首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Structure of the nucleosome core particle at 8 A resolution   总被引:1,自引:0,他引:1  
The x-ray crystallographic structure of the nucleosome core particle has been determined using 8 A resolution diffraction data. The particle has a mean diameter of 106 A and a maximum thickness of 65 A in the superhelical axis direction. The longest chord through the histone core measures 85 A and is in a non-axial direction. The 1.87 turn superhelix consists of B-DNA with about 78 base pairs or 7.6 helical repeats per superhelical turn. The mean DNA helical repeat contains 10.2 +/- 0.05 base pairs and spans 35 A, slightly more than standard B-DNA. The superhelix varies several Angstroms in radius and pitch, and has three distinct domains of curvature (with radii of curvature of 60, 45 and 51 A). These regions are separated by localized sharper bends +/- 10 and +/- 40 base pairs from the center of the particle, resulting in an overall radius of curvature about 43 A. Compression of superhelical DNA grooves on the inner surface and expansion on the outer surface can be seen throughout the DNA electron density. This density has been fit with a double helical ribbon model providing groove width estimates of 12 +/- 1 A inside vs. 19 +/- 1 A outside for the major groove, and 8 +/- 1 A inside vs. 13 +/- 1 A outside for the minor groove. The histone core is primarily contained within the bounds defined by the superhelical DNA, contacting the DNA where the phosphate backbone faces in toward the core. Possible extensions of density between the gyres have been located, but these are below the significance level of the electron density map. In cross-section, a tripartite organization of the histone octamer is apparent, with the tetramer occupying the central region and the dimers at the extremes. Several extensions of histone density are present which form contacts between nucleosomes in the crystal, perhaps representing flexible or "tail" histone regions. The radius of gyration of the histone portion of the electron density is calculated to be 30.4 A (in reasonable agreement with solution scattering values), and the histone core volume in the map is 93% of its theoretical volume.  相似文献   

2.
The structure of the nucleosome core particle in solution has been studied by neutron scattering using the full-contrast variation technique, which reduces the experimental spectra to three fundamental scatter functions holding information on shape and structure. Systematic calculations of the fundamental scatter functions expected from proposed core-particle models have been compared with the observed functions and show that the neutron-scattering criteria severely restrict the number of models which can be valid for the structure in solution. The best model for the core particle in solution has a hydrophobic histone core about which 1.7 ± 0.1 turns of DNA are wrapped at a pitch between 3.0 and 3.5 nm. This core contains most of the histone and has an average thickness of 4 nm and diameter 6.4–7.5 nm. While solution scattering is not able to specify uniquely the actual shape of the core to high resolution, all models which are possible for the shape of the core to a resolution justified by the data have been considered. It is clear that cylindrical or wedge shapes compatible with the above dimensions are valid structures. A hole probably penetrates the histone core, but the data do not allow a diameter greater than 1 nm. Available evidence suggests that about a quarter of the total histone is outside the core.  相似文献   

3.
The tetrameric (H3/H4)2 146 base pair (bp) DNA and hexameric (H3/H4)2(H2A/H2B)1 146 bp DNA subnucleosomal particles have been prepared by depletion of chicken erythrocyte core particles using 3 or 4 M urea, 250 mM sodium chloride, and a cation-exchange resin. The particles have been characterized by cross-linking and sedimentation equilibrium. The structures of the particles, particularly the tetrameric, have been studied by sedimentation velocity, low-angle neutron scattering, circular dichroism, optical melting, and nuclease digestion with DNase I, micrococcal nuclease, and exonuclease III. It is concluded that since the radius of gyration of the DNA in the tetramer particle and its maximum dimension are very close to those of the core particle, no expansion occurs on removal of all the H2A and H2B. Nuclease digestion results indicate that histones H3/H4 in the tetramer particle protect a total of 70 bp of DNA that are centrally located within the 146 bp. Within the 70 bp DNA length, the two terminal regions of 10 bp are, however, not strongly protected from digestion. The optical melting profile of both particles can be resolved into three components and is consistent with the model of histone protection of DNA proposed from nuclease digestion. The structure proposed for the tetrameric histone complex bound to DNA is that of a compact particle containing 1.75 superhelical turns of DNA, in which the H3 and H4 histone location is the same as found for the core particle in chromatin by histone/DNA cross-linking [Shick, V. V., Belyavsky, A. V., Bavykin, S. G., & Mirzabekov, A. D. (1980) J. Mol. Biol. 139, 491-517]. Optical melting of the hexamer particle shows that each (H2A/H2B)1 dimer of the core particle protects about 22 base pairs of DNA.  相似文献   

4.
In the nucleus of eukaryotic cells, histone proteins organize the linear genome into a functional and hierarchical architecture. In this paper, we use the crystal structures of the nucleosome core particle, B-DNA and the globular domain of H5 linker histone to build the first all-atom model of compact chromatin fibers. In this 3D jigsaw puzzle, DNA bending is achieved by solving an inverse kinematics problem. Our model is based on recent electron microscopy measurements of reconstituted fiber dimensions. Strikingly, we find that the chromatin fiber containing linker histones is a polymorphic structure. We show that different fiber conformations are obtained by tuning the linker histone orientation at the nucleosomes entry/exit according to the nucleosomal repeat length. We propose that the observed in vivo quantization of nucleosomal repeat length could reflect nature's ability to use the DNA molecule's helical geometry in order to give chromatin versatile topological and mechanical properties.  相似文献   

5.
Low-angle neutron scattering from chromatin subunit particles.   总被引:22,自引:12,他引:10       下载免费PDF全文
Monomer chromatin particles containing 140 base pairs of DNA and eight histone molecules have been studied by neutron scattering. From measurements in various H2O/D2O mixtures, radii of gyration and the average scattering density of the particle were determined. The radius of gyration under conditions when scattering from the DNA dominates is 50A, and when scattering from the protein dominates, 30A. Consequently the core of the particle is largely occupied by the histones while the outer shell consists of DNA together with some of the histone.  相似文献   

6.
Rat liver chromatin core particles digested with clostripain yield a structurally well-defined nucleoprotein particle with an octameric core made up of fragmented histone species (designated H'2A, H'2B, H'3 and H'4, respectively) after selective loss of a sequence segment located in the N-terminal region of each core histone. Sequential Edman degradation and carboxypeptidase digestion unambiguously establish that histones H2A, H2B, H3 and H4 are selectively cleaved at the carboxyl side of Arg 11, Lys 20, Arg 26 and Arg 19 respectively and that the C-terminal sequences remain unaffected. Despite the loss of the highly basic N-terminal regions, including approximately 17% of the total amino acids, the characteristic structural organization of the nucleosome core particle appears to be fully retained in the proteolyzed core particle, as judged by physicochemical and biochemical evidence. Binding of spermidine to native and proteolyzed core particles shows that DNA accessibility differs markedly in both structures. As expected the proteolyzed particle, which has lost all the in vivo acetylation sites, is not enzymatically acetylated, in contrast to the native particle. However, proteolyzed histones act as substrates of the acetyltransferase in the absence of DNA, as a consequence of the occurrence of potential acetylation sites in the core histones thus rendered accessible. The possible role of the histone N-terminal regions on chromatin structure and function is discussed in the light of the present observations with the new core particle obtained by clostripain proteolysis.  相似文献   

7.
Recent studies report that the frictional resistance of partially acetylated core particles increases when the number of acetyl groups/particle exceeds 10 (Bode, J., Gomez-Lira, M. M. & Schr?ter, H. (1983) Eur. J. Biochem. 130, 437-445). This was attributed to an opening of the core particle though other explanations, e.g. unwinding of the DNA ends were also suggested. Another possible explanation is that release of the core histone N-terminal domains by acetylation increased the frictional resistance of the particle. Neutron scatter studies have been performed on core particles acetylated to different levels up to 2.4 acetates/H4 molecule. Up to this level of acetylation the neutron scatter data show no evidence for unfolding of the core particle. The fundamental scatter functions for the envelope shape and internal structure are identical to those obtained previously for bulk core particles. The structure that gave the best fit to these fundamental scatter functions was a flat disc of diameter 11-11.5 nm and of thickness 5.5-6 nm with 1.7 +/- 0.2 turns of DNA coiled with a pitch of 3.0 nm around a core of the histone octamer. The data analysis emphasizes the changes in pair distance distribution functions at relatively low contrasts, particularly when the protein is contrast matched and DNA dominates the scatter. Under these conditions there is no evidence for the unwinding of long DNA ends in the hyperacetylated core particles. The distance distribution functions go to zero between 11.5 and 12 nm which gives the maximum chord length in a particle of dimension, 11 nm X 5.5 nm. The distance distribution function for the histone octamer contains 85% of the vectors within the 7.0-nm diameter of the histone core. 15% of the histone vectors lie between 7.0 and 12.0 nm, and these are attributed to the N-terminal domains of the core histones which extend out from the central histone core. Histone vectors extending beyond 7.0 nm are necessary to account for the measured radius of gyration of the histone core of 3.3 nm. A similar value of 3.2 nm is calculated for the recent ellipsoidal shape of 11.0 X 6.5 X 6.5 nm from the crystal structure of the octamer. However, the nucleosome model based on this structure is globular, roughly 11 nm in diameter, which does not accord with the flat disc shape core particle obtained from detailed neutron scatter data nor with the cross-section radii of gyration of the histone and DNA found previously for extended chromatin in solution.  相似文献   

8.
The structure of the chromatin core particle in solution.   总被引:25,自引:15,他引:10       下载免费PDF全文
The shape and size of the nucleosomal core particle from chromatin has been examined by analysis of neutron and X-ray scattering data from dilute solutions. Calculations of scattering for many different models have been made and only one model was able to account for both the X-ray and neutron profiles. This model is an oblate structure with height about 50A and diameter 110A. The DNA is mainly confined to two annuli located at the top and bottom respectively of the core particle positioned on the outside of a compact protein core which has a height of about 40A and diameter about 73A.  相似文献   

9.
Crystals have been grown of intact (unproteolysed) nucleosome cores from a variety of sources. The unit cells are all very similar, with one core particle per asymmetric unit. The X-ray diffraction patterns extend to about 5 Å in the direction perpendicular to the plane of the flat particle, and to somewhat less than this in other directions. The arrangement of particles in the unit cell has been deduced from Patterson projection maps, which also indicate the presence of a particle dyad. The data are consistent with the earlier proposed model for the core particle in which the 146 base-pairs of DNA are wound in about 134 turns of superhelix about a histone octamer core.High angle diffuse X-ray scattering from the crystals shows that the DNA of the core particle is in the B form. The anisotropy of the diffuse scattering shows that the DNA is not firmly fixed to the histone core all along the superhelix path, but only over limited regions whose location correlates well with those in which the DNA is differentially protected against nuclease digestion.  相似文献   

10.
We have digested chicken erythrocyte soluble chromatin, both unstripped and stripped of histones H1 and H5 with either 0.6 M NaCl or DNA-cellulose, with micrococcal nuclease (MNase). Digestion of unstripped chromatin to monomeric particles initially paused at 188 bp DNA; continued digestion resulted in another pause at 177 before the 167 bp chromatosome and 146 bp core particle were obtained. Digestion of stripped chromatin to monomeric particles paused transiently at 177 bp; continued digestion resulted in marked pauses at 167 and 156 before the 146 bp core particle was obtained. These results suggested that 167 bp DNA representing two complete turns are bound to the histone octamer. Histone H1/H5 binds an additional two helical turns of DNA, thereby protecting up to 188 bp DNA against nuclease digestion. Monomeric particles containing 167 bp DNA were isolated from stripped chromatin and found by DNase I digestion to be a homogeneous population with a 10 bp DNA extension to either end relative to the 146 bp core particle. Thermal denaturation and circular dichroism spectroscopy showed stronger histone-DNA interactions and increased DNA winding as the length of DNA attached to the core histone octamer was decreased. Thermal denaturation also showed three classes of histone-DNA interaction: the core particle containing 167 bp DNA had tight binding of ten helical turns of DNA, intermediate binding of two helical turns and looser binding of four helical turns.  相似文献   

11.
Neutron scattering studies have been applied to chromatin core particles in solution, using the contrast variation technique. On the basis of the contrast dependance of the radius of gyration and the radial distribution function it is shown that the core particle consists of a core containing most of the histone around which is wound the DNA helix,following a path with a mean radius of 4.5 nm,in association with a small proportion of the histones. Separation of the shape from the internal structure, followed by model calculations shows that the overall shape of the particle is that of a flat cylinder with dimensions ca. 11x11x6 nm. Further details of the precise folding of the DNA cannot be deduced from the data, but detailed model calculations support concurrent results from crystallographic studies(25).Images  相似文献   

12.
13.
14C]acetate metabolism in the peripheral nervous system   总被引:1,自引:0,他引:1  
A method for the complete and specific removal of histones H2A and H2B from nucleosome core particles is presented. Reconstitution of the separated products of depletion form a particle which has the same structure as native core particles as judged by a number of physical and biochemical criteria. The technique described also minimises the possibility of the formation of reconstituted core particles with different histone stoichiometries. These experiments are important as they demonstrate a procedure which can be extended to prepare core particles with selectively deuterated components while maintaining complete integrity of structure. When prepared, and studied by neutron scattering, selectively-deuterated core particles can give detailed information with respect to the relative positions and structure of the histone fractions within the core particle.  相似文献   

14.
A model for the initiation of the diffuse-condensed transition of chromatin induced by a change in the conformation of lysine-rich histones is proposed. Three levels of folded structures are discussed. The first-order folded structure refers to the structure of the repeat unit of chromatin, which is called the nucleosome. The nucleosome contains a nuclease resistant region in which 140 base pairs of DNA are wrapped around the surface of a histone aggregated of two copies each of the histones H2A, H2B, H3 and H4. This DNA-histone aggregate is called a core particle. The nuclease accessible region of the nucleosome is approximately 60 base pairs of DNA which link the core particle, hence the terminology “linker DNA.” The lysine-rich histones, (Hl, H5), which are more loosely bound than the core histones, are associated with the linker DNA. The second-order folded structure refers to the conformation of a polynucleosome. Based on neutron scattering and quasielastic light scattering studies the second-order folded structure is assumed to be an extended helix in solution with 5–7 nucleosome units per turn. The third-order folded structure is defined as that structure resulting from the first stage in the condensation process induced by a conformational change in the lysine-rich histones. Generation of the third-order folded structure in the proposed model is effected by an increased affinity of the lysine-rich histones for super-helical DNA in the core particles in adjacent turns of the second-order folded structure. Since the lysine-rich histones preferentially bind to A-T rich regions in DNA, the distribution of these regions would determine the third-order folded structure. The net effect of a non-random distribution of A-T rich regions as in the proposed model is the generation of a helix for the third-order folded structure. The assumption of a non-random distribution of A-T rich regions is indirectly supported by proflavine binding studies reported herein and by the existence of repetitive and non-repetitive DNA regions inferred from renaturation studies. One consequence of the proposed mechanism is that the majority of the A-T rich regions are in the interior of the third-order folded structure. Promoter sites of high A-T content would then be inaccessible to polymerases. The proposed model also suggests a role for spacer DNA in the genome. Higher order folded structures must also be present in the final state of condensed chromatin since the three orders of folded structures considered in this communication accounts for only 2% of that required in the diffuse-condensed transition.  相似文献   

15.
The roles and interdependence of DNA sequence and archaeal histone fold structure in determining archaeal nucleosome stability and positioning have been determined and quantitated. The presence of four tandem copies of TTTAAAGCCG in the polylinker region of pLITMUS28 resulted in a DNA molecule with increased affinity (DeltaDeltaG of approximately 700 cal mol(-1)) for the archaeal histone HMfB relative to the polylinker sequence, and the dominant, quantitative contribution of the helical repeats of the dinucleotide TA to this increased affinity has been established. The rotational and translational positioning of archaeal nucleosomes assembled on the (TTTAAAGCCG)(4) sequence and on DNA molecules selectively incorporated into archaeal nucleosomes by HMfB have been determined. Alternating A/T- and G/C-rich regions were located where the minor and major grooves, respectively, sequentially faced the archaeal nucleosome core, and identical positioning results were obtained using HMfA, a closely related archaeal histone also from Methanothermus fervidus. However, HMfA did not have similarly high affinities for the HMfB-selected DNA molecules, and domain-swap experiments have shown that this difference in affinity is determined by residue differences in the C-terminal region of alpha-helix 3 of the histone fold, a region that is not expected to directly interact with DNA. Rather this region is thought to participate in forming the histone dimer:dimer interface at the center of an archaeal nucleosome histone tetramer core. If differences in this interface do result in archaeal histone cores with different sequence preferences, then the assembly of alternative archaeal nucleosome tetramer cores could provide an unanticipated and novel structural mechanism to regulate gene expression.  相似文献   

16.
The assembly of hybrid core particles onto long chicken DNA with histone H2B in the chicken histone octamer replaced with either wheat histone H2B(2) or sea urchin sperm histone H2B(1) or H2B(2) is described. All these histone H2B variants have N-terminal extensions of between 18 and 20 amino acids, although only those from sea urchin sperm have S(T)PXX motifs present. Whereas chicken histone octamers protected 167 base pairs (bp) (representing two full turns) of DNA against micrococcal nuclease digestion (Lindsey, G. G., Orgeig, S., Thompson, P., Davies, N., and Maeder, D. L. (1991) J. Mol. Biol. 218, 805-813), all the hybrid histone octamers protected an additional 17-bp DNA against nuclease digestion. This protection was more marked in the case of hybrid octamers containing sea urchin sperm histone H2B variants and similar to that described previously (Lindsey, G. G., Orgeig, S., Thompson, P., Davies, N., and Maeder, D. L. (1991) J. Mol. Biol. 218, 805-813) for hybrid histone octamers containing wheat histone H2A variants all of which also have S(T)PXX motifs present. Continued micrococcal nuclease digestion reduced the length of DNA associated with the core particle via 172-, 162-, and 152-bp intermediates until the 146-bp core particle was obtained. These DNA lengths were approximately 5 bp or half a helical turn longer than those reported previously for stripped chicken chromatin and for core particles containing histone octamers reconstituted using "normal" length histone H2B variants. This protection pattern was also found in stripped sea urchin sperm chromatin, demonstrating that the assembly/digestion methodology reflects the in vivo situation. The interaction between the N-terminal histone H2B extension and DNA of the "linker" region was confirmed by demonstrating that stripped sea urchin sperm chromatin precipitated between 120 and 500 mM NaCl in a manner analogous to unstripped chromatin whereas stripped chicken chromatin did not. Tryptic digestion to remove all the histone tails abolished this precipitation as well as the protection of DNA outside of the 167-bp core particle against nuclease digestion.  相似文献   

17.
Nucleosomes containing a human histone variant, H2A.B, in an aqueous solution were analyzed by small-angle neutron scattering utilizing a contrast variation technique. Comparisons with the canonical H2A nucleosome structure revealed that the DNA termini of the H2A.B nucleosome are detached from the histone core surface, and flexibly expanded toward the solvent. In contrast, the histone tails are compacted in H2A.B nucleosomes compared to those in canonical H2A nucleosomes, suggesting that they bind to the surface of the histone core and/or DNA. Therefore, the histone tail dynamics may function to regulate the flexibility of the DNA termini in the nucleosomes.  相似文献   

18.
Nucleosomes containing a human histone variant, H2A.B, in an aqueous solution were analyzed by small-angle neutron scattering utilizing a contrast variation technique. Comparisons with the canonical H2A nucleosome structure revealed that the DNA termini of the H2A.B nucleosome are detached from the histone core surface, and flexibly expanded toward the solvent. In contrast, the histone tails are compacted in H2A.B nucleosomes compared to those in canonical H2A nucleosomes, suggesting that they bind to the surface of the histone core and/or DNA. Therefore, the histone tail dynamics may function to regulate the flexibility of the DNA termini in the nucleosomes.  相似文献   

19.
Solution structure of a short DNA fragment studied by neutron scattering   总被引:2,自引:0,他引:2  
The solution structure of a DNA fragment of 130 base pairs and known sequence has been investigated by neutron small-angle scattering. In 0.1 M NaCl, the overall structure of the DNA fragment which contains the strong promoter A1 of the Escherichia coli phage T7 agrees with that expected for B-DNA. The neutron scattering curve is well fitted by that of a rigid rod with a length of 44 nm and a diameter of 2 nm. The results were confirmed by quasi-elastic light scattering and analytical centrifugation. The neutron measurements in H2O and D2O buffer reveal a cross-sectional inhomogeneity not detected by X-ray small-angle scattering. This inhomogeneity is caused by the hydration layer around the DNA core and not by the helical structure. The primary solvent shell has a density increased by at least 4-9% compared to bulk water.  相似文献   

20.
The preparation of hybrid histone octamers with wheat histone H2A variants replacing chicken H2A in the chicken octamer is described. The fidelity of the reconstituted hybrid octamers was confirmed by dimethyl suberimidate cross-linking. Polyglutamic-acid-mediated assembly of these octamers on long DNA and subsequent micrococcal nuclease (MNase) digestion demonstrated that, whereas chicken octamers protected 167 base-pairs (representing 2 full turns of DNA), hybrid histone octamers containing wheat histone H2A(1) with its 19 amino acid residue C-terminal extension protected an additional 16 base pairs of DNA against nuclease digestion. The protection observed by hybrid histone octamers containing wheat histone H2A(3) with both a 15 residue N-terminal and a 19 residue C-terminal extension was identical with that observed with H2A(1)-containing hybrid histone octamers with only the 19 residue C-terminal extension. These results suggest that the role of the C-terminal extension is to bind to DNA of the "linker" region. The thermal denaturation of chicken and hybrid core particles was identical in 10 mM-Tris.HCl.20 mM-NaCl, 0.1 mM-EDTA, confirming that there was no interaction between the basic C-terminal extension and DNA of the core particle. Denaturation in EDTA, however, showed that hybrid core particles had enhanced stability, suggesting that the known conformational change of core particles at very low ionic strength allows the C-terminal extension to bind to core particle DNA under these conditions. A model accounting for the observed MNase protection is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号