首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
绮丽刺毛霉的一种新型甘氨酸氨肽酶的研究   总被引:4,自引:0,他引:4  
研究了产自于绮丽刺毛霉(Actinomucor elegans)的一种甘氨酸氨肽酶。分子筛层析表明该酶的天然分子的分子量为320kD,SDSPAGE分析表明蛋白质的亚基分子量为565kD。该酶水解含有甘氨酸残基的底物(如glycinenaphthylamine)的效率要较其它氨基酸残基高得多。该酶的最佳反应温度为30℃,最佳pH为8.0。酶的Km和Kcat值分别为0.24mmol/L与1008 s-1。1.0mmol/L Zn2+,Cu2+和Cd2+可完全抑制该酶的活性。作用于酶巯基的化学物质对酶活性都有抑制作用。根据络合剂反应的实验结果表明该酶是一种含有金属的酶。当与蛋白酶共同作用时该酶除了甘氨酸外还能提高脯氨酸、精氨酸及谷氨酸的水解率。  相似文献   

2.
Summary A leucine aminopeptidase was purified to homogeneity fromStreptomyces rimosus culture filtrates, which are waste broth of oxytetracycline bioproduction process. Purification procedure includes ultrafiltration and chromatography on CM-Sephadex, AH-Sepharose and FPLC Mono S column. The enzyme is a monomer with molecular weight of 27,500 Daltons and pI of 7.3, stable in broad pH range and up to 70°C. It is a metallo enzyme dependent on Ca2+ ions for its full activity. By its specificity it is a true aminopeptidase active on amino acid amide, arylamide, peptide and ester bonds. The hydrolysing activity shows preference for leucine at the N-terminal position of substrates, also acts on aromatic acids and methionine, but does not release glycine, proline, acidic amino acids orD-amino acid residues.  相似文献   

3.
A leucine aminopeptidase gene of Aquifex aeolicus, a hyperthermophilic bacterium, was cloned and expressed in Escherichia coli, and its expression product was purified and characterized. The expressed protein was purified to homogeneity by using heat to denature contaminating proteins followed by ion-exchange chromatography to purify the heat-stable product. The purified enzyme gave a single band on SDS-PAGE with a molecular weight of 54 kDa. Kinetic studies on the purified enzyme confirmed that it was a leucine aminopeptidase. The optimum temperature for its activity was around 80 degrees C and the optimum pH was in the range from 8.0 to 8.5. It was stable at high temperatures and 27% of its activity was retained after heating at 115 degrees C for 30 min. The purified enzyme had a pH stability range between 4.0 and 11.0. This aminopeptidase was highly resistant to organic solvents such as methanol, ethanol, tetrahydrofuran, dimethyl sulfoxide, acetone, acetonitrile, dimethyl formamide, 1-propanol, 2-propanol, and dioxane.  相似文献   

4.
An arginine aminopeptidase (EC 3.4.11.6) that exclusively hydrolyzes basic amino acids from the amino (N) termini of peptide substrates has been purified from Lactobacillus sakei. The purification procedure consisted of ammonium sulfate fractionation and three chromatographic steps, which included hydrophobic interaction, gel filtration, and anion-exchange chromatography. This procedure resulted in a recovery rate of 4.2% and a 500-fold increase in specific activity. The aminopeptidase appeared to be a trimeric enzyme with a molecular mass of 180 kDa. The activity was optimal at pH 5.0 and 37 degrees C. The enzyme was inhibited by sulfhydryl group reagents and several divalent cations (Cu(2+), Hg(2+), and Zn(2+)) but was activated by reducing agents, metal-chelating agents, and sodium chloride. The enzyme showed a preference for arginine at the N termini of aminoacyl derivatives and peptides. The K(m) values for Arg-7-amido-4-methylcoumarin (AMC) and Lys-AMC were 15.9 and 26.0 microM, respectively. The nature of the amino acid residue at the C terminus of dipeptides has an effect on hydrolysis rates. The activity was maximal toward dipeptides with Arg, Lys, or Ala as the C-terminal residue. The properties of the purified enzyme, its potential function in the release of arginine, and its further metabolism are discussed because, as a whole, it could constitute a survival mechanism for L. sakei in the meat environment.  相似文献   

5.
A 96 kDa aminopeptidase was purified from Streptococcus salivarius subsp. thermophilus NCDO 573. The enzyme had similar properties to aminopeptidases isolated from lactococci and lactobacilli and showed a high degree of N -terminal amino acid sequence homology to aminopeptidase N from Lactococcus lactis subsp. cremoris. It catalysed the hydrolysis of a range of aminoacyl 4-nitroanilides and 7-amido-4-methylcoumarin derivatives, dipeptides, tripeptides and oligopeptides. In common with aminopeptidases from other lactic acid bacteria, the enzyme from Strep. salivarius subsp. thermophilus showed highest activity with lysyl derivatives but was also very active with arginyl and leucyl derivatives. Relative activity with alanyl, phenylalanyl, tyrosyl, seryl and valyl derivatives was considerably lower and with glycyl, glutamyl and prolyl derivatives almost negligible. The aminopeptidase also catalysed the hydrolysis of dipeptides and tripeptides but mostly at rates much less than that with L-lysyl-4-nitroanilide and oligopeptides. The enzyme catalysed the successive hydrolysis of various amino acid residues from the N -terminus of several oligopeptides but it was unable to cleave peptide bonds on the N -terminal side of a proline residue.  相似文献   

6.
AIM: Purification and characterization of a chitinase from Microbispora sp. V2. METHODS AND RESULTS: The chitinase from Microbispora sp. V2 was purified to homogeneity by gel filtration chromatography with 4.6% recovery. It had a molecular weight of 35 kDa and showed maximum activity towards p-nitrophenyl-beta-d-N,N'-diacetylchitobiose, indicating a chitobiosidase activity. The enzyme had a pH optimum of 3.0 and temperature optimum of 60 degrees C. It was stable in a wide pH range from 3.0 to 11.0, retaining 61% activity at pH 3.0 and 52% activity at pH 11.0. It retained 71% activity at 30 degrees C and 45% activity at 50 degrees C, up to 24 h. The enzyme activity was not inhibited by any of the metal ions tested except Hg2+, in the presence of which only 10% activity was retained. CONCLUSIONS: The 35 kDa chitinase from Microbispora sp. V2 has an acidic pH optimum and a high temperature optimum. It is fairly stable and active, and degrades chitin efficiently, although the growth of the culture and enzyme production is slow. SIGNIFICANCE AND IMPACT OF THE STUDY: This report is the first detailed study of a chitinase from Microbispora sp. V2, isolated from hot springs. The chitinase from Microbispora sp. V2 may have potential applications in the recycling of chitinous wastes, particularly due to its thermophilic and acidophilic character. Studies at molecular level may provide further insight on the chitinolytic system of Microbispora spp. with respect to the number and types of chitinases and their regulation.  相似文献   

7.
We purified and characterized an aminopeptidase from Streptococcus thermophilus YRC001 to obtain an enzyme for the application of reducing bitter-defect in cheese manufacturing. The purified enzyme was a monomer, and its molecular mass was estimated to be 90-100 kDa. It had a broad substrate specificity, and mostly hydrolyzed lysyl and leucyl peptides. The optimal temperature and pH for the enzyme were 35 degrees C and pH 6.5, respectively. EDTA, o-phenanthroline, and p-chloromercuribenzoate inhibited its activity, therefore it was considered to be a metallopeptidase. The purified enzyme efficiently reduced the bitterness of a trypsin digest of reconstituted skim milk. Therefore, we cloned a gene for the enzyme from YRC001. The nucleotide sequence of a 2,940-bp XbaI fragment containing the gene was analyzed. The gene encoded 849 amino acids, and the calculated molecular mass for the mature enzyme (initial methionine is removed) was 96,434. The deduced amino acid sequence showed high homology with the known bacterial lysyl aminopeptidase (aminopeptidase N).  相似文献   

8.
A dipeptidyl aminopeptidase has been purified to apparent homogeneity from skin secretion of Xenopus laevis. This enzyme is a glycoprotein with a molecular mass of about 98 kDa. It hydrolyzes a variety of dipeptidyl-p-nitroanilides and oligopeptides containing proline, alanine or glycine as the second amino acid and is inhibited by diisopropylfluorophosphate. The pH optimum was found to be around 8, while at pH 6, substrates were cleaved at about one-third of the maximal rate. This dipeptidyl aminopeptidase has the specificity required for the cleavage of amino-terminal extensions preceding the sequence of caerulein and xenopsin in their respective precursors.  相似文献   

9.
AIMS: We have been for a species of thermophilic bacteria that can effectively decompose collagen and collagen peptides that tend to be hard-to-degrade proteins because of their high content of proline residues. This study focused upon the enzymatic degradation of prolyl peptides by thermophilic bacteria. METHODS AND RESULTS: A strain, AM-1, producing a proline-specific aminopeptidase was isolated using a medium containing gelatin that was taken from soil samples collected at Arima Hot Spring located near Kobe, Japan. The strain showed the strongest level of hydrolysing activity toward prolyl-p-nitroanilide, and the activity proved to be thermostable. Phylogenetic analysis based on 16S rDNA sequences revealed that the isolated strain AM-1 was closest to Aneurinibacillus thermoaerophilus DSM10154T in its characteristics. Analysis of the purified proline-specific aminopeptidase suggested that the enzyme is an aminopeptidase containing metal that includes important disulphide bond(s). The strain AM-1 aminopeptidase has more similarities with leucyl aminopeptidases, but its activity level differs greatly with prolyl peptides. CONCLUSIONS: The proline-specific aminopeptidase from strain AM-1 is the first from the genus Aneurinibacillus and may be a new type of aminopeptidase for hydrolysing prolyl peptide. This enzyme also contributed to the degradation of collagen when used in combination with another collagenolytic protease. SIGNIFICANCE AND IMPACT OF THE STUDY: The proline-specific aminopeptidase obtained from strain AM-1 may be used in the treatment of wastewater containing collagen that is encountered in the meat industries, and for decreasing bitter peptides in milk products.  相似文献   

10.
K S Hui  Y J Wang  A Lajtha 《Biochemistry》1983,22(5):1062-1067
A membrane-bound aminopeptidase was purified from rat brain, and its activity was assayed by high-pressure liquid chromatography with Met-enkephalin as the substrate. The enzyme was extracted with 1% Triton X-100 and purified by chromatography, successively on DEAE-Sepharose CL-6B, Bio-Gel HTP, and Sephadex G-200 columns. The overall purification was about 1200-fold, with 25% yield. The purified enzyme showed one band on disc gel electrophoresis and two bands on sodium dodecyl sulfate electrophoresis with molecular weights of 62 000 and 66 000. The aminopeptidase has a pH optimum of 7.0, a Km of 0.28 mM, and a Vmax of 45 mumol (mg of protein)-1 min-1 for Met-enkephalin. It releases tyrosine from Met-enkephalin, but it does not split the byproduct. It does not hydrolyze gamma- or beta-endorphin, or dynorphin, but it does hydrolyze neutral and basic aminoacyl beta-naphthylamides. The enzyme is inhibited by the aminopeptidase inhibitors amastatin, bestatin, and bestatin-Gly. Its properties, such as its subcellular localization, substrate specificity, pH optimum, and molecular weight, distinguish it from leucine aminopeptidase, aminopeptidase A, aminopeptidase B, aminopeptidase M, and the soluble aminopeptidase for enkephalin degradation.  相似文献   

11.
An aminopeptidase (HSA) with a molecular mass of 78 kDa was purified from hemp (Cannabis sativa) seeds. The activity was inhibited by monoiodeacetic acid, p-chloromercuri-phenylsulfonic acid, and Zn2+ ion. The specificity of HSA was similar to that of a leucyl aminopeptidase [EC 3.4.11.1] from mammalian cytosol. However, other enzyme properties were different from these of leucyl aminopeptidase.  相似文献   

12.
An arginine aminopeptidase (EC 3.4.11.6) that exclusively hydrolyzes basic amino acids from the amino (N) termini of peptide substrates has been purified from Lactobacillus sakei. The purification procedure consisted of ammonium sulfate fractionation and three chromatographic steps, which included hydrophobic interaction, gel filtration, and anion-exchange chromatography. This procedure resulted in a recovery rate of 4.2% and a 500-fold increase in specific activity. The aminopeptidase appeared to be a trimeric enzyme with a molecular mass of 180 kDa. The activity was optimal at pH 5.0 and 37°C. The enzyme was inhibited by sulfhydryl group reagents and several divalent cations (Cu2+, Hg2+, and Zn2+) but was activated by reducing agents, metal-chelating agents, and sodium chloride. The enzyme showed a preference for arginine at the N termini of aminoacyl derivatives and peptides. The Km values for Arg-7-amido-4-methylcoumarin (AMC) and Lys-AMC were 15.9 and 26.0 μM, respectively. The nature of the amino acid residue at the C terminus of dipeptides has an effect on hydrolysis rates. The activity was maximal toward dipeptides with Arg, Lys, or Ala as the C-terminal residue. The properties of the purified enzyme, its potential function in the release of arginine, and its further metabolism are discussed because, as a whole, it could constitute a survival mechanism for L. sakei in the meat environment.  相似文献   

13.
Yeast strain 31-B was isolated from the digestive juices of Nepenthes alata as an aminopeptidase producer and identified as Pseudozyma hubeiensis via morphological testing and comparative 26S ribosomal DNA-D1/D2 gene sequence analysis. Strain 31-B produced aminopeptidase as extracellular peptidase, but proteinase activity was not detected in the culture filtrate. The aminopeptidase from strain 31-B was purified from filtered culture medium by (NH4)2SO4 precipitation and four column chromatography steps: Diethylaminoethyl (DEAE)-Toyopearl 650 M, Butyl-Toyopearl 650 M, hydroxylapatite, and Toyopearl HW-55. Sodium dodecyl sulfate polyacrylamide gel electrophoresis yielded the purified enzyme as a single band with molecular mass 75.3 kDa. The optimum temperature and pH were approximately 40 °C and 8.0, respectively. The purified aminopeptidase preferentially hydrolyzed Leu-p-NA and its activity was inhibited by ethylenediaminetetraacetic acid. The isolated aminopeptidase reduced the bitterness of peptides generated from milk casein using a bacterial proteinase. These results show that the aminopeptidase produced by P. hubeiensis 31-B has potential application as a food additive in the dairy industry.  相似文献   

14.
An intracellular arginine--specific aminopeptidase synthesized by Bacillus mycoides was purified and characterized. The purification procedure for studied aminopeptidase consisted of ammonium sulphate precipitation and three chromatographic steps: anion exchange chromatography and gel permeation chromatography. A molecular weight of -50 kDa was estimated for the aminopeptidase by gel permeation chromatography and SDS-PAGE. The optimal activity of the enzyme on arginyl-beta-naphthylamide as a substrate was at 37 degrees C and pH 9.0. The enzyme showed maximum specificity for basic amino acids: such as Arg and Lys but was also able to hydrolyze aromatic amino acids: Trp, Tyr, and Phe. Co2+ ions activated the enzyme, while Zn2+, Cu2+, Hg2+ and Mn2+ inhibited it. The enzyme is a metalloaminopeptidase whose activity is inhibited by typical metalloaminopeptidase inhibitors: EDTA and 1,10-phenanthroline. Analysis of fragments of the amino acid sequence of the purified enzyme demonstrated high similarity to AmpS of Bacillus cereus and AP II of B. thuringensis.  相似文献   

15.
E. TSAKALIDOU AND G. KALANTZOPOULOS. 1992. An intracellular aminopeptidase from Streptococcus salivarius subsp. thermophilus strain ACA-DC 114, isolated from traditional Greek yoghurt, was purified by chromatography on DEAE-cellulose and Sephadex G-100. The enzyme had a molecular weight of 89 000. It was active over a pH range 4.5-9.5 and had optimum activity on L-lysyl-4-nitroanilide at pH 6.5 and 35°C with K m= 1.80 mmol/l; above 55°C the enzyme activity declined rapidly. The aminopeptidase was capable of degrading substrates by hydrolysis of the N -terminal amino acid; it had very low endopeptidase and no carboxypeptidase activity. The enzyme was strongly inactivated by EDTA. Serine and sulphydryl group reagents had no effect on enzyme activity.  相似文献   

16.
Alkaline protease from Bacillus circulans has been purified and characterized in detail for its robustness and its eco-friendly application potential at leather processing and detergent industries. The molecular weight of the purified enzyme was estimated to be 39.5 kDa on SDS-PAGE. It exhibited optimum activity at broad temperature range and maximum at 70 °C under alkaline pH environment, in the presence of surfactants and oxidizing agents. It has revealed stain removal property and dehairing activity for animal hide without chemical assistance and without hydrolyzing fibrous proteins. This enzyme showed application potential in leather processing industry for production of better quality product in eco-friendly process. In addition, the stability (pH, temperature and surfactants) and hydrolysis of blood stain data also revealed its application in detergent industries.  相似文献   

17.
A novel leucine aminopeptidase was purified from a Bacillus thuringiensis israelensis (Bti) culture. The purification stages included heating the concentrated supernatant to 65°C for 90 min, anion-exchange chromatography by DEAE cellulose, and hydrophobic chromatography by phenyl Sepharose. The specific activity of leucine aminopeptidase after the hydrophobic chromatography increased by 215.5-fold and the yield was 16%. The molecular weight of the active enzyme was 59 kDa. Mass spectrometry analysis of the 59-kDa leucine aminopeptidase revealed that this protein has at least 41% homology with the cytosol leucine aminopeptidase produced by Bacillus cereus. Maximal leucine aminopeptidase activity occurred at 65°C, pH 10 toward leucine as the amino acid terminus. The enzyme was strongly inhibited by bestatin, dithiothreitol, and 1,10-phenanthroline, indicating that the enzyme might be considered as a metallo-aminopeptidase that has disulfide bonds at the catalytic site or at a region that influences its configuration. Examination of the purified leucine aminopeptidase’s effect on the activation of the protoxin Cyt1Aa from Bti revealed that when it acts synergistically with Bti endogenous proteases, it has only a minor role in the processing of Cyt1Aa into an active toxin.  相似文献   

18.
An intracellular leucine aminopeptidase (LAP) fromPenicillium citrinum (IFO 6352) was purified to homogeneity using three successive purification steps. The enzyme has a native molecular mass of 63 kDa using HPLC gel filtration analysis and a molecular mass of 65 kDa when using SDS-polyacrylamide gel electrophoresis. This monomeric aminopeptidase showed maximum enzyme activity at pH 8.5. An optimum temperature was 45–50°C whenl-Leu-p-nitroanilide (pNA) was the substrate, and enzyme activity drastically decreased above 60°C. The Michaelis-Menten constants forl-Leu-pNA andl-Met-pNA were 2.7 mM and 1.8 mM, respectively. When the enzyme reacted with biosynthetic methionyl human growth hormone, it showed high specificity for N-terminal methionine residue and recognized a stop sequence (Xaa-Pro). The aminopeptidase was inactivated by EDTA or 1,10-phenanthroline, indicating that it is a metallo-exoprotease. Enzyme activity was restored to 90% of maximal activity by addition of Co2+ ions. The activity of EDTA-treated enzyme was restored by addition of Zn2+, but reconstitution with Ca2+, Mg2+ or Mn2+ restored some enzyme activity. It is likely that Co2+ ions play an important role in the catalysis or stability of thePenicillium citrinum aminopeptidase, as zinc plays a similar function in other leucine aminopeptidases.  相似文献   

19.
AIMS: The aim of the present work was to evaluate the enzymatic potential manifested by aminopeptidase activity of different thermophilic Lactobacillus biotypes and to measure the influence of cell growth phase on enzyme expression. METHODS AND RESULTS: The activities were evaluated by the hydrolysis of beta-naphthylamide substrates for both whole and mechanically disrupted cells of L. helveticus, L. delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis strains, collected from both the exponential and the stationary growth phase. In general, activities were higher for cells in the exponential rather than in the stationary phase and the disrupted cells showed higher activities than the whole cells. The highest activity expressed by all strains corresponded to X-prolyl-dipeptidyl aminopeptidase while a moderate activity was observed towards Arg-betaNa, Lys-betaNa and Leu-betaNa. The lowest activity was observed for Pro-betaNa. CONCLUSIONS: It may be inferred that the cell structure and the cell physiology are crucial to define the level of efficiency of expression for aminopeptidase activity. The two species may be characterized by a different enzymatic system that hydrolyses N-terminal leucine. SIGNIFICANCE AND IMPACT OF THE STUDY: The differences of peptidase activities in L. helveticus and L. delbrueckii species acquires an importance to comprehend their role in the biochemical events occurring in cheese ripening.  相似文献   

20.
Microsporidia are obligate intracellular parasites of the phylum Microspora. To date, more than 1,200 species within 144 genera have been described, with 14 infecting humans. Currently, no effective treatment exists for human microsporidiosis. In this study, the biochemical properties of the aminopeptidases were investigated within several species of microsporidia. Aminopeptidase activity was detected in 3 species of microsporidia, Encephalitozoon cuniculi, E. hellem, and Vittaforma corneae, using a fluorometric substrate assay. Each species exhibited distinct aminopeptidase properties. The cytosolic neutral aminopeptidase activities of the Encephalitozoon spp. were characterized as preferentially cleaving leucine, whereas those of V. corneae cleaved arginine. Native polyacrylamide gel electrophoresis estimated the molecular mass of E. cuniculi, E. hellem, and V. corneae as 74, 72, and 79 kDa, respectively. Enzymatic activity was inhibited by bestatin and it's analogue, nitrobestatin, indicating that the enzyme was an aminopeptidase for all species. Inhibition with the chelating agents ethylenediaminetetraacetic acid and 1,10phenanthroline characterized the enzymes as metalloaminopeptidases. Subcellular fractionation of the 3 microsporidial species suggested that the enzyme activity was localized in the cytosolic fraction. Optimal enzyme activity was observed at pH 7.2 for all species. This is the first report of enzyme characterization from these 3 species of microsporidia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号