首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  • 1.1. Conditions for the reduction in vitro of cytidine nucleotides to deoxycytidine nucleotides by an extract of the Novikoff ascites rat tumor are described. ATP was required; TPN, Mg2+ and Fe3+ stimulated the reaction. The effects of other metal ions and of a number of organic compounds on the reaction are described.
  • 2.2. The fractionation of the tumor extract into two partially-purified enzymes and a heat-stable factor, all of which were required for the reaction, is described. The heat-stable factor was replaceable by a boiled extract of liver. Two-stage-incubation experiments are described which indicated that an enzyme present in the “pH-5 soluble” fraction of the tumor extract produced a labile intermediate which was required by a second enzyme, present in the “pH-5 precipitate” fraction, for the actual reduction of the cytidine nucleotide to deoxycytidine nucleotides.
  •   相似文献   

2.
Single-stranded DNA molecules have the capacity to adopt catalytically active structures known as DNAzymes, although the fundamental limits of this ability have not been determined. Starting with a parent DNAzyme composed of all four types of standard nucleotides, we conducted a search of the surrounding sequence space to identify functional derivatives with catalytic cores composed of only three, and subsequently only two types of nucleotides. We provide the first report of a DNAzyme that contains only guanosine and cytidine deoxyribonucleotides in its catalytic domain, which consists of just 13 nucleotides. This DNAzyme catalyzes the Mn2+-dependent cleavage of an RNA phosphodiester bond ~5300-fold faster than the corresponding uncatalyzed reaction, but ~10 000-fold slower than the parent. The demonstration of a catalytic DNA molecule made from a binary nucleotide alphabet broadens our understanding of the fundamental limits of nucleic-acid-mediated catalysis.  相似文献   

3.
4.
5.
These experiments were designed to determine through the study of uridine and cytidine kinase activity, the precise mechanisms of plasma nucleoside salvage leading to pyrimidine nucleotide synthesis in the rat heart. The kinetic parameters were: Km = 10 microM, V = 4 nmol g-1 min-1 for cytidine kinase activity and Km = 43 microM and V = 18 nmol g-1 min-1 for uridine kinase activity. Competing activity as concerns the two nucleosides was shown to occur, suggesting that in the rat myocardium as in other cells, one and the same enzyme phosphorylates both uridine and cytidine. UTP and CTP were shown to exert a potent inhibitory action on nucleoside phosphorylation; two factors thus exert a joint influence on the control of pyrimidine nucleotide synthesis in the rat heart: the extracellular concentration of precursor and the intracellular level of UTP and CTP. The kinetic parameters for kinase activities are discussed, taking into account the actual concentration of plasmatic nucleosides. Comparison of these data with respectively those for incorporation of nucleosides into the pyrimidine nucleotides of isolated rat heart and with nucleotide turnover rates in vivo suggests that, under physiological conditions, the utilization of plasma cytidine is crucial to the synthesis of myocardial pyrimidine synthesis.  相似文献   

6.
7.
8.
The treatment of rats by galactosamine (2 mmol/kg i.p.), which dramatically alters the metabolism of pyrimidine nucleotides in the liver, has been used to investigate the dynamics of pyrimidine nucleotides in the rat heart. Six hours after administration of the drug, the UTP and UDPG myocardial contents were decreased by respectively 40 and 52% while the sum of uracil nucleotides was increased by 66% and that of cytosine nucleotides by 15%. When administered 5 h after galactosamine treatment, cytidine (750 nmol/rat i.v.) induced a further increase in cytosine nucleotides (46% above control value 1 h later) without however effect on uracil nucleotides. On the other hand, the administration of uridine (250 nmol/rat, i.v. 5 h after galactosamine), while restoring UTP, UDPG and the pool of uracil nucleotides, provoked a decrease in cytosine nucleotide level (-17%). In the absence of galactosamine treatment, the administration of uridine and cytidine did not induce changes in nucleotide levels despite a rise in blood cytidine concentration. All these observations support the hypothesis that: 1. the pathway for cytosine nucleotide synthesis predominant in the heart is that utilizing preformed exogenous cytidine and 2. this pathway is mainly controlled by the intracellular concentration of UTP rather than that of CTP.  相似文献   

9.
10.
The specificity of methoxyamine for the cytidine residues in an Escherichia coli leuoine transfer RNA (tRNA1leu is described in detail. Of the six non-hydrogen-bonded cytidine residues in the clover-leaf model of this tRNA, four are very reactive (C-35, 53, 85 and 86) and two are unreactive (C-67 and 79).The specificity of l-cyclohexyl-3-[2-morpholino-(4)-ethyl]carbodiimide methotosylate for the uridine, guanosine and pseudouridine residues in the leucine tRNA was also investigated. The carbodiimide completely modified four uridine residues (U-33, 34, 50 and 51) and partially modified G-37 and Ψ-39. For technical reasons, the sites of partial modification in loop I of the tRNA were difficult to establish. There was no modification of base residues in loop IV nor of U-59 at the base of stem e of the tRNA.The modification patterns described for the leucine tRNA are compared with those observed for the E. coli initiator tRNA1met and su+III tyrosine tRNA. Several general conclusions regarding tRNA conformation are made. In particular, the evidence supporting a diversity of anticodon loop structures amongst tRNAs is discussed.  相似文献   

11.
  • 1.1. Uridine kinase partially purified from various tissues of higher organisms can be precipitated by means of Zn2+-ions without a substantial loss of enzyme activity.
  • 2.2. Using an extract from Escherichia coli a similar procedure resulted in the inactivation of uridine kinase.
  • 3.3. Uridine kinases from various tissues of mice and rats differ in their thermal stabilities during incubation as cell-free extracts, partially purified enzymes as well as Zn-insolubilized and freeze-dried enzyme preparations.
  • 4.4. The highest thermal stability displays Zn-complexed uridine kinase prepared from the kidney and the lowest stability enzyme precipitated from the liver.
  相似文献   

12.
13.
Enhancement of firefly luciferase activity by cytidine nucleotides.   总被引:1,自引:0,他引:1  
The temporal pattern of light production by firefly luciferase depends on the ATP concentration. With low concentrations of ATP a constant production of light occurred while at high concentrations of ATP (greater than 10 microM) there was a flash of light followed by a decline in light production. This time course of light production with high ATP concentrations was changed from the flash pattern to a pattern with a constant production of light by several cytidine nucleotides. CTP, CDP, dCTP, dCDP, dideoxyCTP, periodate-oxidized CTP and CDP, and the etheno derivatives of CTP and CDP produced that change. CMP, cytidine, CDP-glycerol, CDP-glucose, CDP-ethanolamine, and benzoylbenzoylCTP either were inhibitory to firefly luciferase or were not effective in changing the flash time course. Coenzyme A and related compounds also changed the time course of light production. The changes in time course produced by either cytidine nucleotides or CoA were inhibited by desulfoCoA. These compounds apparently enhanced light production by promoting the dissociation of the inhibitory product, oxidized luciferin, from the enzyme. When the activating compounds were used with high concentrations of ATP, the sensitivity of assay for firefly luciferase was increased. This increased sensitivity is important when using the firefly luciferase gene as a reporter.  相似文献   

14.
15.
16.
Unusual guanosine nucleotides guanosine 5'-diphosphate 3'-diphosphate (ppGpp, also known as MSI) and guanosine 5'-diphosphate 3'-monophosphate (ppGp, also known as MSIII) accumulate to high concentrations in wild-type cells of Escherichia coli during amino acid starvation. We reported here that both nucleotides strongly inhibit the activity of enzymes IMP dehydrogenase and adenylosuccinate synthetase, the first enzymes of the guanylate and adenylate biosynthetic pathways. In both cases, ppGP (MSII) is a stronger inhibitor than ppGpp (MSI). On the other hand, these two nucleotides exhibited opposite effects on the activity of phosphoenolpyruvate carboxylase, the enzyme that utilizes phosphoenolpyruvate. At their respective physiological concentrations, the activity of phosphoenolpyruvate carboxylase is activated by ppGpp and inhibited by ppGp.  相似文献   

17.
18.
19.
20.
Cytidine to uridine editing of apolipoprotein B (apoB) mRNA requires the cytidine deaminase APOBEC-1 as well as a tripartite sequence motif flanking a target cytidine in apoB mRNA and an undefined number of auxiliary proteins that mediate RNA recognition and determine site-specific editing. Yeast engineered to express APOBEC-1 and apoB mRNA supported editing under conditions of late log phase growth and stationary phase. The cis-acting sequence requirements and the intracellular distribution of APOBEC-1 in yeast were similar to those described in mammalian cells. These findings suggest that auxiliary protein functions necessary for the assembly of editing complexes, or ‘editosomes’, are expressed in yeast and that the distribution of editing activity is to the cell nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号