首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
ftsW is an essential cell-division gene in Escherichia coli   总被引:1,自引:0,他引:1  
In the absence of exogenous promoters, plasmid-mediated complementation of the temperature-sensitive ftsW201 allele requires the presence of the full coding sequence of ftsW plus upstream DNA encompassing the C-terminus of mraY and the full coding sequence of murD . We used molecular and genetic techniques to introduce an insertional inactivation into the chromosomal copy of ftsW , in the presence of the plasmid-borne wild-type ftsW gene under the control of PBAD. In the absence of arabinose, the ftsW -null strain is not viable, and a shift from arabinose- to glucose-containing liquid medium resulted in a block in division, followed by cell lysis. Immunofluorescence microscopy revealed that in ftsW -null filaments, the FtsZ ring is absent in 50–60% of filaments, whilst between one and three Z-rings per filament can be detected in the remainder of the population, with the majority of these containing only one Z-ring per filament. We also demonstrated that the expression of only ftsWS (the smaller of two ftsW open reading frames) from PBAD is sufficient for complementation of the ftsW -null allele. We conclude that FtsW is an essential cell-division protein in Escherichia coli , and that it plays a role in the stabilization of the FtsZ ring during cell division.  相似文献   

4.
5.
Summary Cells of Escherichia coli which produce high levels of the sfiA protein are UV-sensitive and filament extensively. It has been postulated that the sfiA protein is a division inhibitor which interacts with the ftsZ protein (formerly called sfiB or sulB) leading to cell division arrest. Under certain conditions, a similar division inhibition is observed with cells harboring a mutationally altered tsM allele, another division gene which was postulated to code for a division inhibitor or a controlling effector thereof (Drapeau et al.) (1984). In this communication, we report on the properties of ftsZ mutants isolated under conditions which brought no selective pressure. These mutants have either an increased sensitivity to UV irradiation or filament drastically following a nutritional shift-up, or both, or even cannot grow in a rich medium. They presumably possess a ftsZ protein which responds more readily to the inhibitory action of the wild type sfiA or the mutationally altered tsM1 protein since the phenotypic expressions associated with the mutations are not observed in the presence of the sfiA11 mutation or are amplified when the ftsZ mutant cells harbor the tsM1 allele. These results further support earlier suggestions that sfiA modulates ftsZ activity and establish tsM as an additional regulatory element thereof. In addition, it is shown that E. coli strain B is a naturally occurring ftsZ mutant.  相似文献   

6.
Q M Yi  J Lutkenhaus 《Gene》1985,36(3):241-247
  相似文献   

7.
We localized the methionine aminopeptidase (map) gene on the Escherichia coli chromosome next to the rpsB gene at min 4. Genetically modified strains with the chromosomal map gene under lac promoter control grew only in the presence of the lac operon inducer isopropyl-beta-thiogalactoside. Thus, methionine aminopeptidase is essential for cell growth.  相似文献   

8.
9.
10.
A new Escherichia coli cell division gene, ftsK.   总被引:5,自引:1,他引:4       下载免费PDF全文
A mutation in a newly discovered Escherichia coli cell division gene, ftsK, causes a temperature-sensitive late-stage block in division but does not affect chromosome replication or segregation. This defect is specifically suppressed by deletion of dacA, coding for the peptidoglycan DD-carboxypeptidase, PBP 5. FtsK is a large polypeptide (147 kDa) consisting of an N-terminal domain with several predicted membrane-spanning regions, a proline-glutamine-rich domain, and a C-terminal domain with a nucleotide-binding consensus sequence. FtsK has extensive sequence identity with a family of proteins from a wide variety of prokaryotes and plasmids. The plasmid proteins are required for intercellular DNA transfer, and one of the bacterial proteins (the SpoIIIE protein of Bacillus subtilis) has also been implicated in intracellular chromosomal DNA transfer.  相似文献   

11.
B Beall  M Lowe    J Lutkenhaus 《Journal of bacteriology》1988,170(10):4855-4864
The Bacillus subtilis homolog of the Escherichia coli ftsZ gene was isolated by screening a B. subtilis genomic library with anti-E. coli FtsZ antiserum. DNA sequence analysis of a 4-kilobase region revealed three open reading frames. One of these coded for a protein that was about 50% homologous to the E. coli FtsZ protein. The open reading frame just upstream of ftsZ coded for a protein that was 34% homologous to the E. coli FtsA protein. The open reading frames flanking these two B. subtilis genes showed no relationship to those found in E. coli. Expression of the B. subtilis ftsZ and ftsA genes in E. coli was lethal, since neither of these genes could be cloned on plasmid vectors unless promoter sequences were first removed. Cloning the B. subtilis ftsZ gene under the control of the lac promoter resulted in an IPTGs phenotype that could be suppressed by overproduction of E. coli FtsZ. These genes mapped at 135 degrees on the B. subtilis genetic map near previously identified cell division mutations.  相似文献   

12.
K Dai  Y Xu    J Lutkenhaus 《Journal of bacteriology》1996,178(5):1328-1334
Genetic and biochemical approaches were used to analyze a topological model for FtsN, a 36-kDa protein with a putative transmembrane segment near the N terminus, and to ascertain the requirements of the putative cytoplasmic and membrane-spanning domains for the function of this protein. Analysis of FtsN-PhoA fusions revealed that the putative transmembrane segment of FtsN could act as a translocation signal. Protease accessibility studies of FtsN in spheroblasts and inverted membrane vesicles confirmed that FtsN had a simple bitopic topology with a short cytoplasmic amino terminus, a single membrane-spanning domain, and a large periplasmic carboxy terminus. To ascertain the functional requirements of the N-terminal segments of FtsN, various constructs were made. Deletion of the N-terminal cytoplasmic and membrane-spanning domains led to intracellular localization of the carboxy domain, instability,and loss of function. Replacement of the N-terminal cytoplasmic and membrane-spanning domains with a membrane-spanning domain from MalG restored subcellular localization and function. These N-terminal domains of FtsN could also be replaced by the cleavable MalE signal sequence with restoration of subcellular localization and function. It is concluded that the N-terminal, cytoplasmic, and transmembrane domains of FtsN are not required for function of the carboxy domain other than to transport it to the periplasm. FtsQ and FtsI were also analyzed.  相似文献   

13.
The mraR gene, which has a coding frame of 363 bp and lies close to and upstream of the ftsI gene of Escherichia coli, is involved in both cell division and cell lysis. It is thought to function in regulating the two distinct steps of the cell cycle, as two different one-base mutations in this unique gene caused different phenotypical changes in the cell. Comparison of nucleotide sequences of the mutant type mraR DNAs with the wild type suggested that filamentation of the cell was caused by a mutation in the putative start codon, whereas lysis of the cell was caused by a mutation which led to a change of one internal glutamate residue to lysine.  相似文献   

14.
15.
Genes rcsC and rcsB form a two-component system in which rcsC encodes the sensor element and rcsB the regulator. In Escherichia coli, the system positively regulates the expression of the capsule operon, cps, and of the cell division gene ftsZ. We report the identification of the promoter and of the sequences required for rcsB-dependent stimulation of ftsZ expression. The promoter, ftsA1p, located in the ftsQ coding sequence, co-regulates ftsA and ftsZ. The sequences required for rcsB activity are immediately adjacent to this promoter.  相似文献   

16.
17.
SigmaE is an essential sigma factor in Escherichia coli.   总被引:6,自引:0,他引:6       下载免费PDF全文
SigmaE is an alternative sigma factor that controls the extracytoplasmic stress response in Escherichia coli. SigmaE is essential at high temperatures but was previously thought to be nonessential at temperatures below 37 degrees C. We present evidence that sigmaE is an essential sigma factor at all temperatures. Cells lacking sigmaE are able to grow at low temperatures because of the presence of a frequently arising, unlinked suppressor mutation.  相似文献   

18.
19.
The Escherichia coli cell division mutation ftsM1 is in serU.   总被引:8,自引:8,他引:0       下载免费PDF全文
The ftsM1 mutation is believed to be in a gene implicated in the regulation of cell division in Escherichia coli because it displayed the lon mutation phenotypes. In this study, we show that this mutation is located in serU, a gene which codes for tRNA(Ser)2, and has the phenotypes of the serU allele supH. Both ftsM1 and supH suppressed the leuB6 and ilvD145 missense mutations, and both conferred temperature and UV light irradiation sensitivity to the harboring cells. Cells which carried the ftsM1 mutation or the supH suppressor had very low colony-forming abilities on salt-free L agar, and this phenotype was almost completely abolished by the presence of plasmids bearing the ftsZ+ gene. Furthermore, sensitivity of the mutant cells to UV irradiation was also markedly diminished when they carried a ftsZ+-bearing plasmid. These results suggest that supH-containing cells have reduced FtsZ activities, in accordance with their displaying the phenotypes of the lon mutant cells. The possibility that ftsM1 (supH) is functionally involved in the biosynthesis of a specific protein which affects cell division is discussed.  相似文献   

20.
Treatments that damage DNA in Escherichia coli result in the inhibition of cell division. This inhibition is controlled by the lexA-recA regulatory circuit and can be specifically uncoupled by the mutations sulA (sfiA) and sulB (sfiB), which map at 21 and 2 min, respectively. Presently it is thought that sulA codes for an inducible inhibitor of cell division, the expression of which is controlled directly by the lexA repressor. In this report, it is shown that sulB is an allele of ftsZ, an essential cell division gene. A sulB mutation leads to an altered ftsZ gene product which is slightly thermosensitive and has an altered mobility on polyacrylamide gels. It is suggested that the altered ftsZ gene product is resistant to the sulA inhibitor, thus permitting cell division after induction of the SOS response. It is also shown that an increase in the gene dosage of ftsZ delays the onset of filamentation after SOS induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号