首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of the present study was to explore how mannose enters fibroblasts derived from a panel of children suffering from different subtypes of type I carbohydrate deficient glycoprotein syndrome: seven carbohydrate deficient glycoprotein syndrome subtype Ia (phosphomannomutase deficiency), two carbohydrate deficient glycoprotein syndrome subtype Ib (phosphomannose isomerase deficiency) and two carbohydrate deficient glycoprotein syndrome subtype Ix (not identified deficiency). We showed that a specific mannose transport system exists in all the cells tested but has different characteristics with respect to carbohydrate deficient glycoprotein syndrome subtypes. Subtype Ia fibroblasts presented a mannose uptake equivalent or higher (maximum 1.6-fold) than control cells with a D-[2-3H]-mannose incorporation in nascent N-glycoproteins decreased up to 7-fold. Compared to control cells, the mannose uptake was greatly stimulated in subtype Ib (4.0-fold), due to lower Kuptake and higher Vmax values. Subtype Ib cells showed an increased incorporation of D-[2-3H]-mannose into nascent N-glycoproteins. Subtype Ix fibroblasts presented an intermediary status with mannose uptake equivalent to the control but with an increased incorporation of D-[2-3H]-mannose in nascent N-glycoproteins. All together, our results demonstrate quantitative and/or qualitative modifications in mannose transport of all carbohydrate deficient glycoprotein syndrome fibroblasts in comparison to control cells, with a relative homogeneity within a considered subtype of carbohydrate deficient glycoprotein syndrome. These results are consistent with the possible use of mannose as a therapeutic agent in carbohydrate deficient glycoprotein syndrome Ib and Ix.  相似文献   

2.
In sub-Saharan Africa, where the effects of human immunodeficiency virus type 1 (HIV-1) have been most devastating, there are multiple subtypes of this virus. The distribution of different subtypes within African populations is generally not linked to particular risk behaviors. Thus, Africa is an ideal setting in which to examine the diversity and mixing of viruses from different subtypes on a population basis. In this setting, it is also possible to address whether infection with a particular subtype is associated with differences in disease stage. To address these questions, we analyzed the HIV-1 subtype, plasma viral loads, and CD4 lymphocyte levels in 320 women from Nairobi, Kenya. Subtype was determined by a combination of heteroduplex mobility assays and sequence analyses of envelope genes, using geographically diverse subtype reference sequences as well as envelope sequences of known subtype from Kenya. The distribution of subtypes in this population was as follows: subtype A, 225 (70.3%); subtype D, 65 (20.5%); subtype C, 22 (6.9%); and subtype G, 1 (0.3%). Intersubtype recombinant envelope genes were detected in 2.2% of the sequences analyzed. Given that the sequences analyzed represented only a small fraction of the proviral genome, this suggests that intersubtype recombinant viral genomes may be very common in Kenya and in other parts of Africa where there are multiple subtypes. The plasma viral RNA levels were highest in women infected with subtype C virus, and women infected with subtype C virus had significantly lower CD4 lymphocyte levels than women infected with the other subtypes. Together, these data suggest that women in Kenya who are infected with subtype C viruses are at more advanced stages of immunosuppression than women infected with subtype A or D. There are at least two models to explain the data from this cross-sectional study; one is that infection with subtype C is associated with a more rapid disease progression, and the second is that subtype C represents an older epidemic in Kenya. Discriminating between these possibilities in a longitudinal study will be important for increasing our understanding of the role of specific subtypes in the transmission and pathogenesis of HIV-1.  相似文献   

3.
We have calculated the polypeptide flexibility index for mammalian histone H1 sequences obtained from the National Center for Biotechnology Information Histone Sequence Database. This database contains over 1000 histone protein entries, from various species, compiled from SWISS_PROT, PIR, the Protein Data Bank (PDB), and CDS translations from GenBank. Histone H1 proteins were analyzed because of their critical role in chromatin structure and gene expression. Flexibility calculations revealed that histone subtype H1.0, which accumulates during terminal differentiation, has the highest flexibility index of all mammalian H1 subtypes. Other mammalian H1 subtypes had lower flexibility indices, including the human H1.2 subtype whose mRNA contains both a hairpin loop sequence and a poly(A) addition sequence. Histone mRNAs containing both of these structures have been shown to be expressed prior to and after terminal differentiation, yet these proteins do not necessarily accumulate in the chromatin of terminally differentiated cells. H1.2 and the H1.t have the lowest flexibility index (most ridged) of all human H1 subtypes. All human H1 proteins of the replication dependent subtypes have intermediate values for their flexibility indices.  相似文献   

4.
Changes in H1 complement in differentiating rat-brain cortical neurons   总被引:2,自引:0,他引:2  
Neuronal nuclei have a low H1 content. A stoichiometry of 0.47 molecule/nucleosome, on average, is calculated for rat brain cortical neurons by comparing its H1 content with that of liver nuclei. The H1 fraction of rat cerebral cortex neurons has been resolved into five subtypes, H1a--e, that have the same mobility as the unphosphorylated H1 forms of other rat tissues. The subtypes H1a--d decay exponentially during postnatal development and are substituted to different extents by H1e. The higher replacement rate is shown by H1a with an apparent half-lifetime of about 5 days. The corresponding values for H1b, H1c and H1d are 11, 21 and 15 days. Several conclusions can be drawn from the observation of postnatal changes in H1 subtype proportions. The low H1 content of neuronal nuclei does not imply the presence of notable peculiarities in subtype composition or in subtype substitution pattern. There is turnover of H1 in differentiating neurons once cell proliferation and DNA replication have ceased. The relative rates of synthesis and/or degradation of the subtypes differ in germinal cells and in neurons. Comparison with previous results on H1 degrees accumulation also shows that in cortical neurons the regulation of the subtypes H1a--e differs from that of H1 degrees.  相似文献   

5.
A procedure is described for quantitative purification of H10 and five H1-1 subtypes--named H1-1a to e--from adult rat liver by reverse-phase high-pressure liquid chromatography. Milligram amounts of each fraction have been obtained. The H1-1a subtype shows a very high lysine content (34%) and H1-1d subtype has an amino-acid composition close to that of H10, but its electrophoretic mobility is different. Salt dependent folding of these subtypes has been studied by circular dichroism. In the presence of 2 or 10 mM sodium phosphate buffers at pH 7.5, H1-1a shows the lowest alpha-helix content. In phosphate-buffer containing 1 M NaCl the number of residues in alpha-helix for all the subtypes rises to 9-10%. Partial cleavage of these subtypes by endoproteinase Glu-C produce three main peptides arising from C-terminal domains. The interaction of the H1-1 subtypes with 196 basepairs linear DNA, purified from rat liver chromatin by high-pressure ion-exchange liquid chromatography, has for consequences a modification of the patterns of digestion: partial proteolysis of the H1-1a and H1-1b subtypes shows differences in the presence or in absence of DNA; on the contrary, H1-1c and H1-1d seem to have the same organization. So these subtypes may play a role in the differential packing of specific region of chromatin.  相似文献   

6.
Tissue remodeling is an adaptive response to mechanical tension in the lung. However, the role of pulmonary fibroblasts in this response has not been well characterized. This study investigates the influence of extracellular matrix on the response of fibroblasts to mechanical strain. Cells were cultured on flexible-bottom surfaces coated with fibronectin, laminin, or elastin and exposed to strain. Under these conditions, fibroblasts align perpendicular to the force vector. This stimulus results in an increase in alpha(1)(I) procollagen mRNA in cells cultured on laminin or elastin but not fibronectin. Increased alpha(1)(I) procollagen mRNA was detected 6 h after exposure to strain and reached control levels by 72 h. [(3)H]proline incorporation into newly synthesized procollagen reflects changes in mRNA levels. Strained fibroblasts cultured on laminin or elastin incorporated 190 and 114%, respectively, more [(3)H]proline into procollagen than did unstrained cells. No difference was detected in strained fibroblasts cultured on fibronectin. These results suggest that fibroblasts respond to mechanical strain in vitro, and this response is signaled by cell-extracellular matrix interactions.  相似文献   

7.
DNA sequences encoding the C2 to V3 region of envelope glycoprotein gp120 of human immunodeficiency virus type 1 (HIV-1) were amplified by PCR from uncultured peripheral blood mononuclear cells obtained from 24 of 25 HIV-1-seropositive patients from Cyprus. By using a heteroduplex mobility assay (HMA), all amplified products were studied genetically and compared with 16 previously characterized HIV-1 strains belonging to subtypes A through F. HMA results revealed that HIV-1 gp120 sequences from 15 of our patients were of subtype B of HIV-1, whereas one isolate was of subtype C. However, gp120 sequences from eight patients had no obvious similarities to the known subtypes as defined by HMA. DNA sequencing and phylogenetic analyses of molecular clones confirmed the HMA results and placed the eight undefined HIV-1 isolates into three distinct genetic clusters. On the basis of branch topology and lengths of the phylogenetic tree, we conclude that one group consisting of three clones from two patients represents a new HIV-1 env subtype, which we have termed subtype I. The remaining two sequence clusters, consisting of five sequences from four patients and two sequences from two other patients, are distally related to subtypes A and F. These data demonstrate the extensive heterogeneity of HIV-1 in Cyprus, including the presence of new subtype.  相似文献   

8.
H1 histone subtype genes differ in their expression patterns during the different stages of the cell cycle interphase. While the group of replication-dependent H1 histone subtypes is synthesized during S phase, the replacement histone subtype H1.0 is also expressed replication-independently in non-proliferating cells. The present study is the first report about the analysis of the cell cycle-dependent expression of all five replication-dependent H1 subtypes, the replacement histone H1.0 and the ubiquitously expressed subtype H1x. The expression of these H1 histone subtypes in HeLa cells was analysed on mRNA level by quantitative real-time RT-PCR as well as on protein level by immunoblotting. We found that after arrest of HeLa cells in G1 phase by treatment with sodium butyrate, the mRNA levels of all replication-dependently expressed H1 subtypes decreased, but to very different extent. During S phase the individual replication-dependently expressed H1 subtypes show similar kinetics regarding their mRNA levels. However, the variations in their protein amounts partially differ from the respective RNA levels which especially applies to histone H1.3. In contrast, the mRNA as well as the protein level of H1x remained nearly unchanged in G1 as well as during S phase progression. The results of the present study demonstrate that the cell cycle-dependent mRNA and protein expression of various H1 subtypes is differentially regulated, supporting the hypothesis of a functional heterogeneity.  相似文献   

9.
10.
Histone H1 subtype synthesis in neurons and neuroblasts.   总被引:4,自引:0,他引:4  
Rat cerebral cortex neurons contain the five histone H1 subtypes H1a-e and the subtype H1 zero present in other mammalian somatic tissues. The four subtypes H1a-d decay exponentially during postnatal development and are partially or totally replaced by H1e that becomes the major H1 subtype in adults. H1 zero accumulates in a period restricted to neuronal terminal differentiation. Here we study the synthesis of the H1 subtypes in cortical neurons and their neuroblasts by in vivo labeling with [14C]lysine. The subtype synthesis pattern of neuroblasts has been determined by labeling gravid rats during the period of proliferation of cortical neurons and synthesis in neurons has been studied by postnatal labeling. The subtype H1a is synthesized in neuroblasts but not in neurons and is therefore rapidly removed from neuronal chromatin. The synthesis of H1b and H1d is much lower in neurons than in neuroblasts so that these subtypes are replaced to a large extent during postnatal development. H1c is synthesized at levels much higher than the other subtypes both in neurons and neuroblasts, but its very high turnover, about one order of magnitude faster than that of H1e in neurons, favors its partial replacement during postnatal development. Comparison of the synthesis rates of H1 zero in newborn and 30-day-old rats shows that the accumulation of H1 zero in differentiating neurons is due to an increased level of synthesis.  相似文献   

11.
BACKGROUND INFORMATION: H1 histones are a protein family comprising several subtypes. Although specific functions of the individual subtypes could not be determined so far, differential roles are indicated by varied nuclear distributions as well as differential expression patterns of the H1 subtypes. Although the group of replication-dependent H1 subtypes is synthesized during S phase, the replacement H1 subtype, H1 degrees , is also expressed in a replication-independent manner in non-proliferating cells. Recently we showed, by protein biochemical analysis, that the ubiquitously expressed subtype H1x is enriched in the micrococcal nuclease-resistant part of chromatin and that, although it shares common features with H1 degrees , its expression is differentially regulated, since, in contrast to H1 degrees , growth arrest or induction of differentiation did not induce an accumulation of H1x. RESULTS: In the present study, we show that H1x exhibits a cell-cycle-dependent change of its nuclear distribution. This H1 subtype showed a nucleolar accumulation during the G(1) phase, and it was evenly distributed in the nucleus during S phase and G(2). Immunocytochemical analysis of the intranucleolar distribution of H1x indicated that it is located mainly in the condensed nucleolar chromatin. In addition, we demonstrate that the amount of H1x protein remained nearly unchanged during S phase progression, which is in contrast to the replication-dependent subtypes. CONCLUSION: These results suggest that the differential localization of H1x provides a mechanism for a control of H1x activity by means of shuttling between nuclear subcompartments instead of a controlled turnover of the protein.  相似文献   

12.
Y Okuno  Y Isegawa  F Sasao    S Ueda 《Journal of virology》1993,67(5):2552-2558
When mice were immunized with the A/Okuda/57 (H2N2) strain of influenza virus, a unique monoclonal antibody designated C179 was obtained. Although C179 was confirmed to recognize the hemagglutinin (HA) glycoprotein by immunoprecipitation assays, it did not show hemagglutination inhibition activity to any of the strains of the three subtypes of influenza A virus. However, it neutralized all of the H1 and H2 strains but not the H3 strains. Moreover, it inhibited polykaryon formation induced by the H1 and H2 strains but not by the H3 strains. Two antigenic variants against C179 were obtained, and nucleotide sequence analysis revealed that amino acid sequences, from 318 to 322 of HA1 and from 47 to 58 of HA2, conserved among H1 and H2 strains were responsible for the recognition of C179. Since the two sites were located close to each other at the middle of the stem region of the HA molecule, C179 seemed to recognize these sites conformationally. These data indicated that binding of C179 to the stem region of HA inhibits the fusion activity of HA and thus results in virus neutralization and inhibition of cell-cell fusion. This is the first report which describes the presence of conserved antigenic sites on HA not only in a specific subtype but also in two subtypes of influenza A virus.  相似文献   

13.
Antibody-dependent enhancement of the uptake of influenza A virus by Fc receptor-bearing cells was analyzed by using virus strains of the three human influenza A virus subtypes, A/PR/8/34 (H1N1), A/Japan/305/57 (H2N2), and A/Port Chalmers/1/73 (H3N2). Immune sera obtained from mice following primary infection with an H1N1, H2N2, or H3N2 subtype virus neutralized only virus of the same subtype; however, immune sera augmented the uptake of virus across subtypes. Immune sera from H1N1-infected mice augmented uptake of the homologous (H1N1) and H2N2 viruses. Antisera to the H2N2 virus augmented the uptake of virus of all subtypes (H1N1, H2N2, or H3N2). Antisera to the H3N2 virus augmented the uptake of the homologous (H3N2) and H2N2 viruses. These results show that subtype cross-reactive, nonneutralizing antibodies augment the uptake of influenza A virus strains of different subtypes. Antibodies to neuraminidase may contribute to the enhanced uptake of viruses of a different subtype, because N2-specific monoclonal antibodies augmented the uptake of both A/Japan/305/57 (H2N2) and A/Port Chalmers/1/73 (H3N2) viruses.  相似文献   

14.
HIV-1 subtype phylogeny is investigated using a previously developed computational model of natural amino acid site substitutions. This model, based on Boltzmann statistics and Metropolis kinetics, involves an order of magnitude fewer adjustable parameters than traditional substitution matrices and deals more effectively with the issue of protein site heterogeneity. When optimized for sequences of HIV-1 envelope (env) proteins from a few specific subtypes, our model is more likely to describe the evolutionary record for other subtypes than are methods using a single substitution matrix, even a matrix optimized over the same data. Pairwise distances are calculated between various probabilistic ancestral subtype sequences, and a distance matrix approach is used to find the optimal phylogenetic tree. Our results indicate that the relationships between subtypes B, C, and D and those between subtypes A and H may be closer than previously thought.  相似文献   

15.
16.
Monoclonal antibodies were used to study antigenic variation in the nucleoprotein of influenza A viruses. We found that the nucleoprotein molecule of the WSN/33 strain possesses at least five different determinants. Viruses of other influenza A virus subtypes showed antigenic variation in these nucleoprotein determinants, although changes in only one determinant were detected in H0N1 and animal strains. The nucleoprotein of human strains isolated from 1933 through 1979 could be divided into six groups, based on their reactivities with monoclonal antibodies; these groups did not correlate with any particular hemagglutinin or neuraminidase subtype. Our results indicate that antigenic variation in the nucleoproteins of influenza A viruses proceeds independently of changes in the viral surface antigens and suggest that point mutations and genetic reassortment may account for nucleoprotein variability.  相似文献   

17.
Formation of hemagglutinin spikes in the course of the mixed infection of cell culture by two influenza virus strains belonging to the same antigenic subtype or to different subtypes was studied by means of immunoprecipitation of [14C]-labelled hemagglutinins from cell lysates. The immunoprecipitates were further analysed by polyacrylamide gel electrophoresis. Lysates of separately infected cells mixed before lysis were used as control samples. The analysis of immunoprecipitates revealed the formation of chimeric hemagglutinin spikes in the cells infected by the strains possessing hemagglutinins of the same subtype but not in the cells infected by the strains of different subtypes (H1 and H3). The results are discussed in connection with the homology of amino-acid sequences of influenza virus hemagglutinins.  相似文献   

18.
The human immunodeficiency virus type 1 (HIV-1) epidemic in Southeast Asia has been largely due to the emergence of clade E (HIV-1E). It has been suggested that HIV-1E is derived from a recombinant lineage of subtype A (HIV-1A) and subtype E, with multiple breakpoints along the E genome. We obtained complete genome sequences of clade E viruses from Thailand (93TH057 and 93TH065) and from the Central African Republic (90CF11697 and 90CF4071), increasing the total number of HIV-1E complete genome sequences available to seven. Phylogenetic analysis of complete genomes showed that subtypes A and E are themselves monophyletic, although together they also form a larger monophyletic group. The apparent phylogenetic incongruence at different regions of the genome that was previously taken as evidence of recombination is shown to be not statistically significant. Furthermore, simulations indicate that bootscanning and pairwise distance results, previously used as evidence for recombination, can be misleading, particularly when there are differences in substitution or evolutionary rates across the genomes of different subtypes. Taken jointly, our analyses suggest that there is inadequate support for the hypothesis that subtype E variants are derived from a recombinant lineage. In contrast, many other HIV strains claimed to have a recombinant origin, including viruses for which only a single parental strain was employed for analysis, do indeed satisfy the statistical criteria we propose. Thus, while intersubtype recombinant HIV strains are indeed circulating, the criteria for assigning a recombinant origin to viral structures should include statistical testing of alternative hypotheses to avoid inappropriate assignments that would obscure the true evolutionary properties of these viruses.  相似文献   

19.
20.
To investigate the genomic patterns of influenza A virus subtypes, such as H3N2, H9N2, and H5N1, we collected 1842 sequences of the hemagglutinin and neuraminidase genes from the NCBI database and parsed them into 7 categories: accession number, host species, sampling year, country, subtype, gene name, and sequence. The sequences that were isolated from the human, avian, and swine populations were extracted and stored in a MySQL database for intensive analysis. The GC content and relative synonymous codon usage (RSCU) values were calculated using JAVA codes. As a result, correspondence analysis of the RSCU values yielded the unique codon usage pattern (CUP) of each subtype and revealed no extreme differences among the human, avian, and swine isolates. H5N1 subtype viruses exhibited little variation in CUPs compared with other subtypes, suggesting that the H5N1 CUP has not yet undergone significant changes within each host species. Moreover, some observations may be relevant to CUP variation that has occurred over time among the H3N2 subtype viruses isolated from humans. All the sequences were divided into 3 groups over time, and each group seemed to have preferred synonymous codon patterns for each amino acid, especially for arginine, glycine, leucine, and valine. The bioinformatics technique we introduce in this study may be useful in predicting the evolutionary patterns of pandemic viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号