首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Biochemical schemes for the actomyosin ATPase cycle as well as the cooperative regulation of ATPase activity are incorporated into a model of the contractile process of intact muscle. This model is shown to describe accurately the tension developed by skinned muscle fibers in the absence of Ca. This work adds to the evidence that the extrapolation of results from purified protein systems to intact muscle may be valid. Extensions to the case of Ca-activated tensions are discussed.  相似文献   

5.
Blebbistatin is a powerful inhibitor of actin-myosin interaction in isolated contractile proteins. To examine whether blebbistatin acts in a similar manner in the organized contractile system of striated muscle, the effects of blebbistatin on contraction of cardiac tissue from mouse were studied. The contraction of paced intact papillary muscle preparations and shortening of isolated cardiomyocytes were inhibited by blebbistatin with inhibitory constants in the micromolar range (1.3–2.8 µM). The inhibition constants are similar to those previously reported for isolated cardiac myosin subfragments showing that blebbistatin action is similar in filamentous myosin of the cardiac contractile apparatus and isolated proteins. The inhibition was not associated with alterations in action potential duration or decreased influx through L-type Ca2+ channels. Experiments on permeabilized cardiac muscle preparations showed that the inhibition was not due to alterations in Ca2+ sensitivity of the contractile filaments. The maximal shortening velocity was not affected by 1 µM blebbistatin. In conclusion, we show that blebbistatin is an inhibitor of the actin-myosin interaction in the organized contractile system of cardiac muscle and that its action is not due to effects on the Ca2+ influx and activation systems. heart; electrophysiology; permeabilized muscle  相似文献   

6.
Postmortem changes in the actin-myosin interaction were studied by determining the amount of thick and thin filaments dissociated by ATP. The amount of separated filaments was very small in myofibrils prepared from muscles in rigor, while it increased markedly during post-rigor storage of muscles. Electron microscopically, separated thick and thin filaments prepared from stored muscles were similar to freshly prepared ones and no signs of proteolytic degradation of either type of filament could be observed. A protein which was released from myofibrils (probably from Z discs) on Ca2+-treatment seemed to be most closely related to the post-rigor dissociation of thick filaments from thin filaments.  相似文献   

7.
Molecular mechanism of cGMP-mediated smooth muscle relaxation   总被引:24,自引:0,他引:24  
Contraction and relaxation of smooth muscle is a tightly regulated process involving numerous endogenous substances and their intracellular second messengers. We examine the key role of cyclic guanosine monophosphate (cGMP) in mediating smooth muscle relaxation. We briefly review the current art regarding cGMP generation and degradation, while focusing on the recent identification of the molecular mechanisms underlying cGMP-mediated smooth muscle relaxation. cGMP-induced SM relaxation is mediated mainly by cGMP-dependent protein kinase activation. It involves several molecular events culminating in a reduction in intracellular Ca(2+) concentration and a decrease in the sensitivity of the contractile system to Ca(2+). We propose that the cGMP-induced decrease in Ca(2+) sensitivity is a strategic way to achieve "active relaxation" of the smooth muscle. In summary, we present compelling evidence supporting a key role for cGMP as a mediator of smooth muscle relaxation in physiological and pharmacological settings.  相似文献   

8.
The effects of caldesmon on structural and dynamic properties of phalloidin-rhodamine-labeled F-actin in single skeletal muscle fibers were investigated by polarized microphotometry. The binding of caldesmon to F-actin in glycerinated fibers reduced the alterations of thin filaments structure and dynamics that occur upon the transition of the fibers from rigor to relaxing conditions. In fibers devoid of myosin and regulatory proteins (ghost fibers) the binding of caldesmon to F-actin precluded structural changes in actin filaments induced by skeletal muscle myosin subfragment 1 and smooth muscle tropomyosin. These results suggest that the restraint for the alteration of actin structure and dynamics upon binding of myosin heads and/or tropomyosin evoked by caldesmon can be related to its inhibitory effect on actin-myosin interaction.  相似文献   

9.
10.
11.
We have investigated the role of heat shock protein 27 (HSP27) phosphorylation and the association of HSP27 with contractile proteins actin, myosin, and tropomyosin. Smooth muscle cells were labeled with [(32)P]orthophosphate. C2-ceramide (0.1 microM), an activator of protein kinase C (PKC), induced a sustained increase in HSP27 phosphorylation that was inhibited by calphostin C. C2-ceramide-induced (0.1 microM) sustained colonic smooth muscle cell contraction was accompanied by significant increases in the association of HSP27 with tropomyosin and in the association of HSP27 with actin. The significant increases occurred at 30 s after stimulation and were sustained at 4 min. Contraction was also associated with strong colocalization of HSP27 with tropomyosin and with actin as observed after immunofluorescent labeling of tropomyosin, actin, and HSP27 followed by confocal microscopy. Transfection of smooth muscle cells with HSP27 phosphorylation mutants indicated that phosphorylation of HSP27 could affect myosin association with actin. In conclusion 1) HSP27 phosphorylation appears to be necessary for reorganization of HSP27 inside the cell and seems to be directly correlated with the PKC signal transduction pathway, and 2) agonist-induced phosphorylation of HSP27 modulates actin-myosin interaction through thin-filament regulation of tropomyosin.  相似文献   

12.
Using a reconstituted system in which myosin was preferentially phosphorylated, we examined the regulatory action of caldesmon150 on the smooth muscle actin-myosin interaction. Caldesmon150 inhibited the tropomyosin-enhanced actomyosin ATPase activity in a Ca2+-independent manner. This inhibitory effect of caldesmon150 was observed to be overcome by the addition of calmodulin in a Ca2+-dependent manner. In accordance with the observations of ATPase activity, we demonstrated evidence that the regulatory action of caldesmon150 on the actin site was mainly through control of the tropomyosin-enhanced actin-myosin interaction and calmodulin confers the Ca2+-sensitivity upon the caldesmon150 action determined by the cosedimentation method.  相似文献   

13.
Objective: Duchenne muscular dystrophy (DMD) is a devastating muscle disease caused by a mutation in DMD encoding dystrophin. Oxidative stress accounts for dystrophic muscle pathologies in DMD. We examined the effects of molecular hydrogen in mdx mice, a model animal for DMD.

Methods: The pregnant mother started to take supersaturated hydrogen water (>5?ppm) ad libitum from E15.5 up to weaning of the offspring. The mdx mice took supersaturated hydrogen water from weaning until age 10 or 24 weeks when they were sacrificed.

Results: Hydrogen water prevented abnormal body mass gain that is commonly observed in mdx mice. Hydrogen improved the spontaneous running distance that was estimated by a counter-equipped running-wheel, and extended the duration on the rota-rod. Plasma creatine kinase activities were decreased by hydrogen at ages 10 and 24 weeks. Hydrogen also decreased the number of central nuclei of muscle fibers at ages 10 and 24 weeks, and immunostaining for nitrotyrosine in gastrocnemius muscle at age 24 weeks. Additionally, hydrogen tended to increase protein expressions of antioxidant glutathione peroxidase 1, as well as anti-apoptotic Bcl-2, in skeletal muscle at age 10 weeks.

Discussion: Although molecular mechanisms of the diverse effects of hydrogen remain to be elucidated, hydrogen potentially improves muscular dystrophy in DMD patients.  相似文献   

14.
15.
16.
It is 50 years since the sliding of actin and myosin filaments was proposed as the basis of force generation and shortening in striated muscle. Although this is now generally accepted, the detailed molecular mechanism of how myosin uses adenosine triphosphate to generate force during its cyclic interaction with actin is only now being unravelled. New insights have come from the unconventional myosins, especially myosin V. Myosin V is kinetically tuned to allow movement on actin filaments as a single molecule, which has led to new kinetic, mechanical and structural data that have filled in missing pieces of the actomyosin-chemo-mechanical transduction puzzle.  相似文献   

17.
18.
19.
To separate a fraction of the myosin cross-bridges that are attached to the thin filaments and that participate in the mechanical responses, muscle fibers were cross-linked with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide and then immersed in high-salt relaxing solution (HSRS) of 0.6 M ionic strength for detaching the unlinked myosin heads. The mechanical properties and force-generating ability of the cross-linked cross-bridges were tested with step length changes (L-steps) and temperature jumps (T-jumps) from 6-10 degrees C to 30-40 degrees C. After partial cross-linking, when instantaneous stiffness in HSRS was 25-40% of that in rigor, the mechanical behavior of the fibers was similar to that during active contraction. The kinetics of the T-jump-induced tension transients as well as the rate of the fast phase of tension recovery after length steps were close to those in unlinked fibers during activation. Under feedback force control, the T-jump initiated fiber shortening by up to 4 nm/half-sarcomere. Work produced by a cross-linked myosin head after the T-jump was up to 30 x 10(-21) J. When the extent of cross-linking was increased and fiber stiffness in HSRS approached that in rigor, the fibers lost their viscoelastic properties and ability to generate force with a rise in temperature.  相似文献   

20.
The interaction between myosin and actin in striated muscle tissue is regulated by Ca2+ via thin filament regulatory proteins. Skeletal muscle possesses a whole pattern of myosin and tropomyosin isoforms. The regulatory effect of tropomyosin on actin-myosin interaction was investigated by measuring the sliding velocity of both actin and actin-tropomyosin filaments over fast and slow skeletal myosins using the in vitro motility assay. The actin-tropomyosin filaments were reconstructed with tropomyosin isoforms from striated muscle tissue. It was found that tropomyosins with different content of α-, β-, and γ-chains added to actin filaments affect the sliding velocity of filaments in different ways. On the other hand, the sliding velocity of filaments with the same content of α-, β-, and Γ-chains depends on myosin isoforms of striated muscle. The reciprocal effects of myosin and tropomyosin on actin-myosin interaction in striated muscle may play a significant role in maintenance of effective work of striated muscle both during ontogenesis and under pathological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号