首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ClpXP is a two-component protease composed of ClpX, an ATP-dependent chaperone that recognizes and unfolds specific substrates, and ClpP, a serine protease. One ClpXP substrate in Escherichia coli is FtsZ, which is essential for cell division. FtsZ polymerizes and forms the FtsZ ring at midcell, where division occurs. To investigate the role of ClpXP in cell division, we examined the effects of clpX and clpP deletions in several strains that are defective for cell division. Together, our results suggested that ClpXP modulates cell division through degradation of FtsZ and possibly other cell division components that function downstream of FtsZ ring assembly. In the ftsZ84 strain, which is temperature sensitive for filamentation due to a mutation in ftsZ, we observed that deletion of clpX or clpP suppresses filamentation and reduces FtsZ84 degradation. These results are consistent with ClpXP playing a role in cell division by modulating the level of FtsZ through degradation. In another division-defective strain, ΔminC, the additional deletion of clpX or clpP delays cell division and exacerbates filamentation. Our results demonstrate that ClpXP modulates division in cells lacking MinC by a mechanism that requires ATP-dependent degradation. However, antibiotic chase experiments in vivo indicate that FtsZ degradation is slower in the ΔminC strain than in the wild type, suggesting there may be another cell division component degraded by ClpXP. Taken together these studies suggest that ClpXP may degrade multiple cell division proteins, thereby modulating the precise balance of the components required for division.  相似文献   

2.
Overproduction of FtsZ induces minicell formation in E. coli   总被引:68,自引:0,他引:68  
J E Ward  J Lutkenhaus 《Cell》1985,42(3):941-949
The ftsZ gene in E. coli K-12 is an essential cell division gene. We report that a two to sevenfold increase in the level of the FtsZ protein resulted in induction of the minicell phenotype. An increase in the level of FtsZ beyond this range resulted in an inhibition of all cell division. Unlike the classical minicell mutant, the formation of minicells induced by increased levels of FtsZ did not occur at the expense of normal divisions, indicating that increasing FtsZ resulted in additional division events per cell cycle. In addition, increased FtsZ caused cell division to be initiated earlier in the cell cycle. These results are consistent with the level or activity of FtsZ controlling the frequency of cell division in E. coli.  相似文献   

3.
Borrelia burgdorferi ftsZ plays a role in cell division   总被引:1,自引:0,他引:1       下载免费PDF全文
ftsZ is essential for cell division in many microorganisms. In Escherichia coli and Bacillus subtilis, FtsZ plays a role in ring formation at the leading edge of the cell division septum. An ftsZ homologue is present in the Borrelia burgdorferi genome (ftsZ(Bbu)). Its gene product (FtsZ(Bbu)) is strongly homologous to other bacterial FtsZ proteins, but its function has not been established. Because loss-of-function mutants of ftsZ(Bbu) might be lethal, the tetR/tetO system was adapted for regulated control of this gene in B. burgdorferi. Sixty-two nucleotides of an ftsZ(Bbu) antisense DNA sequence under the control of a tetracycline-responsive modified hybrid borrelial promoter were cloned into pKFSS1. This construct was electroporated into a B. burgdorferi host strain carrying a chromosomally located tetR under the control of the B. burgdorferi flaB promoter. After induction by anhydrotetracycline, expression of antisense ftsZ RNA resulted in generation of filamentous B. burgdorferi that were unable to divide and grew more slowly than uninduced cells. To determine whether FtsZ(Bbu) could interfere with the function of E. coli FtsZ, ftsZ(Bbu) was amplified from chromosomal DNA and placed under the control of the tetracycline-regulated hybrid promoter. After introduction of the construct into E. coli and induction with anhydrotetracycline, overexpression of ftsZ(Bbu) generated a filamentous phenotype. This suggested interference of ftsZ(Bbu) with E. coli FtsZ function and confirmed the role of ftsZ(Bbu) in cell division. This is the first report of the generation of a B. burgdorferi conditional lethal mutant equivalent by tetracycline-controlled expression of antisense RNA.  相似文献   

4.
The ftsZ gene encodes an essential cell division protein that specifically localizes to the septum of dividing cells. In this study we characterized the effects of the ftsZ2(Rsa) mutation on cell physiology. We found that this mutation caused an altered cell morphology that included minicell formation and an increased average cell length. In addition, this mutation caused a temperature-dependent effect on cell lysis. During this investigation we fortuitously isolated a novel temperature-sensitive ftsZ mutation that consisted of a 6-codon insertion near the 5' end of the gene. This mutation, designated ftsZ26(Ts), caused an altered polar morphology at the permissive temperature and blocked cell division at the nonpermissive temperature. The altered polar morphology resulted from cell division and correlated with an altered geometry of the FtsZ ring. An intragenic cold-sensitive suppressor of ftsZ26(Ts) that caused cell lysis at the nonpermissive temperature was isolated. These results support the hypothesis that the FtsZ ring determines the division site and interacts with the septal biosynthetic machinery.  相似文献   

5.
The Fts proteins play an important role in the control of cell division in Escherichia coli. These proteins, which possibly form a functional complex, are encoded by genes that form an operon. In this study, we examined the properties of the temperature-sensitive mutation ftsZ84 harbored by low- or high-copy-number plasmids. Cells of strain AB1157, which had the ftsZ84 mutation, did not form colonies on salt-free L agar at 30 degrees C. When a low-copy-number plasmid containing the ftsZ84 mutation was present in these mutant cells, colony formation was restored on this medium at 30 degrees C, suggesting that FtsZ84 is probably less active than the wild-type protein and is therefore limiting in its capacity to trigger cell divisions. On the other hand, when the ftsZ84 mutation was harbored by the high-copy-number plasmid pBR325, colony formation was prevented on salt-free L agar plates whether the recipients were ftsZ84 mutant or parental cells, suggesting that, at high levels, FtsZ84 acts as a division inhibitor. The fact that colony formation was also prevented at 42 degrees C indicates that the FtsZ84 protein is not inactivated at the nonpermissive temperature. The possibility that FtsZ84 is a more efficient division inhibitor than the wild-type FtsZ is discussed. Evidence is also presented showing that a gene adjacent to mutT codes for a product that, under certain conditions, suppresses the ftsZ84 mutation.  相似文献   

6.
We isolated five new temperature-sensitive alleles of the essential cell division gene ftsZ in Escherichia coli, using P1-mediated, localized mutagenesis. The five resulting single amino acid changes (Gly109-->Ser109 for ftsZ6460, Ala129-->Thr129 for ftsZ972, Val157-->Met157 for ftsZ2066, Pro203-->Leu203 for ftsZ9124, and Ala239-->Val239 for ftsZ2863) are distributed throughout the FtsZ core region, and all confer a lethal cell division block at the nonpermissive temperature of 42 degrees C. In each case the division block is associated with loss of Z-ring formation such that fewer than 2% of cells show Z rings at 42 degrees C. The ftsZ9124 and ftsZ6460 mutations are of particular interest since both result in abnormal Z-ring formation at 30 degrees C and therefore cause significant defects in FtsZ polymerization, even at the permissive temperature. Neither purified FtsZ9124 nor purified FtsZ6460 exhibited polymerization when it was assayed by light scattering or electron microscopy, even in the presence of calcium or DEAE-dextran. Hence, both mutations also cause defects in FtsZ polymerization in vitro. Interestingly, FtsZ9124 has detectable GTPase activity, although the activity is significantly reduced compared to that of the wild-type FtsZ protein. We demonstrate here that unlike expression of ftsZ84, multicopy expression of the ftsZ6460, ftsZ972, and ftsZ9124 alleles does not complement the respective lethalities at the nonpermissive temperature. In addition, all five new mutant FtsZ proteins are stable at 42 degrees C. Therefore, the novel isolates carrying single ftsZ(Ts) point mutations, which are the only such strains obtained since isolation of the classical ftsZ84 mutation, offer significant opportunities for further genetic characterization of FtsZ and its role in cell division.  相似文献   

7.
Interactions among cell division genes in Escherichia coli were investigated by examining the effect on cell division of increasing the expression of the ftsZ, ftsA, or ftsQ genes. We determined that cell division was quite sensitive to the levels of FtsZ and FtsA but much less so to FtsQ. Inhibition of cell division due to an increase in FtsZ could be suppressed by an increase in FtsA. Inhibition of cell division due to increased FtsA could be suppressed by an increase in FtsZ. In addition, although wild-type strains were relatively insensitive to overexpression of ftsQ, we observed that cell division was sensitized to ftsQ overexpression in ftsI, ftsA, and ftsZ mutants. Among these, the ftsI mutant was the most sensitive. These results suggest that these gene products may interact and that the proper ratio of FtsZ to FtsA is critical for cell division to occur.  相似文献   

8.
Mutations in the essential cell division gene ftsZ confer resistance to SulA, a cell division inhibitor that is induced as part of the SOS response. In this study we have purified and characterized the gene products of six of these mutant ftsZ alleles, ftsZ1, ftsZ2, ftsZ3, ftsZ9, ftsZ100, and ftsZ114, and compared their properties to those of the wild-type gene product. The binding of GTP was differentially affected by these mutations. FtsZ3 exhibited no detectable GTP binding, and FtsZ9 and FtsZ100 exhibited markedly reduced GTP binding. In contrast, FtsZ1 and FtsZ2 bound GTP almost as well as the wild type, and FtsZ114 displayed increased GTP binding. Furthermore, we observed that all mutant FtsZ proteins exhibited markedly reduced intrinsic GTPase activity. It is likely that mutations in ftsZ that confer sulA resistance alter the conformation of the protein such that it assumes the active form.  相似文献   

9.
10.
The product of the ftsW gene has been identified as a polypeptide that, like the related RodA protein, shows anomalous mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. FtsW is produced at low levels that can be increased by altering the translation initiation region of the mRNA. Overproduction of FtsW strongly inhibits cell growth. A new mutant allele, ftsW201, causes a temperature-dependent block in the initiation stage of cell division which is similar to the division block in ftsZ mutants. The block in initiation of division in the ftsW201 allele is shown to be independent of FtsZ or the FtsZ inhibitor, SulA. In addition, the ftsW201 mutant is hypersensitive to overproduction of the division initiation protein FtsZ at the permissive temperature. Our results suggest a role for FtsW in an early stage of division which may involve an interaction with FtsZ.  相似文献   

11.
Interaction between the min locus and ftsZ.   总被引:25,自引:16,他引:9       下载免费PDF全文
In Escherichia coli, distinct but similar minicell phenotypes resulting from mutation at the minB locus and increased expression of ftsZ suggested a possible interaction between these genes. A four- to fivefold increase in FtsZ resulting from increased gene dosage was found to suppress the lethality of minCD expressed from the lac promoter. Since increased MinCD did not affect the level of FtsZ, this suggested that MinCD may antagonize FtsZ to inhibit its cell division activity. This possibility was supported by the finding that alleles of ftsZ isolated as resistant to the cell division inhibitor SulA were also resistant to MinCD. Among the ftsZ(Rsa) alleles, two appeared to be completely resistant to MinCD as demonstrated by the lack of an effect of MinCD on cell length and a minicell phenotype observed in the absence of a significant increase in FtsZ. It was shown that SulA inhibits cell division independently of MinCD.  相似文献   

12.
In Escherichia coli, the ftsZ gene is thought to be an essential cell division gene. Several dominant mutations that make lon mutant cells refractory to the cell division inhibitor SulA, sulB9, sulB25, and sfiB114, have been mapped to the ftsZ gene. DNA sequence analysis of these mutations and the sfiB103 mutation confirmed that all of these mutations mapped within the ftsZ gene and revealed that the two sulB mutations were identical and by selection for resistance to higher levels of SulA, contained a second mutation within the ftsZ gene. We therefore propose that these mutations be redesignated ftsZ(Rsa) for resistance to SulA. A procedure involving mutagenesis of ftsZ cloned on low-copy-number vectors was used to isolate three additional ftsZ(Rsa) mutations. DNA sequence analysis of these mutations revealed that they were distinct from the previously isolated mutations. One of these mutations, ftsZ3(Rsa), led to an altered FtsZ protein that could no longer support cell growth but still conferred the Rsa phenotype in the presence of ftsZ+. In addition to being resistant to SulA, all ftsZ(Rsa) mutations also conferred resistance to a LacZ-FtsZ hybrid protein (ZZ). One possibility is that FtsZ functions as a multimer and that FtsZ(Rsa) mutant proteins have an increased ability for multimerization, making them resistant to SulA and ZZ.  相似文献   

13.
14.
We show that the 53-nucleotide RNA molecule encoded by gene dicF blocks cell division in Escherichia coli by inhibiting the translation of ftsZ mRNA. Such a role for dicF had been predicted on the basis of the complementarity of DicF RNA with the ribosome-binding region of the ftsZ mRNA. An analysis of ftsZ expression at its chromosomal locus, and of an ftsZ-lacZ translational fusion controlled by promoters ftsZ1p and ftsZ2p only, indicates that ftsZ is not autoregulated. Partial inhibition of FtsZ synthesis leads to increased cell size. However, the number of FtsZ molecules per cell can be reduced threefold without affecting the division rate significantly. Our results suggest that septation is not triggered by a fixed number of newly synthesized FtsZ molecules per cell.  相似文献   

15.
A dominant sfiB allele has been cloned which renders partial diploids of an sfiB + Escherichia coli host resistant to division inhibition mediated by the SOS response. Transpositional mutagenesis was used to map the position of this sfiB114 allele, carried by a plasmid pLG552 , to an approximately 0.6-kb region overlapping the coding regions for ftsA and ftsZ , two genes essential for normal division. Most Tn 1000 insertions which inactivated sfiB114 also inactivated the ftsA function and caused the disappearance of both a 47-K polypeptide and reduced levels of a 42-K polypeptide in maxi-cells carrying pLG552 . An additional insertion inactivating sfiB114 was mapped to the right of ftsA and resulted in loss of the 42-K but not the 47-K polypeptide in maxi-cells. Moreover, a 2.1-kb BamHI-EcoRI DNA fragment was subcloned which carried ftsA and coded for a 47-K polypeptide but did not carry sfiB114 and did not complement ftsZ . We conclude that sfiB114 is located within ftsZ coding for a 42-K polypeptide. Nevertheless, insertions into ftsZ coding the 47-K polypeptide suppress the sfiB114 allele by substantially reducing the synthesis of the FtsZ ( SfiB114 ) polypeptide. The level of residual FtsZ synthesis was minimal when Tn 1000 was inserted closest to the distal end of ftsA , indicating the presence of a regulatory region essential for maximal expression of ftsZ .  相似文献   

16.
Aminoacyl-tRNA synthetase mutants of Escherichia coli are resistant to amdinocillin (mecillinam), a beta-lactam antibiotic which specifically binds penicillin-binding protein 2 (PBP2) and prevents cell wall elongation with concomitant cell death. The leuS(Ts) strain, in which leucyl-tRNA synthetase is temperature sensitive, was resistant to amdinocillin at 37 degrees C because of an increased guanosine 5'-diphosphate 3'-diphosphate (ppGpp) pool resulting from partial induction of the stringent response, but it was sensitive to amdinocillin at 25 degrees C. We constructed a leuS(Ts) delta (rodA-pbpA)::Kmr strain, in which the PBP2 structural gene is deleted. This strain grew as spherical cells at 37 degrees C but was not viable at 25 degrees C. After a shift from 37 to 25 degrees C, the ppGpp pool decreased and cell division was inhibited; the cells slowly carried out a single division, increased considerably in volume, and gradually lost viability. The cell division inhibition was reversible when the ppGpp pool increased at high temperature, but reversion required de novo protein synthesis, possibly of septation proteins. The multicopy plasmid pZAQ, overproducing the septation proteins FtsZ, FtsA, and FtsQ, conferred amdinocillin resistance on a wild-type strain and suppressed the cell division inhibition in the leuS(Ts) delta (rodA-pbpA)::Kmr strain at 25 degrees C. The plasmid pAQ, in which the ftsZ gene is inactivated, did not confer amdinocillin resistance. These results lead us to hypothesize that the nucleotide ppGpp activates ftsZ expression and thus couples cell division to protein synthesis.  相似文献   

17.
18.
The ftsZ gene is required for cell division in Escherichia coli and Bacillus subtilis. In these organisms, FtsZ is located in a ring at the leading edge of the septum. This ring is thought to be responsible for invagination of the septum, either causing invagination of the cytoplasmic membrane or activating septum-specific peptidoglycan biosynthesis. In this paper, we report that the cell division gene ftsZ is present in two mycoplasma species, Mycoplasma pulmonis and Acholeplasma laidlawii, which are eubacterial organisms lacking a cell wall. Sequencing of the ftsZ homolog from M. pulmonis revealed that it was highly homologous to other known FtsZ proteins. The M. pulmonis ftsZ gene was overexpressed, and the purified M. pulmonis FtsZ bound GTP. Using antisera raised against this purified protein, we could demonstrate that it was expressed in M. pulmonis. Expression of the M. pulmonis ftsZ gene in E. coli inhibited cell division, leading to filamentation, which could be suppressed by increasing expression of the E. coli ftsZ gene. The implications of these results for the role of ftsZ in cell division are discussed.  相似文献   

19.
Involvement of FtsZ in coupling of nucleoid separation with septation   总被引:9,自引:0,他引:9  
The cell-cycle parameters of an Escherichia coli strain expressing essential division gene ftsZ at one-fifth of its normal level, because of antisense regulation by DicF RNA, have been analysed. Inhibition of FtsZ expression affects neither the generation time nor the replication initiation mass, the C period, or the constriction period, but it does dramatically retard the initiation of constriction relative to replication termination. Separation of the nucleoids is equally postponed, indicating that division is not coupled to termination of replication, but to partitioning. The severe inhibition of nucleoid separation by DicF RNA, and its suppression by overproduction of FtsZ, suggest a role for FtsZ in the control of separation, and consequently in the coupling of separation and division. We suggest that the normal pattern of nucleoid separation previously found in cells deficient in ftsZ function was a consequence of the loss of a negative effect exerted by FtsZ on separation. In agreement with this view, we find that nucleoid separation is temporarily inhibited after arrest of FtsZ synthesis, but is later resumed as FtsZ is further diluted into the elongating filaments.  相似文献   

20.
Bacterial cell division relies on the formation and contraction of the Z ring, coordinated and regulated by a dynamic protein complex called the divisome. The cell division factor ZapA interacts directly with FtsZ and thereby increases FtsZ protofilament association and Z-ring stability. Here, we investigated ZapB interaction with ZapA and its effect on Z-ring formation and FtsZ protofilament bundling. The combination of the ftsZ84 allele that encodes an FtsZ variant that polymerizes inefficiently with a zapB null mutant resulted in a synthetic defective phenotype. Overproduction of ZapA led to the formation of aberrant FtsZ helical structures and delocalization of ZapB. The N-terminal end of ZapB was essential for ZapB-ZapA interaction, and amino acid changes close to the N terminus of ZapB exhibited reduced interaction with ZapA. Sedimentation assays showed that ZapB interacts strongly with ZapA and reduces ZapA's interaction with FtsZ in vitro. The morphology of the structures formed by ZapA and ZapB together was similar to the cables formed by ZapB in the presence of CaCl(2), a known ZapB bundling agent. The in vivo and in vitro data support a model in which ZapA interacts strongly with ZapB and the ZapA-ZapB interaction is favored over ZapA-FtsZ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号