首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of beta-adrenergic blockade on the drift in O2 consumption (VO2 drift) typically observed during prolonged constant-rate exercise was studied in 14 healthy males in moderate heat at 40% of maximal O2 consumption (VO2max). After an initial maximum cycle ergometer test to determine the subjects' control VO2max, subjects were administered each of three medications: placebo, atenolol (100 mg once daily), and propranolol (80 mg twice daily), in a randomized double-blind fashion. Each medication period was 5 days in length and was followed by a 4-day washout period. On the 3rd day of each medication period, subjects performed a maximal cycle ergometer test. On the final day of each medication period, subjects exercised at 40% of their control VO2max for 90 min on a cycle ergometer in a warm (31.7 +/- 0.3 degrees C) moderately humid (44.7 +/- 4.7%) environment. beta-Blockade caused significant (P less than 0.05) reductions in VO2max, maximal minute ventilation (VEmax), maximal heart rate (HRmax), and maximal exercise time. Significantly greater decreases in VO2max, VEmax, and HRmax were associated with the propranolol compared with the atenolol treatment. During the 90-min submaximal rides, beta-blockade significantly reduced heart rate. Substantially lower values for O2 consumption (VO2) and minute ventilation (VE) were observed with propranolol compared with atenolol or placebo. Furthermore, VO2 drift and HR drift were observed under atenolol and placebo conditions but not with propranolol. Respiratory exchange ratio decreased significantly over time during the placebo and atenolol trials but did not change during the propranolol trial.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Recently, various clinical studies have indicated that lipophilic beta-blockers reduce the coronary mortality in diabetic patients; however, systematic studies have not been reported. The objective of the present investigation was to compare the effects of chronic treatment with metoprolol and atenolol on cardiovascular complications in streptozotocin (STZ)-induced diabetic rats. Injection of STZ produced hyperglycemia, hypoinsulinemia, hyperlipidemia, increased blood pressure, cardiac hypertrophy, reduction in heart rate, and structural alterations in cardiac tissues. Metoprolol and atenolol effectively prevented the development of hypertension in diabetic rats. Metoprolol treatment produced a slight but significant reduction in serum glucose levels with elevation in serum insulin levels, while atenolol produced a slight increase in glucose levels but no effect on insulin levels. Moreover, neither metoprolol nor atenolol treatment reduced the elevated cholesterol levels in diabetic rats. Metoprolol treatment significantly prevented STZ-induced increase in triglyceride levels, but atenolol failed to produce this effect. Metoprolol exhibited a minimal improvement in STZ-induced bradycardia, whereas atenolol produced a further reduction in heart rate. Histological examination showed metoprolol treatment also prevented STZ-induced hypertrophy and some of the alterations in cardiomyocytes. In conclusion, our data suggest that metoprolol has some beneficial effects over atenolol with respect to cardiovascular complications associated with diabetes mellitus.  相似文献   

3.
Eight healthy volunteers performed gradational tests to exhaustion on a mechanically braked cycle ergometer, with and without the addition of an inspiratory resistive load. Mean slopes for linear ventilatory responses during loaded and unloaded exercise [change in minute ventilation per change in CO2 output (delta VE/delta VCO2)] measured below the anaerobic threshold were 24.1 +/- 1.3 (SE) = l/l of CO2 and 26.2 +/- 1.0 l/l of CO2, respectively (P greater than 0.10). During loaded exercise, decrements in VE, tidal volume, respiratory frequency, arterial O2 saturation, and increases in end-tidal CO2 tension were observed only when work loads exceeded 65% of the unloaded maximum. There was a significant correlation between the resting ventilatory response to hypercapnia delta VE/delta PCO2 and the ventilatory response to VCO2 during exercise (delta VE/delta VCO2; r = 0.88; P less than 0.05). The maximal inspiratory pressure generated during loading correlated with CO2 sensitivity at rest (r = 0.91; P less than 0.05) and with exercise ventilation (delta VE/delta VCO2; r = 0.83; P less than 0.05). Although resistive loading did not alter O2 uptake (VO2) or heart rate (HR) as a function of work load, maximal VO2, HR, and exercise tolerance were decreased to 90% of control values. We conclude that a modest inspiratory resistive load reduces maximum exercise capacity and that CO2 responsiveness may play a role in the control of breathing during exercise when airway resistance is artificially increased.  相似文献   

4.
Heart transplantation does not normalize exercise capacity or the ventilatory response to exercise. We hypothesized that excessive muscle reflex activity, as assessed by the muscle sympathetic nerve activity (MSNA) response to handgrip exercise, persists after cardiac transplantation and that this mechanism is related to exercise hyperpnea in heart transplant recipients (HTRs). We determined the MSNA, ventilatory, and cardiovascular responses to isometric and dynamic handgrips in 11 HTRs and 10 matched control subjects. Handgrips were followed by a post-handgrip ischemia to isolate the metaboreflex contribution to exercise responses. HTRs and control subjects also underwent recordings during isocapnic hypoxia and a maximal, symptom-limited, cycle ergometer exercise test. HTRs had higher resting MSNA (P < 0.01) and heart rate (P < 0.01) than the control subjects. Isometric handgrip increased MSNA in HTRs more than in the controls (P = 0.003). Dynamic handgrip increased MSNA only in HTRs. During post-handgrip ischemia, MSNA and ventilation remained more elevated in HTRs (P < 0.05). The MSNA and ventilatory responses to hypoxia were also higher in HTRs (both P < 0.04). In HTRs, metaboreflex overactivity was related to the ventilatory response to exercise, characterized by the regression slope relating ventilation to CO(2) output (r = +0.8; P < 0.05) and a lower peak ventilation (r = +0.81; P < 0.05) during cycle ergometer exercise tests. However, increased chemoreflex sensitivity (r = +0.91; P < 0.005), but not metaboreflex activity, accounted for the lower peak ventilation during exercise in a stepwise regression analysis. In conclusion, heart transplantation does not normalize muscle metaboreceptor activity; both increased metaboreflex and chemoreflex control are related to exercise intolerance in HTRs.  相似文献   

5.
Pulmonary gas exchange was measured in seven resting supine subjects breathing air or a dense gas mixture containing 21% O2 in sulfur hexafluoride (SF6). The mean value of the alveolar-arterial oxygen difference (AaDO2) decreased from 12.4 on air to 7.0 on SF6 (P less than 0.01), and increased again to 13.4 when air breathing resumed (P less than 0.01). No differences occurred between gas mixtures for O2 consumption, respiratory quotient, minute ventilation, breathing frequency, heart rate, or blood pressure, and the improved oxygen transfer could not be attributed to changes in cardiac output or mixed venous oxygen content in the one subject in which they were measured. These results are best explained by an altered distribution of ventilation during dense gas breathing, so that the ventilation-perfusion ratio (VA/Q) variance was reduced. Of several considered mechanisms, we favor one in which SF6 promotes cardiogenic gas mixing between peripheral parallel units having different alveolar gas concentrations. This mechanism allows for observed increases in arterial carbon dioxide tension and dead space-to-tidal volume ratio during dense gas breathing, and suggests that intraregional VA/Q variance accounts for at least one-half of the resting AaDO2 in healthy supine young men.  相似文献   

6.
The effects of beta 1 and beta 1/2 blockade on exercise capacity were studied in 9 healthy normotensive subjects. Progressive maximal bicycle ergometer tests, followed by an endurance test at 80% of maximal work load, were performed during randomized, double-blind 3 day treatment periods with placebo, atenolol (beta 1) and oxprenolol (beta 1/2). The reduction of maximal work capacity (ca. 10%) was similar with atenolol and oxprenolol, despite a more pronounced maximal heart rate reduction with atenolol (from 175 +/- 2 to 132 +/- 3 beats.min-1) than with oxprenolol (to 138 +/- 2 beats.min-1). Exercise time during the endurance test was reduced from 36 +/- 4 min with placebo to 27 +/- 3 min with atenolol (p less than 0.05) and 24 +/- 3 min with oxprenolol (p less than 0.01) (atenolol vs. oxprenolol: p less than 0.05). During the endurance test, plasma glycerol and non-esterified fatty acid concentrations were reduced with both atenolol and oxprenolol. The glycerol reduction was more pronounced with oxprenolol than with atenolol, plasma NEFA concentrations being similar. Plasma glucose and lactate concentrations were reduced by oxprenolol but not with atenolol. These data show that submaximal exercise capacity at work loads representing similar relative exercise intensities is reduced during non-selective and beta 1-selective beta blockade. This reduction may be related to the effects of beta 1 blockade on energy metabolism, with possibly an additional effect of beta 2 blockade.  相似文献   

7.
The responses to sublingual nifedipine (20 mg) and placebo were compared in normal subjects during two studies on cycle ergometer [progressive exercise and constant work-load exercise at approximately 60% of maximal O2 consumption (VO2max)]. The use of nifedipine did not modify maximal power, ventilation (VE), VO2, and heart rate (HR) at the end of the multistage progressive exercise (30-W increments every 3 min). Over the 45 min of the constant-load exercise and the ensuing 30-min recovery we observed with nifedipine compared with placebo 1) no differences in VO2, VE, respiratory exchange ratio, and systolic arterial blood pressure; 2) a higher HR (P less than 0.001) and lower diastolic arterial blood pressure (P less than 0.01); 3) a greater and more prolonged rise in norepinephrine (P less than 0.01) and growth hormone (P less than 0.001); 4) no significant differences in epinephrine and insulin and a lesser increase in glucagon during recovery (P less than 0.01); and 5) a lesser fall in blood glucose (P less than 0.01) and greater increase in acetoacetate (P less than 0.001), beta-hydroxybutyrate (P less than 0.05), and blood lactate (P less than 0.001). Our data do not support the hypothesis that nifedipine reduces hormonal secretions in vivo and are best explained by an enhanced secretion of catecholamines compensating for the primary vasodilator effect of nifedipine.  相似文献   

8.
In five patients with hypoxic chronic bronchitis and emphysema we measured ear O2 saturation (SaO2), chest movement, oronasal airflow, arterial and mixed venous gas tensions, and cardiac output during nine hypoxemic episodes (HE; SaO2 falls greater than 10%) in rapid-eye-movement (REM) sleep and during preceding periods of stable oxygenation in non-REM sleep. All nine HE occurred with recurrent short episodes of reduced chest movement, none with sleep apnea. The arterial PO2 (PaO2) fell by 6.0 +/- 1.9 (SD) Torr during the HE (P less than 0.01), but mean arterial PCO2 (PaCO2) rose by only 1.4 +/- 2.4 Torr (P greater than 0.4). The arteriovenous O2 content difference fell by 0.64 +/- 0.43 ml/100 ml of blood during the HE (P less than 0.05), but there was no significant change in cardiac output. Changes observed in PaO2 and PaCO2 during HE were similar to those in four normal subjects during 90 s of voluntary hypoventilation, when PaO2 fell by 12.3 +/- 5.6 Torr (P less than 0.05), but mean PaCO2 rose by only 2.8 +/- 2.1 Torr (P greater than 0.4). We suggest that the transient hypoxemia which occurs during REM sleep in patients with chronic bronchitis and emphysema could be explained by hypoventilation during REM sleep but that the importance of changes in distribution of ventilation-perfusion ratios cannot be assessed by presently available techniques.  相似文献   

9.
We evaluated the effects of a large (920 cal) liquid carbohydrate (CHO) load on the maximum exercise capacity of 18 patients with chronic airflow obstruction [forced expiratory volume at at 1 s (FEV1) = 1.27 +/- 0.48 liters; FEV1/forced vital capacity = 0.41 +/- 0.11]. Patients underwent duplicate incremental cycle ergometer exercise tests to a symptom-limited maximum following CHO and a liquid placebo in single-blind fashion. Expired gas measurements were obtained during each power output. In 12 patients arterial blood gases were measured, and in six patients venous blood was obtained for measurement of glucose, electrolytes, and osmolality. With CHO, the maximum power output decreased from 86 +/- 30 to 76 +/- 31 W (P less than 0.001), whereas the ventilation at exhaustion was nearly identical (47.6 +/- 13.2 and 46.8 +/- 12.5 l/min). Arterial partial pressure of CO2 (PaCO2) at exhaustion decreased (P less than 0.025), arterial partial pressure of O2 (PaO2) increased (P less than 0.01), and the ventilatory equivalent for CO2 (VE/VCO2) increased (P less than 0.005) with CHO. At equivalent power outputs, CHO resulted in significant increases in VE (P less than 0.001) and VCO2 (P less than 0.001); PaCO2 was unchanged, whereas PaO2 increased (P less than 0.01). CHO increased the serum glucose at rest and during exercise. No changes in serum osmolality or electrolytes occurred during exercise following CHO. After CHO loading, the majority of patients appeared to reach their limiting level of ventilation at a lower power output. In contrast, there was no significant difference in the mean maximum power output with CHO in six normal control subjects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Arterial pH, PCO2, standard bicarbonate, lactate, and ventilation were measured with a high sampling density during rest, exercise, and recovery in normal subjects performing upright cycle ergometer exercise. Three 6-min constant-work exercise tests (moderate, heavy, and very heavy) were performed by each subject. We found a small respiratory acidosis during the moderate-intensity exercise and an early respiratory acidosis followed by a metabolic acidosis for the heavy- and very-heavy-intensity exercise. During recovery, arterial pH rapidly returned to the preexercise value for the moderate-intensity work. However, arterial pH decreased further during the first 2 min of recovery for the heavy- and very-heavy-intensity work, before a slower return toward the resting values. We conclude that arterial acidosis is the consistent arterial pH reaction for moderate-, heavy-, and very-heavy-intensity cycle ergometer exercise in humans and that this acidosis is blunted but not eliminated by the ventilatory response. During recovery, the return to resting arterial pH and PCO2 and standard bicarbonate appears to be determined by the rate of lactate decline.  相似文献   

11.
The purpose of these experiments was to examine the temporal pattern of arterial carbon dioxide tension (PaCO2) to assess the relationship between alveolar ventilation (VA) and CO2 return to the lung at the onset and offset of submaximal treadmill exercise. Five healthy ponies exercised for 8 min at two work rates: 50 m/min 6% grade and 70 m/min 12% grade. PaCO2 decreased (P less than 0.05) below resting values within 1 min after commencement of exercise at both work rates and reached a nadir at 90 s. PaCO2 decreased maximally by 2.5 and 3.5 Torr at the low and moderate rate, respectively. After the nadir, PaCO2 increased across time during both work rates and reached values that were not significantly different (P greater than 0.05) from rest at minute 4 of exercise. Partial pressure of O2 in arterial blood and arterial pH reflected hyperventilation during the first 3 min of exercise. At the termination of exercise PaCO2 increased (1.5 Torr) above rest (P less than 0.05), reaching a zenith at 2-3 min of recovery. These data suggest that VA and CO2 flow to the lung are not tightly matched at the onset and offset of exercise in the pony and thus challenges the traditional concept of blood gas homeostasis during muscular exercise.  相似文献   

12.
The effect of an exercise-induced reduction in blood O2-carrying capacity on ventilatory gas exchange and acid-base balance during supramaximal exercise was studied in six males [peak O2 consumption (VO2peak), 3.98 +/- 0.49 l/min]. Three consecutive days of supramaximal exercise resulted in a preexercise reduction of hemoglobin concentration from 15.8 to 14.0 g/dl (P less than 0.05). During exercise (120% VO2peak) performed intermittently (1 min work to 4 min rest); a small but significant (P less than 0.05) increase was found for both O2 consumption (VO2) (l X min) and heart rate (beats/min) on day 2 of the training. On day 3, VO2 (l/min) was reduced 3.2% (P less than 0.05) over day 1 values. No changes were found in CO2 output and minute ventilation during exercise between training days. Similarly, short-term training failed to significantly alter the changes in arterialized blood PCO2, pH, and [HCO-3] observed during exercise. It is concluded that hypervolemia-induced reductions in O2-carrying capacity in the order of 10-11% cause minimal impairment to gas exchange and acid-base balance during supramaximal non-steady-state exercise.  相似文献   

13.
The contribution of pH to exercise-induced arterial O2 desaturation was evaluated by intravenous infusion of sodium bicarbonate (Bic, 1 M; 200-350 ml) or an equal volume of saline (Sal; 1 M) at a constant infusion rate during a "2,000-m" maximal ergometer row in five male oarsmen. Blood-gas variables were corrected to the increase in blood temperature from 36.5 +/- 0.3 to 38.9 +/- 0.1 degrees C (P < 0.05; means +/- SE), which was established in a pilot study. During Sal exercise, pH decreased from 7.42 +/- 0.01 at rest to 7.07 +/- 0.02 but only to 7.34 +/- 0.02 (P < 0.05) during the Bic trial. Arterial PO2 was reduced from 103.1 +/- 0.7 to 88.2 +/- 1.3 Torr during exercise with Sal, and this reduction was not significantly affected by Bic. Arterial O2 saturation was 97.5 +/- 0.2% at rest and decreased to 89.0 +/- 0.7% during Sal exercise but only to 94.1 +/- 1% with Bic (P < 0.05). Arterial PCO2 was not significantly changed from resting values in the last minute of Sal exercise, but in the Bic trial it increased from 40.5 +/- 0.5 to 45.9 +/- 2.0 Torr (P < 0.05). Pulmonary ventilation was lowered during exercise with Bic (155 +/- 14 vs. 142 +/- 13 l/min; P < 0.05), but the exercise-induced increase in the difference between the end-tidal O2 pressure and arterial PO2 was similar in the two trials. Also, pulmonary O2 uptake and changes in muscle oxygenation as determined by near-infrared spectrophotometry during exercise were similar. The enlarged blood-buffering capacity after infusion of Bic attenuated acidosis and in turn arterial desaturation during maximal exercise.  相似文献   

14.
The cardiac function was studied by radionuclide cardiography in eight healthy subjects at rest and during submaximal upright exercise before and after autonomic blockade with metoprolol and atropine. At rest the median stroke volume was reduced by 21% during autonomic blockade (P less than 0.01), but cardiac output was maintained by a concomitant increase in heart rate. The systolic blood pressure was reduced from 120 to 105 mmHg (P less than 0.01), and left ventricular ejection fraction was reduced from 61 to 56% (P less than 0.05). After autonomic blockade the heart rate reached during exercise was the same. Stroke volume and cardiac output were maintained through cardiac dilation. The increase in left ventricular end-diastolic volume was 31 vs. 10% during control conditions (P less than 0.01). The systolic blood pressure was reduced from 174 to 135 mmHg (P less than 0.01). Left ventricular ejection fraction was reduced from 75 to 67% (P less than 0.05), but the increase from rest to exercise was preserved. Total peripheral resistance was reduced by 17% (P less than 0.05). These findings suggest that the heart possesses intrinsic mechanisms to maintain cardiac output during submaximal upright exercise. End-diastolic dilation results in a preserved stroke volume despite a reduced contractility.  相似文献   

15.
Effects of increased ventilation on lung lymph flow in unanesthetized sheep   总被引:1,自引:0,他引:1  
To determine the effect of an increase in spontaneous minute ventilation on lung fluid balance, we added external dead space to the breathing circuit of six tracheostomized, unanesthetized, spontaneously breathing sheep in which lung lymph fistulas had been created surgically. The addition of 120-180 ml of dead space caused minute ventilation to increase by 50-100% (secondary to increases in both tidal volume and frequency), without changing pulmonary arterial pressure, pulmonary capillary wedge pressure, cardiac output, or arterial blood gas tensions. The increase in spontaneous ventilation was associated with an average increase of 27% in lung lymph flow (P less than 0.05) and an average reduction of 11% in the lymph-to-plasma concentration ratio (L/P) for total protein (P less than 0.05). Lymph flow and L/P for total protein approached stable values after 2-3 h of hyperpnea, and the increase in lymph flow persisted for at least 18 h of dead-space breathing. Removal of dead space was associated with a rapid return (within 45 min) of lymph flow to base-line levels. These results suggest that hyperpnea increases the pulmonary transvascular filtration rate. Since no changes in vascular pressures or cardiac output were observed, this increase in transvascular filtration is most likely due to a fall in interstitial fluid pressure.  相似文献   

16.
Previous studies (J. Appl. Physiol. 58: 978-988 and 989-995, 1985) have shown both worsening ventilation-perfusion (VA/Q) relationships and the development of diffusion limitation during heavy exercise at sea level and during hypobaric hypoxia in a chamber [fractional inspired O2 concentration (FIO2) = 0.21, minimum barometric pressure (PB) = 429 Torr, inspired O2 partial pressure (PIO2) = 80 Torr]. We used the multiple inert gas elimination technique to compare gas exchange during exercise under normobaric hypoxia (FIO2 = 0.11, PB = 760 Torr, PIO2 = 80 Torr) with earlier hypobaric measurements. Mixed expired and arterial respiratory and inert gas tensions, cardiac output, heart rate (HR), minute ventilation, respiratory rate (RR), and blood temperature were recorded at rest and during steady-state exercise in 10 normal subjects in the following order: rest, air; rest, 11% O2; light exercise (75 W), 11% O2; intermediate exercise (150 W), 11% O2; heavy exercise (greater than 200 W), 11% O2; heavy exercise, 100% O2 and then air; and rest 20 minutes postexercise, air. VA/Q inequality increased significantly during hypoxic exercise [mean log standard deviation of perfusion (logSDQ) = 0.42 +/- 0.03 (rest) and 0.67 +/- 0.09 (at 2.3 l/min O2 consumption), P less than 0.01]. VA/Q inequality was improved by relief of hypoxia (logSDQ = 0.51 +/- 0.04 and 0.48 +/- 0.02 for 100% O2 and air breathing, respectively). Diffusion limitation for O2 was evident at all exercise levels while breathing 11% O2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Pulmonary gas exchange in humans during exercise at sea level   总被引:3,自引:0,他引:3  
Previous studies have shown both worsening ventilation-perfusion (VA/Q) relationships and the development of diffusion limitation during exercise at simulated altitude and suggested that similar changes could occur even at sea level. We used the multiple-inert gas-elimination technique to further study gas exchange during exercise in healthy subjects at sea level. Mixed expired and arterial respiratory and inert gas tensions, cardiac output, heart rate, minute ventilation, respiratory rate, and blood temperature were recorded at rest and during steady-state exercise in the following order: rest, minimal exercise (75 W), heavy exercise (300 W), heavy exercise breathing 100% O2, repeat rest, moderate exercise (225 W), and light exercise (150 W). Alveolar-to-arterial O2 tension difference increased linearly with O2 uptake (VO2) (6.1 Torr X min-1 X 1(-1) VO2). This could be fully explained by measured VA/Q inequality at mean VO2 less than 2.5 l X min-1. At higher VO2, the increase in alveolar-to-arterial O2 tension difference could not be explained by VA/Q inequality alone, suggesting the development of diffusion limitation. VA/Q inequality increased significantly during exercise (mean log SD of perfusion increased from 0.28 +/- 0.13 at rest to 0.58 +/- 0.30 at VO2 = 4.0 l X min-1, P less than 0.01). This increase was not reversed by 100% O2 breathing and appeared to persist at least transiently following exercise. These results confirm and extend the earlier suggestions (8, 21) of increasing VA/Q inequality and O2 diffusion limitation during heavy exercise at sea level in normal subjects and demonstrate that these changes are independent of the order of performance of exercise.  相似文献   

18.
The kinetics of oxygen uptake (VO2) were assessed in 17 normal subjects with beta-blockade and placebo. beta-blockade was achieved with either 50 mg oral metoprolol or 40 mg oral propranolol, each twice per day. Tests were conducted on the cycle ergometer at work rates approximating 80% of the work rate at ventilatory anaerobic threshold. Work rate was initiated as a square wave starting from prior rest. Data obtained 48 h, 1 week, and 4 weeks after starting drug or placebo were pooled to increase the number of points for regression analysis of kinetic parameters. While there were no differences in the plateau values for VO2 with and without beta-blockade, the rate of adaptation to steady state was significantly slower with beta-blockade than with placebo (P less than 0.05). This resulted in an increase of oxygen deficit by approximately 200 ml O2. Cardiac output measured by CO2 rebreathing was significantly reduced by beta-blockade (metoprolol by 4.1%, propranolol by 12.2%, both P less than 0.05). Blood lactate concentration was unaffected by beta-blockade. It was concluded that the influence of beta-blockade on the oxygen transport system was responsible for the significantly slower increase of VO2 to steady state in submaximal exercise.  相似文献   

19.
Bed rest deconditioning was assessed in seven healthy men (19-22 yr) following three 14-day periods of controlled activity during recumbency by measuring submaximal and maximal oxygen uptake (VO2), ventilation (VE), heart rate, and plasma volume. Exercise regimens were performed in the supine position and included a) two 30-min periods daily of intermittent static exercise at 21% of maximal leg extension force, and b) two 30-min periods of dynamic bicycle ergometer exercise daily at 68% of VO2max. No prescribed exercise was performed during the third bed rest period. Compared with their respective pre-bed rest control values, VO2max decreased (P less than 0.05) under all exercise conditions; -12.3% with no exercise, -9.2% with dynamic exercise, but only -4.8% with static exercise. Maximal heart rate was increased by 3.3% to 4.9% (P less than 0.05) under the three exercise conditions, while plasma volume decreased (P less than 0.05) -15.1% with no exercise and -10.1% with static, but only -7.8% (NS) with dynamic exercise. Since neither the static nor dynamic exercise training regimes minimized the changes in all the variables studied, some combination of these two types of exercise may be necessary for maximum protection from the effects of the bed deconditioning.  相似文献   

20.
The effect of verapamil (240 mg) on exercise capacity was studied during a short graded and a single-level endurance exercise test in 12 normal volunteers; it was compared to the effects of atenolol (100 mg x day-1). Intake of verapamil, atenolol and placebo, administered according to a randomized, double-blind cross-over design, was started 3 days before the exercise tests. Compared to placebo, verapamil did not affect peak oxygen uptake in the graded test or exercise duration in the endurance test. Heart rate, systolic blood pressure, rating of perceived exertion and respiratory data at submaximal and peak exercise were unaffected in either test. On the other hand atenolol reduced maximal oxygen uptake by 5% (p less than 0.001) and endurance exercise duration by 17% (p less than 0.05). Besides marked decreases in heart rate and systolic blood pressure during the two types of exercise, atenolol also reduced oxygen uptake at submaximal exercise levels and it increased the rating of perceived exertion (p less than 0.05), the latter only during the endurance exercise test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号