首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neutrophil transepithelial migration is a central component of many inflammatory diseases of the gastrointestinal, respiratory and urinary tracts, and correlates with disease symptoms. In vitro modeling with polarized intestinal epithelial monolayers has shown that neutrophil transepithelial migration can influence crucial epithelial functions, ranging from barrier maintenance to electrolyte secretion. Studies have also demonstrated a dynamic involvement of the epithelium in modulating neutrophil transepithelial migration. Characterization of the molecular interactions between neutrophils and epithelial cells has revealed that transepithelial migration is dependent on the neutrophil β2 integrin CD11b/CD18, and does not appear to involve adhesive interactions with the selectins or intercellular adhesion molecule-1. Recent studies have implicated another transmembrane glycoprotein, CD47, as a crucial component of the transepithelial migration response. While the precise function of CD47 is not known, current evidence suggests that CD47-dependent events occur after CD11b/CD18-mediated neutrophil adhesion to the epithelium. This review will highlight key features of the current understanding of the molecular events important in neutrophil migration across epithelial surfaces.  相似文献   

2.
The role of the polymorphonuclear leukocyte (PMN) cytoskeleton during the transmigration across colonic epithelial cells is not very well understood. In order to study the role of different components of the PMN cytoskeleton during transepithelial migration across a colonic epithelial cell monolayer (T84), PMN were preincubated with drugs affecting either the actin cytoskeleton (cytochalasin B, iota toxin of Clostridium perfringens, and phalloidin) or the microtubules (colchicine and taxol). The role of PMN myosin during transepithelial migration was investigated using the inhibitor 2,3-butanedione monoxime (BDM) and DC3B toxin. PMN intracellular Ca2+, during neutrophil adhesion and translocation across the epithelium, was assessed by the Ca2+ chelator 1, 2bis-(2-aminophenoxy)-ethane-N,N,N', N'-tetra-acetic acid tetrakis (acetoxymethyl) ester (BAPTA-AM). Transmigration of PMN was initiated by applying either interleukin-8 or formyl-met-leu-phe (fMLP). While colchicine and taxol preexposure did not influence PMN transepithelial migration, treatment with cytochalasin B, iota toxin, phalloidin, BDM, DC3B toxin and BAPTA-AM greatly diminished migration of PMN across T84 monolayers. Similarly, cell-cell contacts established between PMN and epithelial cells during the transmigration were diminished after treatment of PMN with iota toxin or cytochalasin B. These data show that the neutrophil actin cytokeleton and myosin, but not the microtubules, evoke a Ca2+ -dependent motility that facilitates migration across the colonic epithelial barrier.  相似文献   

3.
The effect of human serum and some of its components on the process of transepithelial migration of human neutrophils was investigated in an in vitro system. 10% autologous serum caused an increase in neutrophil adherence to and migration across canine kidney epithelial cells. This increase in neutrophil binding also occurred if the epithelium but not the neutrophils had been preincubated with serum. The binding was lost if the serum was either preabsorbed over the kidney epithelium before use or heat inactivated. Indirect immunofluorescence studies indicated that IgG, IgM, and a component of C3 bound to the epithelial surface, whereas IgA, IgE, or C5a were not detectable. The majority of epithelial cells were immunofluorescent, however epithelial cells with varying degrees of reactivity were also apparent and approximately 5% of the epithelial cells did not bind IgG, IgM, and C3. When epithelia were simultaneously tested for the presence of either IgG, IgM, or C3, and bound neutrophils the few epithelial cells which did not bind IgG or IgM also did not bind C3 or neutrophils. Studies with monoclonal antibodies against Fc and C3 receptors indicate that neutrophil adherence to the epithelial surface was mediated predominately by the receptors for C3b and C3bi. In response to a chemotactic gradient, bound neutrophils were able to detach and migrate across the epithelium. A separate heat-stable factor(s) in serum was able to increase neutrophil migration across the epithelial monolayer. This factor acted independently of the factors which caused the increase in neutrophil binding as the increase in neutrophil migration also occurred under conditions (preabsorption over the kidney epithelium or heat inactivation) that prevented the increase in neutrophil binding. The increase in neutrophil migration may be caused by the permeability-increasing properties of this factor as both serum and heat-inactivated serum lowered the transepithelial electrical resistance an average of 38 and 35%, respectively, in 40 min. Upon removal of serum or heat-inactivated serum, the resistance returned 100 and 81%, respectively, in 5 h.  相似文献   

4.
Neutrophil (polymorphonuclear leukocytes [PMN]) transepithelial migration during inflammatory episodes involves a complex series of adhesive interactions and signaling events. Previous studies have shown that key adhesive interactions between leukocyte CD11b/CD18 and basally expressed fucosylated glycoproteins followed by binding to desmosomal-associated JAM-C are key elements of the transmigration response. Here we provide the first evidence that PMN-expressed junctional adhesion molecule-like protein (JAML) regulates transmigration via binding interactions with epithelial coxsackie and adenovirus receptor (CAR). Experiments with a JAML fusion protein revealed specific binding of JAML to epithelial CAR expressed at tight junctions in T84 cell monolayers and normal human colonic mucosa. Furthermore, JAML-CAR binding is mediated via the membrane distal immunoglobulin (Ig) loop of CAR and the membrane proximal Ig loop of JAML. PMN bound to immobilized CAR but not JAML in a divalent cation-independent manner. Lastly, in assays of PMN transepithelial migration, JAML/CAR fusion proteins and their antibodies significantly inhibited transmigration in a specific manner. Taken together, these results indicate that JAML and CAR are a novel pair of adhesion molecules that play an important role in modulating PMN migration cross epithelial tight junctions. These findings add a new element to a multistep model of PMN transepithelial migration and may provide new targets for anti-inflammatory therapies.  相似文献   

5.
6.
Occludin modulates transepithelial migration of neutrophils   总被引:9,自引:0,他引:9  
Neutrophils cross epithelial sheets to reach inflamed mucosal surfaces by migrating along the paracellular route. To avoid breakdown of the epithelial barrier, this process requires coordinated opening and closing of tight junctions, the most apical intercellular junctions in epithelia. To determine the function of epithelial tight junction proteins in this process, we analyzed neutrophil migration across monolayers formed by stably transfected epithelial cells expressing wild-type and mutant occludin, a membrane protein of tight junctions with four transmembrane domains and both termini in the cytosol. We found that expression of mutants with a modified N-terminal cytoplasmic domain up-regulated migration, whereas deletion of the C-terminal cytoplasmic domain did not have an effect. The N-terminal cytosolic domain was also found to be important for the linear arrangement of occludin within tight junctions but not for the permeability barrier. Moreover, expression of mutant occludin bearing a mutation in one of the two extracellular domains inhibited neutrophil migration. The effects of transfected occludin mutants on neutrophil migration did not correlate with their effects on selective paracellular permeability and transepithelial electrical resistance. Hence, specific domains and functional properties of occludin modulate transepithelial migration of neutrophils.  相似文献   

7.
The epithelial cells that form a barrier lining the lung airway are key regulators of neutrophil trafficking into the airway lumen in a variety of lung inflammatory diseases. Although the lipid mediator leukotriene B(4) (LTB(4)) is known to be a principal chemoattractant for recruiting neutrophils to inflamed sites across the airway epithelium, the precise signaling mechanism involved remains largely unknown. In the present study, therefore, we investigated the signaling pathway through which LTB(4) induces transepithelial migration of neutrophils. We found that LTB(4) induces concentration-dependent transmigration of DMSO-differentiated HL-60 neutrophils and human polymorphonuclear neutrophils across A549 human lung epithelium. This effect was mediated via specific LTB(4) receptors and was inhibited by pretreating the cells with N-acetylcysteine (NAC), an oxygen free radical scavenger, with diphenylene iodonium (DPI), an inhibitor of NADPH oxidase-like flavoproteins, or with PD98059, an extracellular signal-regulated kinase (ERK) inhibitor. Consistent with those findings, LTB(4)-induced ERK phosphorylation was completely blocked by pretreating cells with NAC or DPI. Taken together, our observations suggest LTB(4) signaling to transepithelial migration is mediated via generation of reactive oxygen species, which leads to downstream activation of ERK. The physiological relevance of this signaling pathway was demonstrated in BALB/c mice, in which intratracheal instillation of LTB(4) led to acute recruitment of neutrophils into the airway across the lung epithelium. Notably, the response to LTB(4) was blocked by NAC, DPI, PD98059, or CP105696, a specific LTB(4) receptor antagonist.  相似文献   

8.
The effect of neutrophil migration on epithelial permeability   总被引:12,自引:5,他引:7       下载免费PDF全文
《The Journal of cell biology》1986,103(6):2729-2738
To reach an inflammatory lesion, neutrophils must frequently traverse the epithelium of an infected organ. Whether the actual migration of neutrophils alters the epithelial permeability is unknown. Through the use of an in vitro model system it was possible to directly determine the effect of neutrophil emigration on the transepithelial electrical resistance of the monolayer. Human neutrophils (5 X 10(6) cells/ml) were placed in the upper compartment of a combined chemotaxis/resistance chamber and stimulated for 40 min by a gradient of 10(-7) M n-formyl-methionyl-leucyl-phenylalanine to traverse a confluent monolayer of canine kidney epithelial cells grown on micropore filters. Neither the chemoattractant alone (10(-5)-10(-9) M) nor the accumulation of an average of eight neutrophils per millimeter of epithelium lowered the transepithelial electrical resistance. However, under certain conditions the migration of neutrophils temporarily increased the permeability of the monolayer. The resistance fell approximately 48% within 5 min if the migratory cells were stimulated to reverse their migration across the same monolayer. As re- migration continued, the resistance returned to its initial levels within 60 min. Doubling the initial neutrophil concentration to 10 X 10(6) cells/ml resulted in the accumulation of an average of 66 neutrophils per millimeter of epithelium and an average fall in resistance of 46% (r = 0.98; P less than 0.001) in 40 min. If the resistance had fallen less than 45%, removal of the neutrophils remaining in the upper compartment resulted in a return of the transepithelial electrical resistance to its initial level within 65 min. However, when the fall was greater than 45%, the resistance only recovered to 23.5% of its initial levels within the same time frame. Thus, these results suggest that the integrity of an epithelium can, under certain conditions, be affected by the emigration of neutrophils, but that this effect is either completely or partially reversible within 65 min.  相似文献   

9.
Migration of polymorphonuclear leukocytes across epithelia is a hallmark of many inflammatory disease states. Neutrophils traverse epithelia by migrating through the paracellular space and crossing intercellular tight junctions. We have previously shown (Nash, S., J. Stafford, and J.L. Madara. 1987. J. Clin. Invest. 80:1104-1113), that leukocyte migration across T84 monolayers, a model human intestinal epithelium, results in enhanced tight junction permeability--an effect quantitated by the use of a simple, standard electrical assay of transepithelial resistance. Here we show that detailed time course studies of the transmigration-elicited decline in resistance has two components, one of which is unrelated to junctional permeability. The initial decrease in resistance, maximal 5-13 min after initiation of transmigration, occurs despite inhibition of transmigration by an antibody to the common beta subunit of neutrophil beta 2 integrins, and is paralleled by an increase in transepithelial short-circuit current. Chloride ion substitution and inhibitor studies indicate that the early-phase resistance decline is not attributable to an increase in tight junction permeability but is due to decreased resistance across epithelial cells resulting from chloride secretion. Since T84 cells are accepted models for studies of the regulation of Cl- and water secretion, our results suggest that neutrophil transmigration across mucosal surfaces (for example, respiratory and intestinal tracts) may initially activate flushing of the surface by salt and water. Equally important, these studies, by providing a concrete example of sequential transcellular and paracellular effects on transepithelial resistance, highlight the fact that this widely used assay cannot simply be viewed as a direct functional probe of tight junction permeability.  相似文献   

10.
Transepithelial migration of neutrophils (PMN) is a defining characteristic of active inflammatory states of mucosal surfaces. The process of PMN transepithelial migration, while dependent on the neutrophil beta 2 integrin CD11b/CD18, remains poorly understood. In these studies, we define a monoclonal antibody, C5/D5, raised against epithelial membrane preparations, which markedly inhibits PMN migration across polarized monolayers of the human intestinal epithelial cell line T84 in a bidirectional fashion. In T84 cells, the antigen defined by C5/D5 is upregulated by epithelial exposure to IFN-gamma, and represents a membrane glycoprotein of approximately 60 kD that is expressed on the basolateral membrane. While transepithelial migration of PMN was markedly inhibited by either C5/D5 IgG or C5/D5 Fab fragments, the antibody failed to inhibit both adhesion of PMN to T84 monolayers and adhesion of isolated T84 cells to the purified PMN integrin, CD11b/CD18. Thus, epithelial-PMN interactions blocked by C5/D5 appear to be downstream from initial CD11b/CD18-mediated adhesion of PMN to epithelial cells. Purification, microsequence analysis, and cross-blotting experiments indicate that the C5/D5 antigen represents CD47, a previously cloned integral membrane glycoprotein with homology to the immunoglobulin superfamily. Expression of the CD47 epitope was confirmed on PMN and was also localized to the basolateral membrane of normal human colonic epithelial cells. While C5/D5 IgG inhibited PMN migration even in the absence of epithelial, preincubation of T84 monolayers with C5/D5 IgG followed by antibody washout also resulted in inhibition of transmigration. These results suggest the presence of both neutrophil and epithelial components to CD47-mediated transepithelial migration. Thus, CD47 represents a potential new therapeutic target for downregulating active inflammatory disease of mucosal surfaces.  相似文献   

11.
Leukocyte chemoattractant peptides from the serpin heparin cofactor II   总被引:4,自引:0,他引:4  
Heparin cofactor II (HC) is a plasma serine proteinase inhibitor (serpin) that inhibits the coagulant proteinase alpha-thrombin. We have recently demonstrated that proteolysis of HC by catalytic amounts of polymorphonuclear leukocyte proteinases (elastase or cathepsin G) generates leukocyte chemotaxins (Hoffman, M., Pratt, C. W., Brown, R. L., and Church, F. C. (1989) Blood 73, 1682-1685). One of four peptides produced when HC is degraded by neutrophil elastase has chemotactic activity for both monocytes and neutrophils with maximal migration comparable to formyl-Met-Leu-Phe, the "gold standard" bacterially derived chemotaxin. The amino-terminal sequence of this HC peptide is Asp-Phe-His-Lys-Glu-Asn-Thr-Val-... and the peptide corresponds to Asp-39 to Ile-66 of HC. A variety of synthetic peptides derived from this sequence were evaluated for leukocyte migration activity, and a dodecapeptide from Asp-49 to Tyr-60 (Asp-Trp-Ile-Pro-Glu-Gly-Glu-Glu-Asp-Asp-Asp-Tyr) was identified as the active site for leukocyte chemotactic action. The 12-mer synthetic peptide possesses significant neutrophil chemotactic action at 1 nM (60% of the maximal activity of formyl-Met-Leu-Phe), while a peptide with the reverse sequence has essentially no chemotactic activity. Cross-desensitization experiments also show that pretreatment of neutrophils with a 19-mer peptide (Asn-48 to Ile-66) greatly reduces subsequent chemotaxis to HC-neutrophil elastase proteolysis reaction products. When injected intraperitoneally in mice, the HC-neutrophil elastase digest elicits neutrophil migration. Our results demonstrate that not only does HC function as a thrombin inhibitor, but that limited proteolysis of HC near the amino terminus yields biologically active peptide(s) which might participate in inflammation and in wound healing and tissue repair processes.  相似文献   

12.
Salmonella typhimurium elicits an intense proinflammatory response characterized by movement of polymorphonuclear neutrophils (PMN) across the epithelial barrier to the intestinal lumen. We previously showed that S. typhimurium, via the type III secretion system effector protein SipA, initiates an ADP-ribosylation factor-6- and phospholipase D-dependent lipid-signaling cascade that directs activation of protein kinase C (PKC) and subsequent transepithelial movement of PMN. Here we sought to determine the specific PKC isoforms that are induced by the S. typhimurium effector SipA in model intestinal epithelia and to link the functional consequences of these isoforms in the promotion of PMN transepithelial migration. In vitro kinase PKC activation assays performed on polarized monolayers of T84 cells revealed that S. typhimurium and recombinant SipA induced activation of PKC-alpha, -delta, and -epsilon. To elucidate which of these isoforms play a key role in mediating epithelial cell responses that lead to the observed PMN transepithelial migration, we used a variety of PKC inhibitors with different isoform selectivity profiles. Inhibitors selective for PKC-alpha (G?-6976 and 2,2',3,3',4,4'-hexahydroxyl-1,1'-biphenyl-6,6'-dimethanoldimethyl ether) markedly reduced S. typhimurium- and recombinant SipA-induced PMN transepithelial migration, whereas inhibitors to PKC-delta (rottlerin) or PKC-epsilon (V1-2) failed to exhibit a significant decrease in transepithelial movement of PMN. These results were confirmed biochemically and by immunofluorescence coupled to confocal microscopy. Our results are the first to show that the S. typhimurium effector protein SipA can activate multiple PKC isoforms, but only PKC-alpha is involved in the signal transduction cascade leading to PMN transepithelial migration.  相似文献   

13.
Active migration of polymorphonuclear leukocytes (PMN) through the intestinal crypt epithelium is a hallmark of inflammatory bowel disease and correlates with patient symptoms. Previous in vitro studies have shown that PMN transepithelial migration results in increased epithelial permeability. In this study, we modeled PMN transepithelial migration across T84 monolayers and demonstrated that enhanced paracellular permeability to small solutes occurred in the absence of transepithelial migration but required both PMN contact with the epithelial cell basolateral membrane and a transepithelial chemotactic gradient. Early events that occurred before PMN entering the paracellular space included increased permeability to small solutes (<500 Da), enhanced phosphorylation of regulatory myosin L chain, and other as yet undefined proteins at the level of the tight junction. No redistribution or loss of tight junction proteins was detected in these monolayers. Late events, occurring during actual PMN transepithelial migration, included redistribution of epithelial serine-phosphorylated proteins from the cytoplasm to the nucleus in cells adjacent to migrating PMN. Changes in phosphorylation of multiple proteins were observed in whole cell lysates prepared from PMN-stimulated epithelial cells. We propose that regulation of PMN transepithelial migration is mediated, in part, by sequential signaling events between migrating PMN and the epithelium.  相似文献   

14.
Neutrophil, or polymorphonuclear leukocyte (PMN), migration across intestinal epithelial barriers, such as occurs in many disease states, appears to result in modifications of epithelial barrier and ion transport functions (Nash, S., J. Stafford, and J. L. Madara. 1987. J. Clin. Invest. 80:1104-1113; Madara, J. L., C. A. Parkos, S. P. Colgan, R. J. MacLeod, S. Nash, J. B. Matthews, C. Delp, and W. I. Lencer. 1992. J. Clin. Invest. 89:1938-1944). Here we investigate the effects of epithelial exposure to IFN-gamma on PMN migration across cultured monolayers of the human intestinal epithelial cell line T84. Transepithelial migration of PMN was initially assessed in the apical- to-basolateral direction, since previous studies indicate general qualitative similarities between PMN migration in the apical-to- basolateral and in the basolateral-to-apical directions. In the apical- to-basolateral direction, epithelial exposure to IFN-gamma markedly upregulated transepithelial migration of PMN in a dose- and time- dependent fashion as measured by both electrical and myeloperoxidase assays. This IFN-gamma-elicited effect on transmigration was specifically due to a IFN-gamma effect on epithelial cells and was not secondary to IFN-gamma effects on epithelial tight junction permeability. Moreover, this IFN-gamma effect was dependent on epithelial protein synthesis, and involved a pathway in which CD11b/18, but not ICAM-1 or CD11a/18, appeared to play a crucial role in PMN- epithelial adhesion. IFN-gamma also substantially modified PMN transepithelial migration in the natural, basolateral-to-apical direction. The IFN-gamma effect on naturally directed transmigration was also specifically due to an IFN-gamma effect on epithelial cells, showed comparable time and dose dependency to that of oppositely directed migration, was CD11b/18 dependent, and required epithelial protein synthesis. Additionally, however, important qualitative differences existed in how IFN-gamma affected transmigration in the two directions. In contrast to apical-to-basolateral directed migration, IFN-gamma markedly downregulated transepithelial migration of PMN in the natural direction. This downregulation of PMN migration in the natural direction, however, was not due to failure of PMN to move across filters and into monolayers. Indeed, IFN-gamma exposure to epithelia increased the number of PMN which had moved into the basolateral space of the epithelium in naturally directed transmigration. These results represent the first detailed report of influences on PMN transepithelial migration by a cytokine, define conditions under which a qualitative difference in PMN transepithelial migration exists, and suggest that migration of PMN across epithelia in the natural direction may involve multiple steps which can be differentially regulated by cytokines.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
BACKGROUND: Epithelial dysfunction and patient symptoms in inflammatory intestinal diseases such as ulcerative colitis and Crohn's disease correlate with migration of neutrophils (PMN) across the intestinal epithelium. In vitro modeling of PMN transepithelial migration has revealed distinct differences from transendothelial migration. By using polarized monolayers of human intestinal epithelia (T84), PMN transepithelial migration has been shown to be dependent on the leukocyte integrin CD11b/CD18 (Mac-1), but not on CD11a/CD18 (LFA-1). Since intercellular adhesion molecule-I (ICAM-1) is an important endothelial counterreceptor for these integrins, its expression in intestinal epithelia and role in PMN-intestinal epithelial interactions was investigated. MATERIALS AND METHODS: A panel of antibodies against different domains of ICAM-1, polarized monolayers of human intestinal epithelia (T84), and natural human colonic epithelia were used to examine the polarity of epithelial ICAM-1 surface expression and the functional role of ICAM-1 in neutrophil-intestinal epithelial adhesive interactions. RESULTS: While no surface expression of ICAM-1 was detected on unstimulated T84 cells, interferon-gamma (IFN gamma) elicited a marked expression of ICAM-1 that selectively polarized to the apical epithelial membrane. Similarly, apically restricted surface expression of ICAM-1 was detected in natural human colonic epithelium only in association with active inflammation. With or without IFN gamma pre-exposure, physiologically directed (basolateral-to-apical) transepithelial migration of PMN was unaffected by blocking monoclonal antibodies (mAbs) to ICAM-1. In contrast, PMN migration across IFN gamma-stimulated monolayers in the reverse (apical-to-basolateral) direction was inhibited by anti-ICAM-1 antibodies. Adhesion studies revealed that T84 cells adhered selectively to purified CD11b/CD18 and such adherence, with or without IFN gamma pre-exposure, was unaffected by ICAM-1 mAb. Similarly, freshly isolated epithelial cells from inflamed human intestine bound to CD11b/CD18 in an ICAM-1-independent fashion. CONCLUSIONS: These data indicate that ICAM-1 is strictly polarized in intestinal epithelia and does not represent a counterreceptor for neutrophil CD11b/CD18 during physiologically directed transmigration, but may facilitate apical membrane-PMN interactions after the arrival of PMN in the intestinal lumen.  相似文献   

16.
Tachykinins have priming effects on polymorphonuclear neutrophils, since they may activate the neutrophils to exhibit an exaggerated inflammatory response to phlogistic mediators. In order to investigate mechanisms involved in this action, we determined the influence of substance P and neurokinin A on chemotaxis of human neutrophils towards gradients of formymethionyl-leucyl-phenylalanine or recombinant human interleukin-8. As seen with other neutrophil-priming agents such as tumor necrosis factor-alpha, exposure of neutrophils to substance P or neurokinin A had an inhibitory effect upon a stimulated migration, with effective concentrations being in the nanomolar range. Tuftsin, a known neutrophil activating peptide, similarly inhibited stimulated migration. Analysis of structure-activity relationships revealed that activity of tachykinins is located in amino-terminal, tuftsin-like sequences. The inhibition of stimulated migration was partly reversed by (Pro1)-tuftsin, a partial tuftsin receptor antagonist, which suggests that the effects of amino-terminal tachykinins involves activation of tuftsin receptors of neutrophils.  相似文献   

17.
Neutrophil trafficking in lung involves transendothelial migration, migration in tissue interstitium, and transepithelial migration. In a rat model of IgG immune complex-induced lung injury, it was demonstrated that neutrophil emigration involves regulatory mechanisms including complement activation, cytokine regulation, chemokine production, activation of adhesion molecules, and their respective counter receptors. The process is presumably initiated and modulated by the production of early response cytokines and chemokines from lung cells, especially from alveolar macrophages. TNF-alpha and IL-1 up-regulate intracellular adhesion molecule-1 (ICAM-1) and E-selectin, setting the stage for neutrophil migration through endothelium. The CXC chemokines, such as macrophage inflammatory protein (MIP)-2 and cytokine-inducible neutrophil chemoattractant (CINC), constitute chemokine gradient to orchestrate neutrophil migration in lung. Complement activation induced by IgG immune complex deposition is another important event leading to neutrophil accumulation in lung. Complement activation product C5a not only plays an important role in chemoattracting neutrophils into lung, but regulates adhesion molecules, chemokines, and cytokines expression. In addition, oxidative stress may regulate neutrophil accumulation in lung by modulation of adhesion molecule activation and chemokine production. In this review, we focus on the current knowledge of the mechanisms leading to accumulation of neutrophils during acute lung injury.  相似文献   

18.
We investigated the roles of the potent, chemotactic antimicrobial proteins S100A8, S100A9, and S100A8/A9 in leukocyte migration in a model of streptococcal pneumonia. We first observed differential secretion of S100A8, S100A9, and S100A8/A9 that preceded neutrophil recruitment. This is partially explained by the expression of S100A8 and S100A9 proteins by pneumocytes in the early phase of Streptococcus pneumoniae infection. Pretreatment of mice with anti-S100A8 and anti-S100A9 Abs, alone or in combination had no effect on bacterial load or mice survival, but caused neutrophil and macrophage recruitment to the alveoli to diminish by 70 and 80%, respectively, without modifying leukocyte blood count, transendothelial migration or neutrophil sequestration in the lung vasculature. These decreases were also associated with a 68% increase of phagocyte accumulation in lung tissue and increased expression of the chemokines CXCL1, CXCL2, and CCL2 in lung tissues and bronchoalveolar lavages. These results show that S100A8 and S100A9 play an important role in leukocyte migration and strongly suggest their involvement in the transepithelial migration of macrophages and neutrophils. They also indicate the importance of antimicrobial proteins, as opposed to classical chemotactic factors such as chemokines, in regulating innate immune responses in the lung.  相似文献   

19.
Recent work has revealed an essential involvement of soluble CD40L (sCD40L) in inflammation and vascular disease. Activated platelets are the major source of sCD40L, which has been implicated in platelet and leukocyte activation, although its exact functional impact on leukocyte-platelet interactions and the underlying mechanisms remain undefined. We aimed to determine the impact and the mechanisms of sCD40L on neutrophils. We studied neutrophil interactions with activated, surface-adherent platelets as a model for leukocyte recruitment to the sites of injury. Our data show that CD40L contributes to neutrophil firm adhesion to and transmigration across activated surface-adherent platelets, possibly through two potential mechanisms. One involves the direct interaction of ligand-receptor (CD40L-CD40), i.e., platelet surface CD40L interaction with neutrophil CD40; another involves an indirect mechanism, i.e. soluble CD40L stimulates activation of the leukocyte-specific β2 integrin Mac-1 in neutrophils and thereby further promotes neutrophil adhesion and migration. Activation of the integrin Mac-1 is known to be critical for mediating neutrophil adhesion and migration. sCD40L activated Mac-1 in neutrophils and enhanced neutrophil-platelet interactions in wild-type neutrophils, but failed to elicit such responses in CD40-deficient neutrophils. Furthermore, our data show that the protein kinase C zeta (PKCζ) is critically required for sCD40L-induced Mac-1 activation and neutrophil adhesive function. sCD40L strongly stimulated the focal clustering of Mac-1 (CD11b) and the colocalization of Mac-1 with PKCζ in wild-type neutrophils, but had minimal effect in CD40-deficient neutrophils. Blocking PKCζ completely inhibited sCD40L-induced neutrophil firm adhesion. Moreover, sCD40L strongly stimulates neutrophil oxidative burst via CD40-dependent activation of PI3K/NF-KB, but independent of Mac-1 and PKCζ. These findings may contribute to a better understanding of the underlying mechanisms by which sCD40L/CD40 pathway contributes to inflammation and vascular diseases.  相似文献   

20.
The establishment of tight junctions (TJ) between columnar epithelial cells defines the functional barrier, which enteroinvasive pathogens have to overcome. Salmonella enterica serovar Typhimurium (S. typhimurium) directly invades intestinal epithelial cells but it is not well understood how the pathogen is able to overcome the intestinal barrier and gains access to the circulation. Therefore, we sought to determine whether infection with S. typhimurium could regulate the molecular composition of the TJ and, if so, whether these modifications would influence bacterial translocation and polymorphonuclear leukocyte (PMN) movement across model intestinal epithelium. We found that infection of a model intestinal epithelium with S. typhimurium over 2 h resulted in an approximately 80% loss of transepithelial electrical resistance. Western blot analysis of epithelial cell lysates demonstrated that S. typhimurium regulated the distribution of the TJ complex proteins claudin-1, zonula occludens (ZO)-2, and E-cadherin in Triton X-100-soluble and insoluble fractions. In addition, S. typhimurium was specifically able to dephosphorylate occludin and degrade ZO-1. This TJ alteration in the epithelial monolayer resulted in 10-fold increase in bacterial translocation and a 75% increase in N-formylmethionin-leucyl-phenyalanine-induced PMN transepithelial migration. Our data demonstrate that infection with S. typhimurium is associated with the rapid targeting of the tight junctional complex and loss of barrier function. This results in enhanced bacterial translocation and initiation of PMN migration across the intestinal barrier. Therefore, the ability to regulate the molecular composition of TJs facilitates the pathogenicity of S. typhimurium by aiding its uptake and distribution within the host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号