首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reactions between seven fluorogenic substrates and different groups of enzymes, esterases, lipases, phosphatases, and dehydrogenases, were studied in a search for a new method for the detection of actinomycete spores. Fluorescence measurement was chosen as a fast and sensitive method for microbial analysis. The focus of the research was on the spores of important air contaminants: Streptomyces albus and Thermoactinomyces vulgaris. For the measurement of the enzymatic activity, the chosen fluorogenic substrate was added to a mixture of spores and nutrient media, and the resulting fluorescence was measured with a spectrofluorometer. Fluorogenic substrates were found to show enzymatic activities even for dormant spores. Comparison of the enzymatic activities of dormant spores with those of vegetative cells showed similarity of the enzymatic profiles but higher activity for vegetative cells. The increase of enzymatic activity from dormant spores to vegetative cells was not linear but fluctuating. The largest fluctuations were found after 4 to 5 h of incubation. The enzymatic activities of S. albus were 10 to 50 times lower than those of T. vulgaris, except for the dehydrogenase activity, which was seven times higher. These results indicate that analysis with fluorogenic substrates has the potential for becoming a fast and sensitive method for the enumeration and identification of airborne actinomycete spores.  相似文献   

2.
T.M. MADELIN AND H.E. JOHNSON. 1992. An aerodynamic particle sizer (APS) that uses laser Doppler velocimetry was used to determine aerodynamic diameters of spores of fungal and thermophilic actinomycete species common in mouldy hay, acrosolized at different humidities and temperatures. Results were compared with those obtained from inertial impaction in a cascade impactor. The APS gave slightly smaller measurements than the cascade impactor. Both methods gave aerodynamic diameters generally slightly smaller than the average spore dimensions observed on cascade impactor slides with a microscope. The latter measurements were less than axial dimensions given in the literature. Brief passage of spores through air at 95% relative humidity (RH) and 38°C, compared with 40% RH and 20°C, caused an immediate increase in their aerodynamic diameter and the breaking of chains of spores. Cultures maintained at 75% RH and aerosolized at 98% RH similarly produced larger spore particles than those passed through dry air. These findings have implications for mould-induced asthma and allergic alveolitis since they relate to physical behaviour of airborne spores and particle deposition sites in the lung.  相似文献   

3.
The effectiveness of installed air contamination control systems for removal of airborne microorganisms was determined. Seven separate systems were challenged with aerosolized T1 bacteriophage. Air samples were collected with Andersen samplers containing agar plates that had been swabbed with susceptible Escherichia coli. The advantages of using bacteriophage for testing air-handling systems are discussed. The air systems employed both filtration and ultraviolet irradiation and air-flow rates varied from 600 to 18,000 ft3/min. Reduction rates of airborne bacteriophage passing through the various air systems ranged from 99.8 to 99.99%.  相似文献   

4.
An aerodynamic particle sizer (APS) that uses laser Doppler velocimetry was used to determine aerodynamic diameters of spores of fungal and thermophilic actinomycete species common in mouldy hay, aerosolized at different humidities and temperatures. Results were compared with those obtained from inertial impaction in a cascade impactor. The APS gave slightly smaller measurements than the cascade impactor. Both methods gave aerodynamic diameters generally slightly smaller than the average spore dimensions observed on cascade impactor slides with a microscope. The latter measurements were less than axial dimensions given in the literature. Brief passage of spores through air at 95% relative humidity (RH) and 38 degrees C, compared with 40% RH and 20 degrees C, caused an immediate increase in their aerodynamic diameter and the breaking of chains of spores. Cultures maintained at 75% RH and aerosolized at 98% RH similarly produced larger spore particles than those passed through dry air. These findings have implications for mould-induced asthma and allergic alveolitis since they relate to physical behaviour of airborne spores and particle deposition sites in the lung.  相似文献   

5.
Different methods available for size measurements of fungal and actinomycete spores were compared for four fungal species ( Penicillium brevicompactum, Penicillium melinii, Cladosporium cladosporioides , and Aspergillus versicolor ) and two actinomycete species ( Streptomyces albus and Thermoactinomyces vulgaris ). The physical size of spores was measured with three microscopic methods: with an optical microscope from stained (wet) slides, with an optical microscope from unstained (dry) slides and with an environmental scanning electron microscope (SEM) directly from the microbial culture. The aerodynamic diameter, d a , of airborne spores was measured with an aerodynamic particle sizer. The respiratory deposition of spores was calculated with a computer-based model. The environmental SEM measurements indicated larger size for fungal spores than the optical microscope, whereas for actinomycete spores, both microscopes gave comparable results. Optical microscopic measurements showed that the stained fungal spores were 1.1-1.2 times larger than the unstained ones, which was attributed to the different hydration status of spores. There was no clear trend in the relationship between the d a and the physical diameter measured with any of three tested microscopic methods. For example, the physical diameter of Cladosporium cladosporioides spores was larger than the d a by a factor ranging from 2.0 to 2.2, whereas the d a of Streptomyces albus spores was larger than the physical diameter by a factor of 1.3-1.5. Thus, the aerodynamic diameter of microbial spores cannot be accurately estimated solely based on the physical diameter but needs information on the density of the spores that may vary considerably. The results on the spore size were utilized to calculate respiratory deposition of spores. The errors in the size measurement were found to result in overestimation of the respiratory deposition of C. cladosporioides spores by a factor of 1.2-1.8, and underestimation of the respiratory deposition of S. albus spores by a factor of 0.6-0.7. These errors in the size measurement cause bias in the exposure assessment and in the estimation of the efficiency of control devices. More research is needed to standardize the method for particle diameter estimates applicable for airborne spores.  相似文献   

6.
Brian Crook  John Lacey 《Grana》2013,52(2):446-449
Exposure to microorganisms, including thermophilic actinomycetes and fungal spores, and to airborne dust produced during compost production and mushroom picking may cause work-related respiratory symptoms. Previous studies have implicated Thermoactinomyces vulgaris and Faenia rectivirgula, the aetiological agents in farmer's lung disease, as causes of these symptoms but these species have been rare in aerobiological studies of mushroom farms. As part of a study of the respiratory health of the exposed workers, we carried out an aerobiological survey of all the stages of commercial mushroom production. Samples of viable airborne microorganisms were collected at a farm from eight locations on two occasions using Andersen cascade impactors. Large numbers of airborne thermophilic actinomycetes, yielding > 106 colony-forming units (cfu) m?3 air sampled, were associated with compost handling. These were predominantly Thermomonospora spp., while Thermoactinomyces spp. and Faenia rectivirgula were few. Because the compost was largely undisturbed, few airborne actinomycete spores were found in mushroom growing houses, but concentrations of fungal spores exceeded 105 cfu m?3 when mushrooms were being harvested. Most were Penicillium spp. and Aspergillus fumigatus but Peziza ostracoderma and Trichoderma spp. were also isolated. Workers are thus exposed to a wide range of airborne microorganisms, but the role of many of these in mushroom workers' respiratory symptoms is not yet fully understood.  相似文献   

7.
This paper is the first aero-mycological report from Demänovská Ice Cave. Fungal spores were sampled from the internal and external air of the cave in June, 2014, using the impact method with a microbiological air sampler. Airborne fungi cultured on PDA medium were identified using a combination of classical phenotypic and molecular methods. Altogether, the presence of 18 different fungal spores, belonging to 3 phyla, 9 orders and 14 genera, was detected in the air of the cave. All of them were isolated from the indoor samples, and only 9 were obtained from the outdoor samples. Overall, airborne fungal spores belonging to the genus Cladosporium dominated in this study. However, the spores of Trametes hirsuta were most commonly found in the indoor air samples of the cave and the spores of C. herbarum in the outdoor air samples. On the other hand, the spores of Alternaria abundans, Arthrinium kogelbergense, Cryptococcus curvatus, Discosia sp., Fomes fomentarius, Microdochium seminicola and T. hirsuta were discovered for the first time in the air of natural and artificial underground sites. The external air of the cave contains more culturable airborne fungal spores (755 colony-forming units (CFU) per 1 m3 of air) than the internal air (from 47 to 273 CFU in 1 m3), and these levels of airborne spore concentration do not pose a threat to the health of tourists. Probably, the specific microclimate in the cave, including the constant presence of ice caps and low temperature, as well as the location and surrounding environment, contributes to the unique species composition of aeromycota and their spores in the cave. Thus, aero-mycological monitoring of underground sites seems to be very important for their ecosystems, and it may help reduce the risk of fungal infections in humans and other mammals that may arise in particular due to climate change.  相似文献   

8.
The present study sought to examine Coprinus and Ganoderma airborne spore counts, analysing seasonal variations, the influence of meteorological variables and intraday behaviour with a view to charting the aerobiological dynamics of both genera in Havana (Cuba) during a 2-year period (November 2010–October 2012). A Hirst-type volumetric air sampler was used as sampling methodology. The spores registered in the air were identified and counted following the model proposed by the Spanish Aerobiological Network based on two longitudinal transects along the slides. Coprinus spores outnumbered those of the Ganoderma (28,468 annual total spores vs. 1,921 spores). Moreover, both genera were recorded in the atmosphere on a large number of days over the two-year study period, with daily maximum concentrations in the rainy months. The daily maximum value for Coprinus was 880 spores/m3 (30 September 2011), whereas for Ganoderma 44 spores/m3 (4 September 2011). The analysis of the Spearman correlation coefficient showed a significant positive correlation of the airborne Coprinus and Ganoderma spores with the temperature, relative humidity and rainfall, whereas the degree of association is negative with the wind speed. Regarding the intraday behaviour, both basidiospores were more abundant in the atmosphere during the night, with a maximum peak at 5–6 a.m.  相似文献   

9.
A new medium, designated HV agar, containing soil humic acid as the sole source of carbon and nitrogen was developed.The HV agar was superior to other currently used media, including colloidal chitin agar, glycerol-arginine agar and starch-casein-nitrate agar, for the isolation and enumeration of soil actinomycetes: It allowed the growth of the largest numbers of actinomycete colonies belonging to each genus of Streptomyces, Micromonospora, Microbispora, Streptosporangium, Nocardia, Dactylosporangium, Microtetraspora and Thermomonospora on the plate, while restricting the development of true bacteria. The HV agar supported adequate growth and good sporulation for these actinomycetes.Even when spore suspensions were used as the inoculum, the HV agar produced remarkably larger numbers of actinomycetes, especially strains of the genera Micromonospora, Microbispora, Streptosporangium, Dactylosporangium and Saccharomonospora, than did glycerol-arginine agar. It was found that the spores of these actinomycetes were activated upon germination by treatment at 20°C for 30 min with a O.2% solution of humic acid prior to incubation.  相似文献   

10.
Protoplasts were produced from the thermophilic actinomycete Thermomonospora fusca and were regenerated to 0.1% of the direct count on regeneration agar. Recombination after protoplast fusion was demonstrated with drug-resistant mutants of T. fusca YX. A single thiostrepton-resistant colony was isolated after transformation of T. fusca YX with the streptomycete vector pIJ702, providing the first evidence for transformation in the genus Thermomonospora and suggesting that some mesophilic streptomycete genes can be expressed in thermophilic actinomycetes. Of 20 thermophilic actinomycete strains isolated from self-heated composts, 3 were found to harbor native plasmid DNA, providing potential sequences for the development of Thermomonospora-Streptomyces shuttle vectors.  相似文献   

11.
Analysis of numerous air samples has indicated that dormant, viable fungal spores are highly present, which suggests that aerial dispersion is important for fungi. Whereas the majority of the spores may travel only very short distances, there is indication that a notable number of them cover much longer distances. Harmomegathy is a terminology coined by Wodehouse (1935) describing the natural folding of pollen to accommodate controlled and reversible water loss. Here, we discuss evidence that this concept may also apply to airborne fungal spores that face similar challenges and have to survive periods of drought and low temperatures while retaining viability to germinate after deposition upon a suitable moist substrate. In fact, (air)dried conidia, appear collapsed, survive for much longer times compared to spores in liquid, that deteriorate in time. This indicates that for some types of fungal spores, true dormancy is reached in the desiccated state. For these airborne spores this might be regarded as a pre-adaptation that supports long-distance transport of viable cells through air. We state that spores are naturally folded during transport in air if the humidity is low enough. We hypothesize that this is a pre-adaptation supporting release, dispersal and survival of airborne spores. Moreover, the smaller size of dry naturally-folded spores may also be relevant, e.g. for the opportunistic pathogenic fungus Aspergillus fumigatus reduced spore size supports deposition within the alveoli in the lung.  相似文献   

12.
Airborne pollen and spores, as well as airflow directions, were continuously monitored during a cruise across the East Mediterranean from Tel Aviv, Israel, to Istanbul, Turkey. In spite of the fact that a high-altitude dust cloud moved, at that, time from North Africa, across the East Mediterranean, only a few dust particles were monitored on the boat. The numbers of counted airborne pollen along the cruise path were rather small. This is, in part, because the trip was taken after the main flowering season in the East Mediterranean region. Nevertheless, airborne pollen grains were still found, either as a result of remnant pollen releases by late-flowering plants or because of secondary lift-up of previously settled pollen. The presented pollen counts are average pollen counts /m3 air /6 h. The counts ranged between ∼5 pollen/m3 of air in mid-sea (July 16th–July 17th) or ∼6 pollen/m3 of air on the Israeli coast (July 16–July 17th), and 30 pollen/m3 of air near the coasts of Turkey and of the Greek Islands (July 18th–July 19th) and some 18 taxa of pollen were identified, most of them at the family level. Some 30 taxa of different spores were recorded. The numbers of airborne spores were relatively low in mid-sea (300–750 spores/m3 air), but were high near the coasts of Turkey (1,200–2,400 spores/m3 air) and of Israel (340–1,695 spores/m3 air).  相似文献   

13.
The microbiology of moist barley storage in unsealed silos   总被引:4,自引:0,他引:4  
The microflora of moist barley grain and whole-crop barley silage stored in top-unloading, unsealed concrete-staved silos on six farms in England depended on the initial water content of the grain (23–58%), method of covering the grain, and the rate at which it was unloaded. Fungi and actinomycetes were fewest when the initial water content was more than 30%, and the grain was covered first with a layer of wilted grass, and then a plastic sheet. During unloading, the uppermost layer of grain remained in good condition provided 7.5 cm was removed daily. With an inefficient top-seal, the top grain heated and became mouldy, as it also did when unloading was slow. As the rate of unloading slowed, heating increased, and a characteristic succession of fungi and actinomycetes developed. With unloading at 7.5 cm/day or more, only yeasts, chiefly Endomycopsis chodatii Wickerham and Hansenula anomala (Hansen) H. & P. Sydow, were abundant, but at slightly slower rates of unloading Penicillium spp. also became common. Both these groups became less common as unloading was slowed further and were replaced, first by Absidia spp. and Mucor pusillus Lindt, then Aspergillus fumigatus Fres., Humicola lanuginosa (Griffon & Maublanc) Bunce, Micropolyspora faeni Cross, Maciver & Lacey, and Thermoactinomyces vulgaris Tsiklinsky as the heating increased. The number of spores (including bacterial cells) that could be removed from samples by blowing air ranged from 0.4–428 times 106/g dry weight of grain. Whole-crop barley silage contained 2.9–132 times 106spores/g dry weight. Similar species were isolated from whole-crop silage as from grain. Little moulding occurred deeper than 30 cm below surface of the grain. Concentrations of airborne spores were estimated periodically during two seasons. There were always more airborne spores than is usual in outdoor air. Without disturbance the silos contained 106-107 spores/m3 air, but when mouldy grain was unloaded concentrations increased to a maximum of 2860times106 spores/m3 air; more than half of these were bacteria and actinomycetes and a quarter Aspergillus flavus Link. Potentially pathogenic fungi and actinomycetes were frequent, particularly when they also occurred in the grain or capping materials for spontaneous heating. Some probably survived in dust deposits and were resuspended during unloading. Airborne spores were frequent around the silos when grain was unloaded and rolled. Workers should wear efficient dust respirators at these times and while inside silos.  相似文献   

14.
《Fungal biology》2020,124(3-4):219-227
Fungal fragments are abundant immunoreactive bioaerosols that may outnumber the concentrations of intact spores in the air. To investigate the importance of Alternaria fragments as sources of allergens compared to Alternaria spores, we determined the levels of Alternaria spores and Alt a 1 (the major allergen in Alternaria alternata spores) collected on filters within three fractions of particulate matter (PM) of different aerodynamic diameter: (1) PM>10, (diameter>10 μm); (2) PM2.5-10 (2.5–10μm); (3) PM2.5 (0.12–2.5 μm). The airborne particles were collected using a three stage high-volume ChemVol cascade impactor during the Alternaria sporulation season in Poznań, Poland (30 d between 6 July and 22 September 2016). The quantification of Alt a 1 was performed using the enzyme-linked immunosorbent assay. High concentrations of Alt a 1 were recorded during warm and dry d characterized by high sunshine duration, lack of clouds and high dew point values. Atmospheric concentrations of Alternaria spores correlated significantly (r = 0.930, p < 0.001) with Alt a 1 levels. The highest Alt a 1 was recorded in PM2.5-10 (66.8 % of total Alt a 1), while the lowest in PM2.5 (<1.0 %). Significantly more Alt a 1 per spore (>30 %) was observed in PM2.5-10 than in PM>10. This Alt a 1 excess may be derived from sources other than spores, e.g. hyphal fragments. Overall, in outdoor air the major source of Alt a 1 are intact Alternaria spores, but the impact of other fungal fragments (hyphal parts, broken spores, conidiophores) cannot be neglected, as they may increase the total atmospheric Alt a 1 concentration.  相似文献   

15.
Integrated air sampling and PCR-based methods for detecting airborne fungal spores, using Penicillium roqueforti as a model fungus, are described. P. roqueforti spores were collected directly into Eppendorf tubes using a miniature cyclone-type air sampler. They were then suspended in 0.1% Nonidet P-40, and counted using microscopy. Serial dilutions of the spores were made. Three methods were used to produce DNA for PCR tests: adding untreated spores to PCRs, disrupting spores (fracturing of spore walls to release the contents) using Ballotini beads, and disrupting spores followed by DNA purification. Three P. roqueforti-specific assays were tested: single-step PCR, nested PCR, and PCR followed by Southern blotting and probing. Disrupting the spores was found to be essential for achieving maximum sensitivity of the assay. Adding untreated spores to the PCR did allow the detection of P. roqueforti, but this was never achieved when fewer than 1,000 spores were added to the PCR. By disrupting the spores, with or without subsequent DNA purification, it was possible to detect DNA from a single spore. When known quantities of P. roqueforti spores were added to air samples consisting of high concentrations of unidentified fungal spores, pollen, and dust, detection sensitivity was reduced. P. roqueforti DNA could not be detected using untreated or disrupted spore suspensions added to the PCRs. However, using purified DNA, it was possible to detect 10 P. roqueforti spores in a background of 4,500 other spores. For all DNA extraction methods, nested PCR was more sensitive than single-step PCR or PCR followed by Southern blotting.  相似文献   

16.
A technique for conducting bioassays of Entomophthora sphaerosperma on sixth-instar larvae of the spruce budworm, Choristoneura fumiferana, was developed. Four assays were conducted by showering conidia on 10 larvae for each of 10 to 20 doses per assay. Dose was estimated by averaging estimates of the concentration of spores falling on water agar dishes before and after insect exposure. Maximum-likelihood probit analysis indicated significant regressions between log dose and probit mortality for all four assays. LC50 values ranged from 11.21 to 18.77 spores/mm2 with a weighted mean of 16.13 spores/mm2. Slope estimates ranged from 0.92 to 1.87 with a weighted mean of 1.13. These low slope values may have been indicative of a highly variable test insect population, but also suggested a nontoxic infection process by the pathogen.  相似文献   

17.
The morphology of Nosema whitei is described from 4 host beetles, Tribolium castaneum, T. confusum, T. anaphe, and Oryzaephilus surinamensis. The effect of host species on the sizes of the various stages was small. The predominant schizogonic stages were mononuclear (26%) and binuclear (73%) although schizonts with up to 5 nuclei were seen. In stained preparations the schizonts were approximately 2.7–7.0 μ in diameter. The sporonts, which do not divide, were elongate (5.6 × 3.1 μ), and had 1 or 2 nuclei. Both the sporoblast (4.2 × 2.2 μ) and the spores (3.5 × 2.0 μ) were binucleate. Fresh spores averaged 4.6 × 2.9 μ. The polar filament length ranged from 75 to 135 μ (mean = 112 μ). The only tissue found infected was the fat body. Host species, dose, and temperature were all found to affect the generation time, which ranged from 8 to 17 days.  相似文献   

18.
Mass production of sporangiospores (spores) of Rhizopus oryzae NBRC 5384 (identical to NRRL 395 and ATCC 9363) on potato‐dextrose‐agar medium was studied aiming at starting its L (+)‐lactic acid fermentation directly from spore inoculation. Various parameters including harvest time, sowed spore density, size of agar plate, height of air space, and incubation mode of plate (agar‐on‐bottom or agar‐on‐top) were studied. Ordinarily used shallow Petri dishes were found out to be unsuitable for the full growth of R. oryzae sporangiophores. In a very wide range of the sowed spore density, the smaller it was, the greater the number of the harvested spores was. It was also interesting to find out that R. oryzae grown downward vertically with a deep air space in an agar‐on‐top mode gave larger amount of spores than in an agar‐on‐bottom mode at 30°C for 7‐day cultivation. Scale‐up of the agar plate culture from 26.4 to 292 cm2 was studied, resulting in the proportional relationship between the number of the harvested spores/plate and the plate area in the deep Petri dishes. The number of plates of 50 cm in diameter needed for 100 m3 industrial submerged fermentation started directly from 2 × 105 spores/mL inoculum size was estimated as about 6, from which it was inferred that such a fermentation would be feasible. Designing a 50 cm plate and a method of spreading and collecting the spores were suggested. Bioprocess technological significance of the “full‐scale industrial submerged fermentation started directly from spore inoculation omitting pre‐culture” has been discussed. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:876–881, 2013  相似文献   

19.
Aphanothece halophytica is a halotolerant alkaliphilic cyanobacterium which can grow in media of up to 3.0 M NaCl and pH 11. This cyanobacterium can synthesize betaine from glycine by three-step methylation using S-adenosylmethionine as a methyl donor. To unveil the mechanism of betaine uptake and efflux in this alkaliphile, we isolated and characterized a betaine transporter. A gene encoding a protein (BetTA. halophytica) that belongs to the betaine-choline-carnitine transporter (BCCT) family was isolated. Although the predicted isoelectric pH of a typical BCCT family transporter, OpuD of Bacillus subtilis, is basic, 9.54, that of BetTA. halophytica is acidic, 4.58. BetTA. halophytica specifically catalyzed the transport of betaine. Choline, γ-aminobutyric acid, betaine aldehyde, sarcosine, dimethylglycine, and amino acids such as proline did not compete for the uptake of betaine by BetTA. halophytica. Sodium markedly enhanced betaine uptake rates, whereas potassium and other cations showed no effect, suggesting that BetTA. halophytica is a Na+-betaine symporter. Betaine uptake activities of BetTA. halophytica were high at alkaline pH values, with the optimum pH around 9.0. Freshwater Synechococcus cells overexpressing BetTA. halophytica showed NaCl-activated betaine uptake activities with enhanced salt tolerance, allowing growth in seawater supplemented with betaine. Kinetic properties of betaine uptake in Synechococcus cells overexpressing BetTA. halophytica were similar to those in A. halophytica cells. These findings indicate that A. halophytica contains a Na+-betaine symporter that contributes to the salt stress tolerance at alkaline pH. BetTA. halophytica is the first identified transporter for compatible solutes in cyanobacteria.  相似文献   

20.
Emerging fungi resistant to triazoles are a concern because of the increased use of medical triazoles and exposure to agricultural triazoles. However, little is known about the levels of triazole susceptibility in outdoor airborne fungi making it difficult to assess the risks of inhalation exposure to airborne, antifungal-resistant fungi. This study examined triazole susceptibilities of the airborne thermotolerant fungi isolated from the ambient air of the Seoul Capital Area of South Korea. We used impactor air sampling with triazole-containing nutrient agar plates as the collection substrates to screen for airborne fungal isolates based on their triazole susceptibilities. This study estimated that 0.17% of all the culturable fungi belong to the pathogenic thermotolerant taxa, among which each isolate of Aspergillus niger and Aspergillus tubingensis showed a minimum inhibitory concentration (MIC) of 2 μg/mL or greater for itraconazole. Their concentration in air was 0.4 CFU/m3. Seven human pathogenic Paecilomyces variotii isolates had MICs of 32 μg/mL or greater and lower than 2 μg/mL for the agricultural fungicide tebuconazole and the medical triazole itraconazole, respectively. Though the concentration was low, our results confirm the presence of airborne fungi with high MICs for itraconazole in ambient air. Inhalation is an important exposure route because people inhale more than 10 m3 of air each day. Vigilance is preferred over monitoring for the emergence of triazole-resistant fungal pathogens in ambient outdoor air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号