal species. Rapid conversion of abnormal tRNA to normal tRNA occurred on adding iron and in the absence of RNA synthesis. The tRNA changes are discussed in relation to their possible connection with both the adaptation of E. coli to growth under the iron-restricted conditions imposed by iron-binding proteins in tissue fluids and with bacterial pathogenicity.  相似文献   

14.
The release of the ribonucleic acid (RNA)-containing phage MS2 from Escherichia coli is accompanied by cellular lysis at 37 C, whereas at 30 C phage are released from intact cells. Chloramphenicol or rifampin prevents the release of progeny phage particles at both temperatures. Neither drug causes an immediate cessation of phage release and after inhibition of protein synthesis by chloramphenicol phage release proceeds for about 17 min at 37 C and about 35 min at 30 C. Rifampin does not inhibit phage release from mutant cells possessing a rifampin-resistant deoxyribonucleic acid-dependent RNA polymerase. The results indicate that a short-lived host-controlled protein(s) is essential for the release of RNA phage particles at both temperatures.  相似文献   

15.
16.
The ultraviolet resistance of a streptolydigin-susceptible strain of Escherichia coli B/r hcr(-) increased during preirradiation treatment with streptolydigin (an inhibitor of deoxyribonucleic acid-dependent ribonucleic acid polymerase) for 20 min and then remained constant. During preirradiation treatment with chloramphenicol (an inhibitor of protein synthesis), resistance to ultraviolet light increased for 1 to 2 h, and reached a maximal level significantly above that attained in streptolydigin-containing medium. These results suggest that there are two mechanisms that function in Hcr(-) cells during chloramphenicol treatment which contribute to the concomitant ultraviolet resistance enhancement. One is ribonucleic acid dependent and is inhibited by streptolydigin. This ribonucleic acid-dependent mechanism appears to be absent in wild-type and RecA E. coli B/r strains.  相似文献   

17.
Electron microscopy was used to analyze sporulating cells and spores of Bacillus subtilis mutants (Rif(r)) which are resistant to rifampin, an inhibitor of ribonucleic acid polymerase. The spores of Rif-18 are pleomorphic and frequently exhibit terminal knobs. These knobs first occur during late stage IV and early stage V of sporulation and are extensions of the inner and outer spore coats. Since the rifampin resistance and altered spore morphology of Rif-18 are 100% cotransformable, these data suggest that the altered spore morphology is the result of an alteration in ribonucleic acid polymerase genes. The morphology and physical dimensions are also reported for spores from Rif-11, Rif-15, and Rif-21. Significant differences in size from the wild type were observed for these mutants.  相似文献   

18.
A reversal in the relative amounts of the two major species of tyrosine transfer ribonucleic acid (tRNATyr) (I and II) has been previously observed by others during the development of Bacillus subtilis. These species have been purified by benzoylated diethylaminoethyl-cellulose chromatography and were shown to differ by the modification of an adenosine residue (species I contains i6A and species II ms2i6A). As suggested by competitive hybridization assays, they might possess the same nucleotide sequence. A tRNATyr species lacking isopentenyl and methylthio moieties was not detected. The structural difference between species I and II was shown to be important for ribosome binding but not for charging. The extent of alteration during growth was studied in parallel with physiological events. Like sporulation, tRNATyr change is iron dependent. Moreover, when sporulation is prevented by an excess of glucose, the tRNATyr change is delayed as is the synthesis of enzymatic systems required for the onset of sporulation. tRNATyr change also demands unceasing protein synthesis.  相似文献   

19.
A previously reported salt-sensitive binding of deoxyribonucleic acid (DNA) to the cell envelope in Escherichia coli, involving approximately one site per chromosome near the origin of DNA replication, is rapidly disrupted in vivo by rifampin or chloramphenicol treatment and by amino acid starvation. DNA replication still initiates with this origin-specific binding disrupted, even when the disruption extends over the period of obligatory protein and ribonucleic acid synthesis that must precede initiation after release of cells from amino acid starvation. Thus the origin-associated membrane-DNA interaction is not necessary either for the initiation event itself or for the maturation of a putative initiation apparatus in E. coli.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号