首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regarding cloned animals, interesting questions have been raised as to whether cloning restores cellular senescence undergone by their donor cells and how long cloned animals will be able to live. Focusing our attention on differences in telomere lengths depending on the tissue, we had produced 14 cloned cattle by using nuclei of donor cells derived from muscle, oviduct, mammary, and ear skin. Here, we show remarkable variation in telomere lengths among them using Southern blot analysis with telomere-specific probe. Telomere lengths in cloned cattle derived from muscle cells of an old bull were longer than those of a donor animal but were within the variation in normal calves. On the other hand, those derived from oviductal and mammary epithelial cells of an equally old cow were surprisingly shorter than any found in control cattle. The telomere lengths of cloned cattle derived from fibroblasts and oviductal epithelial cells of younger cattle showed the former and the latter results, respectively. In both cases, however, less telomere erosion or telomere extension from nuclear transfer to birth in most cloned cattle was observed in comparison with telomere erosion from fertilization to birth in control cattle. Embryonic cell-cloned cattle and their offspring calves were also shown to have telomeres longer than those in age-matched controls. These observations indicate that cloning does not necessarily restore the telomere clock but, rather, that nuclear transfer itself may commonly trigger an elongation of telomeres, probably more or less according to donor cell type. Remarkable variations among cloned cattle are suggested to be caused by variation in telomere length among donor cells and more or less elongation of telomere lengths induced by cloning.  相似文献   

2.
端粒是染色体末端结构, 在细胞分裂时随着DNA复制而缩短, 体细胞核移植能不同程度地延长端粒长度, 但有些克隆动物端粒的长度在体细胞核移植过程中不能有效恢复, 因而这些克隆动物就会表现出早衰现象。文章发现克隆东北民猪以及eGFP、Mx和PGC1α转基因克隆猪的端粒长度与核供体成体成纤维细胞相比显著缩短(P<0.05), 表明体细胞核移植的重编程过程没能延长细胞的“寿命”。曲古抑菌素A(Trichostatin A, TSA)是一种去乙酰化酶抑制剂, 有研究表明其能提高某些物种的体细胞核重编程效率。为了使端粒长度有效恢复, 文章利用40 nmol/L TSA处理1细胞期猪克隆胚胎24 h, 结果发现, 与对照组相比, TSA处理能显著地提高克隆胚胎体外发育的囊胚率(16.35% vs. 2 7.09%, 21.60% vs. 34.90%, P<0.05), 而且囊胚期端粒长度也得到显著延长(P<0.05)。克隆胚胎移植受体后得到了TSA处理组与非处理组的克隆猪, 虽然TSA处理并没有提高克隆效率(1.3% vs. 1.7%, TSA vs. control), 但端粒长度与对照组和供体细胞相比均显著延长(P<0.05)。猪体细胞核移植不能有效恢复端粒长度, 但是TSA处理能有效延长克隆猪端粒长度。  相似文献   

3.
Inefficiency in the production of cloned animals is most likely due to epigenetic reprogramming errors after somatic cell nuclear transfer (SCNT). In order to investigate whether nuclear reprogramming restores cellular age of donor cells after SCNT, we measured telomere length and telomerase activity in cloned pigs and cattle. In normal pigs and cattle, the mean telomere length was decreased with biological aging. In cloned or transgenic cloned piglets, the mean telomere length was elongated compared to nuclear donor fetal fibroblasts and age-matched normal piglets. In cloned cattle, no increases in mean telomere length were observed compared to nuclear donor adult fibroblasts. In terms of telomerase activity, significant activity was observed in nuclear donor cells and normal tissues from adult or new-born pigs and cattle, with relatively higher activity in the porcine tissues compared to the bovine tissues. Cloned calves and piglets showed the same level of telomerase activity as their respective donor cells. In addition, no difference in telomerase activity was observed between normal and transgenic cloned piglets. However, increased telomerase activity was observed in porcine SCNT blastocysts compared to nuclear donor cells and in vitro fertilization (IVF)-derived blastocysts, suggesting that the elongation of telomere lengths observed in cloned piglets could be due to the presence of higher telomerase activity in SCNT blastocysts. In conclusion, gathering from the comparative studies with cattle, we were able to demonstrate that telomere length in cloned piglets was rebuilt or elongated with the use of cultured donor fetal fibroblasts.  相似文献   

4.
端粒是染色体上的一种重要结构,对维持染色体的稳定性起重要作用。核移植后,端粒长度和端粒酶活性的变化是重要的核重编程事件。不同种类的动物和供体细胞核移植后,在端粒长度的变化上存在一些差异,反映了重编程程度的不同。核移植后,在克隆囊胚中存在高水平的端粒酶活性,克隆动物的端粒长度延长,可能是由于克隆过程中端粒酶基因的重编程的缘故。  相似文献   

5.
Interesting questions have been raised regarding cloned animals, including whether cloning restores cellular senescence undergone by donor cells, and how long cloned animals will be able to live. In this study, focusing our attention on the fact that telomere lengths of spermatozoa are longer than those of any somatic cells and that telomere length is maintained throughout aging in humans, we compared the telomere lengths of spermatozoa in normal and two somatic cell-cloned cattle. The telomere lengths of the spermatozoa in the normal cattle (22.42+/-0.32 kb) were maintained throughout aging as in humans. In the cloned cattle, telomere lengths of the spermatozoa (25.8 and 20.9 kb) were the same as or longer than those found in normal cattle. Considering that telomere lengths of the donor cells, which had been derived from the muscle tissue of an old bull, were reported to be 20.1 kb, the results suggested that the telomere lengths of the germ cell line had extended from nucleus transfer to spermatogenesis. Moreover, we produced offspring (nine calves) from a somatic cell-cloned bull and measured the telomere lengths of their leukocytes. In all of the offspring, the telomere lengths of leukocytes were normal, too. These results indicate the possibility that somatic cloned bulls could be used as breeding sires.  相似文献   

6.
Twenty-four calves were cloned from six somatic cell types of female and male adult, newborn and fetal cows. The clones were derived from female cumulus (n = 3), oviduct (n = 2) and uterine (n = 2) cells, female and male skin cells (n = 10), and male ear (n = 5) and liver (n = 2) cells. On the basis of the number of cloned embryos transferred (n = 172) to surrogate cows, the overall rate of success was 14%, but based on the number of surrogate mothers that became pregnant (n = 50), the success rate was 48%. Cell nuclei from uterus, ear and liver cells, which have not been tested previously, developed into newborn calves after nuclear transfer into enucleated oocytes. To date, seven female and six male calves have survived: six of the females were from adult cells (cumulus (n = 3), oviduct (n = 2) and skin (n = 1) cells) and one was from newborn skin cells, whereas the male calves were derived from adult ear cells (n = 3), newborn liver and skin cells (n = 2), and fetal cells (n = 1). Clones derived from adult cells frequently aborted in the later stages of pregnancy and calves developing to term showed a higher number of abnormalities than did those derived from newborn or fetal cells. The telomeric DNA lengths in the ear cells of three male calves cloned from the ear cells of a bull aged 10 years were similar to those of the original bull. However, the telomeric DNA lengths from the white blood cells of the clones, although similar to those in an age-matched control, were shorter than those of the original bull, which indicates that telomeric shortening varies among tissues.  相似文献   

7.
Yang X  Tian XC 《Cloning》2000,2(3):123-128
The rapid progress in cloning research along with its many ramifications will soon have a significant beneficial impact on basic research, agriculture, and biomedicine. However, for the nuclear transfer technology to reach its fullest potential, it is important to understand whether the cloning procedure can reverse cellular aging and generate clones with normal genetic and physiological age, similar to those produced from natural reproduction. Telomere shortening is believed to correlate with cellular aging both in vitro and in vivo. Telomere lengths in cells of cloned individuals thus may reflect their genetic age. However, controversies have developed over whether the eroded telomere in somatic cells used for nuclear transfer can be restored during the cloning process.  相似文献   

8.
Genetically engineered pigs with cell markers such as fluorescent proteins are highly useful in lines of research that include the tracking of transplanted cells or tissues. In this study, we produced transgenic-cloned pigs carrying a gene for the newly developed red fluorescent protein, humanized Kusabira-Orange (huKO), which was cloned from the coral stone Fungia concinna. The nuclear transfer embryos, reconstructed with fetal fibroblast cells that had been transduced with huKO cDNA using retroviral vector DDeltaNsap, developed efficiently in vitro into blastocysts (28.0%, 37/132). Nearly all (94.6%, 35/37) of the cloned blastocysts derived from the transduced cells exhibited clear huKO gene expression. A total of 429 nuclear transfer embryos were transferred to four recipients, all of which became pregnant and gave birth to 18 transgenic-cloned offspring in total. All of the pigs highly expressed huKO fluorescence in all of the 23 organs and tissues analyzed, including the brain, eyes, intestinal and reproductive organs, skeletal muscle, bone, skin, and hoof. Furthermore, such expression was also confirmed by histological analyses of various tissues such as pancreatic islets, renal corpuscles, neuronal and glial cells, the retina, chondrocytes, and hematopoietic cells. These data demonstrate that transgenic-cloned pigs exhibiting systemic red fluorescence expression can be efficiently produced by nuclear transfer of somatic cells retrovirally transduced with huKO gene.  相似文献   

9.
广西巴马小型猪克隆胚的构建及胚胎移植   总被引:2,自引:0,他引:2  
通过胚胎移植验证构建的广西巴马小型猪克隆胚是否可以发育到期.利用刺入式手术胚胎移植法,将0.5~1.5日龄巴马小型猪克隆胚移植到2头巴马小型猪和2头陆川猪的输卵管壶腹部.其中2头巴马小型猪和1头陆川猪返情,另外一头陆川猪于2007年10月13日产下1头克隆雄性巴马小型猪.说明巴马小型猪克隆胚能够在受体猪体内发育到期并产仔.  相似文献   

10.
The objective of this study was to examine whether the ICSI-mediated gene transfer method using in vitro matured oocytes and frozen sperm head could actually produce transgenic pigs. We also aimed at examining whether transgenic pigs can be cloned from somatic cells of a transgenic pig generated by the ICSI-mediated method. A bicistronic gene constituted of the human albumin (hALB) and enhanced green fluorescent protein (EGFP) genes was introduced into pig oocytes by the ICSI-mediated method. Transfer of 702 embryos produced by the ICSI-mediated method into five gilts resulted in 4 pregnancies. When three of the recipients, which had received total 312 of the embryos were autopsied, 32 including 1 transgenic fetuses were obtained. One of the recipients gave birth to three live piglets including one transgenic pig, showing a strong green fluorescence in the eyeballs, oral mucous membrane and subcutaneous tissues. Fluorescent microscopy revealed uniform GFP expression in all cell lines established from kidney, lung and muscle of the founder transgenic pig obtained. Nuclear transfer of these cells resulted in stable in vitro development of cloned embryos into the blastocyst stage, ranging from 12.9 to 19.8%. When 767 of the nuclear transfer embryos were transferred to 5 recipients, all became pregnant and gave birth to a total of six live transgenic-clones. The transgene copy number and integrity in the founder pig were maintained in the primary culture cells established from the founder as well as in the clones produced from these cells. Our study demonstrates that the ICSI-mediated gene transfer is an efficient and practical method to produce transgenic pigs, using frozen sperm heads and in vitro matured oocytes. It was also shown that combination of ICSI-mediated transgenesis and nuclear transfer is a feasible technology of great potential in transgenic pig production.  相似文献   

11.
Nuclear transfer technology allows for the reprogramming of somatic cells, and the production of embryonic stem cells and animals that are genetically identical in terms of nuclear DNA to the parental somatic cell. It is assumed that these products of nuclear transfer technology will be immunologically compatible to each other in spite of the fact that there are data that show differences in the expression patterns and phenotypes between animals produced by nuclear transfer. We have produced a series of cloned pigs from embryonic fibroblasts. Microsatellite analysis was used to confirm that the clones were genetically identical. Skin transplants were performed to assess immunological reactivity. Skin transplants between genetically identical cloned pigs were accepted, whereas third party grafts were rejected. Histological analysis of the grafts showed edema and mononuclear cell infiltrates in the recipient's skin in rejected grafts and not in grafts that were accepted. Our data supports the notion that genetically identical cloned pigs are immunologically compatible.  相似文献   

12.
Cloning by somatic cell nuclear transfer can result in the birth of animals with phenotypic and gene expression abnormalities. We compared adult cloned pigs and adult pigs from naturally bred control females using a series of physiological and genetic parameters, including detailed methylation profiles of selected genomic regions. Phenotypic and genetic analyses indicated that there are two classes of traits, one in which the cloned pigs have less variation than controls and another characterized by variation that is equally high in cloned and control pigs. Although cloning creates animals within the normal phenotypic range, it increases the variability associated with some traits. This finding is contrary to the expectation that cloning can be used to reduce the size of groups involved in animal experimentation and to reproduce an animal, including a pet, with a homogenous set of desired traits.  相似文献   

13.
沈伟  李兰  吴晓洁  周艳荣  潘庆杰  陈宏  邓继先 《遗传》2006,28(11):1383-1388
对小鼠胎儿成纤维细胞进行外源基因转染时发现, 外源基因转染后的小鼠体细胞染色体端粒的长度以每代47 bp碱基缩短; 在转染后的衰老细胞中, 或细胞随着增龄, p16INK4a 5′-调控区DNA甲基化程度逐渐降低; 利用RT-PCR与Northern blot证明, 衰老细胞与年轻细胞中的p16INK4a基因的表达水平存在显著差异, 传代45代的细胞和外源基因转染后的衰老细胞p16INK4a基因的表达水平大约是原代细胞的12~16倍, 而原代细胞与20代细胞间的差异很小。外源基因转染后的衰老细胞核移植后能支持克隆胚胎的体外早期发育。  相似文献   

14.
Cloned pigs were produced from cultured skin fibroblasts derived from a H-transferase transgenic boar. One 90 day fetus and two healthy piglets resulted from nuclear transfer by fusion of cultured fibroblasts with enucleated oocytes. The cells used in these studies were subjected to an extensive culture time, freezing and thawing, and clonal expansion from single cells prior to nuclear transfer. PCR and FACS analysis determined that the cloned offspring contained and expressed the H-transferase transgene. Microsatellite analysis confirmed that the clones were genetically identical to the boar. The cell culture and nuclear transfer procedures described here will be useful for applications requiring multiple genetic manipulations in the same animal.  相似文献   

15.
16.
在对山羊体细胞进行外源基因转染过程中,无论电击法或脂质体法所得到的细胞克隆都有细胞过快衰老的现象。山羊体细胞转基因后出现细胞体积增大、细胞核膨大并逐步分裂成多核、细胞质空泡化和吐核等衰老的表型特征。转基因后衰老细胞的染色体核型正常,但经细胞染色体端粒长度的Southern检测发现,转基因衰老细胞比原代胎儿成纤维细胞染色体端粒长度减少了2.56 kb,超出了正常传代40代的细胞的衰老速度,但转基因衰老细胞仍能支持核移植克隆胚胎的早期发育。  相似文献   

17.
Wang F  Yin Y  Ye X  Liu K  Zhu H  Wang L  Chiourea M  Okuka M  Ji G  Dan J  Zuo B  Li M  Zhang Q  Liu N  Chen L  Pan X  Gagos S  Keefe DL  Liu L 《Cell research》2012,22(4):757-768
Rejuvenation of telomeres with various lengths has been found in induced pluripotent stem cells (iPSCs). Mechanisms of telomere length regulation during induction and proliferation of iPSCs remain elusive. We show that telomere dynamics are variable in mouse iPSCs during reprogramming and passage, and suggest that these differences likely result from multiple potential factors, including the telomerase machinery, telomerase-independent mechanisms and clonal influences including reexpression of exogenous reprogramming factors. Using a genetic model of telomerase-deficient (Terc(-/-) and Terc(+/-)) cells for derivation and passages of iPSCs, we found that telomerase plays a critical role in reprogramming and self-renewal of iPSCs. Further, telomerase maintenance of telomeres is necessary for induction of true pluripotency while the alternative pathway of elongation and maintenance by recombination is also required, but not sufficient. Together, several aspects of telomere biology may account for the variable telomere dynamics in iPSCs. Notably, the mechanisms employed to maintain telomeres during iPSC reprogramming are very similar to those of embryonic stem cells. These findings may also relate to the cloning field where these mechanisms could be responsible for telomere heterogeneity after nuclear reprogramming by somatic cell nuclear transfer.  相似文献   

18.
The present paper describes production of cloned pigs from fibroblast cells of transgenic pigs expressing human decay accelerating factor (DAF, CD55) and N-acetylglucosaminyltransferase III (GnT-III) that remodels sugar-chain biosynthesis. Two nuclear transfer protocols were used: a two-step activation (TA) method and a delayed activation (DA) method. Enucleated in vitro-matured oocytes and donor cells were electrically fused in a calcium-containing medium by TA method or in a calcium-free medium by DA method, followed by electrical activation 1-1.5 h later, respectively. In vitro blastocyst formation rates of nuclear transferred embryos reconstructed by TA and DA method were 8% and 14%, respectively. As a result of embryo transfer of the reconstructed embryos made by each method into recipient pigs, both gave rise to cloned piglets. These cloned pigs expressed transgene as much as their nuclear donor cells. In conclusions, (1) pig cloning can be carried out by TA or DA nuclear transfer methods, (2) expression of transgenes can be maintained to cloned pigs from the nuclear donor cells derived from transgenic animals.  相似文献   

19.
Pigs have been recognized as an excellent biomedical model for investigating a variety of human health issues. We developed genetically modified pigs that exhibit the apparent symptoms of diabetes. Transgenic cloned pigs carrying a mutant human hepatocyte nuclear factor 1α gene, which is known to cause the type 3 form of maturity-onset diabetes of the young, were produced using a combined technology of intracytoplasmic sperm injection-mediated gene transfer and somatic cell nuclear transfer. Although most of the 22 cloned offspring obtained died before weaning, four pigs that lived for 20–196 days were diagnosed as diabetes mellitus with nonfasting blood glucose levels greater than 200 mg/dl. Oral glucose tolerance test on a cloned pig also revealed a significant increase of blood glucose level after glucose loading. Histochemical analysis of pancreas tissue from the cloned pigs showed small and irregularly formed Langerhans Islets, in which poor insulin secretion was detected.  相似文献   

20.
To confirm the normality of the Japanese Black calves produced by nuclear transfer, we examined the properties of such calves at parturition and analyzed their karyotypes. Thirty Japanese Black calves were produced by nuclear transfer; 3 of these calves (10.0%) required assisted delivery while 1 calf (3.3%) died soon after birth. Average birth weight was 31.0 +/- 1.8 kg and gestation period was 286.4 +/- 1.0 d (mean +/- SEM). None of the nuclear transfer calves showed external malformations. Within sets of cloned nuclear transfer calves, which were genetically identical, birth weights varied by up to 20.5 kg. Among singleton Japanese Black calves, the mean birth weight of nuclear transfer calves was significantly greater (P < 0.05) than that of calves produced by in vivo-derived embryo transfer. Cytogenetic analysis of 23 Japanese Black nuclear transfer calves revealed the presence of 2N 4N mosaicism in 21 of the nuclear transfer calves. The frequency of occurrence of tetraploidy was unrelated to birth weight. Endoreduplication was observed in 1 Japanese Black nuclear transfer calf, and the frequency of occurrence of the endoreduplication in this calf was 0.5% (1/209). We conclude that there was no external malformation or chromosomal aneuploidy in Japanese Black nuclear transfer calves, but the mean birth weight of nuclear transfer calves was heavier than that of in vivo-derived embryo transfer calves in both sexes, and a variation of birth weight within sets of nuclear transfer calves cloned from the same embryo was recognized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号