首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 595 毫秒
1.
Dichroplus elongatus is an extensively distributed South American grasshopper considered a pest of major crops. Argentinean populations show a widespread B-chromosome polymorphism which could be maintained as the result trade-offs among opposite selective effects and interactions with their mitotic instability. The main objective of this study was to evaluate the relationships between B chromosomes and mtDNA sequences coupled with minisatellites loci, and verify the genotype/karyotype covariation in 12 populations located at both sides of Paraná River (Eastern and Western Regions). B carrier individuals showed significantly higher genetic diversity (HE and X) respect to standard individuals. AMOVAs based on nuclear loci and mtDNA sequence datasets showed statistically significant levels of differentiation among karyotypes in the Eastern Region. Cluster analysis through Bayesian procedure considering nuclear loci splits B carriers and standard individuals into different genetic clusters in some Eastern populations. The Bayesian phylogenetic analysis showed two divergent mtDNA clades. Haplogroup 1 is composed exclusively of standard individuals, however all B chromosome carriers are included in haplogroup 2. There is an association between some haplotypes and B chromosomes and a strong effect of phylogenetic signal on B chromosome population structure. Genetic differentiation between karyotypes at Eastern Region revealed by AMOVA, Bayesian approaches and clustering analysis based on uniparental and biparental inherited markers may be due to the inherent nature of the B chromosome, to karyotype biased dispersal or to difference tolerance of B chromosomes on different genetic background. The combination of molecular and chromosome analysis performed in this study indicated that B chromosomes in D. elongatus is an important factor in explaining the genetic population structure at minisatellite and mitochondrial DNA levels.  相似文献   

2.
Hyphantria cunea (Drury) has colonized many countries outside its native range of North America and has become a model species for studies of the colonization and subsequent adaptation of agricultural pests. Molecular genetic analyses can clarify the origin and subsequent adaptations to non-native habitats. Using the mitochondrial COI gene, we examined the genetic relationships between invasive populations (China, Iran, Japan, and Korea) and native populations (i.e., the United States). The Jilin (China) and Guilan (Iran) populations showed nine previously unknown haplotypes that differed from those found in the south–central United States, suggesting multiple colonization events and different regions of invasion. A dominant mtDNA haplotype in populations in the United States was shared by all of the populations investigated, suggesting that H. cunea with that haplotype have successfully colonized China, Iran, Japan, and Korea.  相似文献   

3.
Mitochondrial DNA (mtDNA) control-region sequences and microsatellite loci length polymorphisms were used to estimate phylogeographical patterns (historical patterns underlying contemporary distribution), intraspecific population structure and gender-biased dispersal of Phocoenoides dalli dalli across its entire range. One-hundred and thirteen animals from several geographical strata were sequenced over 379 bp of mtDNA, resulting in 58 mtDNA haplotypes. Analysis using F(ST) values (based on haplotype frequencies) and phi(ST) values (based on frequencies and genetic distances between haplotypes) yielded statistically significant separation (bootstrap values P < 0.05) among most of the stocks currently used for management purposes. A minimum spanning network of haplotypes showed two very distinctive clusters, differentially occupied by western and eastern populations, with some common widespread haplotypes. This suggests some degree of phyletic radiation from west to east, superimposed on gene flow. Highly male-biased migration was detected for several population comparisons. Nuclear microsatellite DNA markers (119 individuals and six loci) provided additional support for population subdivision and gender-biased dispersal detected in the mtDNA sequences. Analysis using F(ST) values (based on allelic frequencies) yielded statistically significant separation between some, but not all, populations distinguished by mtDNA analysis. R(ST) values (based on frequencies of and genetic distance between alleles) showed no statistically significant subdivision. Again, highly male-biased dispersal was detected for all population comparisons, suggesting, together with morphological and reproductive data, the existence of sexual selection. Our molecular results argue for nine distinct dalli-type populations that should be treated as separate units for management purposes.  相似文献   

4.
The bluegill sunfish, Lepomis macrochirus, is a notorious exotic species in many freshwater ecosystems, currently expanding its distribution worldwide. In 1960, a small group of bluegills captured in the Mississippi River at Guttenberg in Iowa were imported to Japan as a gift from the mayor of Chicago to the Japanese government. The offspring of these fish were released into the wild in Japan and also in Korea. Over 40 years after this first introduction, L. macrochirus now occupies all the freshwater ecosystems of both countries. We compared invading populations of L. macrochirus in Japan and Korea with native populations in the USA, using PCR-RFLP (polymerase chain reaction-restricted fragment length polymorphism) analyses of mitochondrial DNA, to estimate the origin and dispersal of L. macrochirus in Japan and Korea. Five haplotypes of mitochondrial DNA detected in Japanese and Korean populations completely coincided with the haplotypes of the Guttenberg population. Haplotype diversity of invading populations was shown to be highest in populations established in the 1960s, while genetic variability was lower in more recently established populations. Our results suggest that all L. macrochirus in Japan and Korea have originated from the 15 fish first introduced in 1960. Low haplotype diversity in newly established populations is probably due to genetic drift arising from repeated population bottlenecks, while the high similarity of haplotypes among neighbouring populations is considered to reflect the history of transplantation by humans.  相似文献   

5.
The genetic relationships of mantis shrimp Oratosquilla oratoria between the coastal waters of China and Japan were not well studied. To reveal the genetic differentiation and genetic structure among populations, we collected populations of mantis shrimp O. oratoria from the coastal waters of China and Japan to analyze the mtDNA control region variation. A total of 309 individuals of O. oratoria were collected from 13 localities (11 from China and 2 from Japan) and a segment of mitochondrial DNA control region was sequenced. Three hundred nine haplotypes were defined, yielding a very high haplotype diversity and nucleotide diversity. Two lineages of O. oratoria were revealed and displayed strong differences in the geographical distribution. In the coastal waters of China, the geographic distribution of the two lineages was completely separated by the Yangtze River estuary; however, the lineages showed geographic sympatry in two populations from Japan. Based on the lineage distribution, three groups were defined. There was no significant genetic differentiation among the populations within the three groups, indicating high gene flow within each group. Significant and negative values for Tajima D and Fu’s Fs tests, and mismatch distributions for two lineages indicated population expansion. The present result confirmed that the freshwater outflow from the Yangtze River formed a physical barrier and affected gene exchange. The different distribution patterns of the two lineages in coastal waters of China and Japan indicated that the larvae of O. oratoria were transferred from China to the coastal waters of Japan with a one-way gene flow.  相似文献   

6.
Plant diversity is decreasing mainly through anthropogenic factors like habitat fragmentation, which lead to spatial separation of remaining populations and thereby affect genetic diversity and structure within species. Twenty populations of the threatened grassland species Crepis mollis were studied across Germany (578 individual plants) based on microsatellite genotyping. Genetic diversity was significantly higher in populations from the Alpine region than from the Central Uplands. Furthermore, genetic diversity was significantly positively correlated with population size. Despite smaller populations in the Uplands there were no signs of inbreeding. Genetic differentiation between populations was moderate (F ST?=?0.09) and no isolation by distance was found. In contrast, large-scale spatial genetic structure showed a significant decrease of individual pairwise relatedness, which was higher than in random pairs up to 50 km. Bayesian analyses detected three genetic clusters consistent with two regions in the Uplands and an admixture group in the Alpine region. Despite the obvious spatial isolation of the currently known populations, the absence of significant isolation by distance combined together with moderate population differentiation indicates that drift rather than inter-population gene flow drives differentiation. The absence of inbreeding suggests that pollination is still effective, while seed dispersal by wind is likely to be impaired by discontinuous habitats. Our results underline the need for maintaining or improving habitat quality as the most important short term measure for C. mollis. For maintaining long-term viability, establishing stepping stone habitats or, where this is not possible, assisted gene flow needs to be considered.  相似文献   

7.
Genetic structure of masu salmon Oncorhynchus masou populations in Hokkaido was examined by analysing mtDNA NADH dehydrogenase subunit 5 gene (561 bp) of 382 individuals collected from 12 rivers, in which there were no records of artificial release. Analysis of molecular variance showed that between groups level and between populations within-group level explained each c. 10% of genetic variance. In neighbour-joining tree, four populations located in southern Hokkaido were clustered into a single group; however, other populations did not form any clear clusters. Fu's F S, Tajima's D and a mismatch distribution test indicated a sudden expansion of population in the entire population of Hokkaido and the northernmost population of Chiraibetsu, which was genetically close to the southern Hokkaido group. The Sea of Japan and southern rivers, including those of southern Hokkaido, seem to have served as refugia for masu salmon during glacial periods, and their dispersal and straying in interglacial periods affected the genetic structure of masu salmon populations in Hokkaido.  相似文献   

8.
Genetic variation in four natural populations of the starfish Linckia laevigata from the Indo-West Pacific was examined using restriction fragment analysis of a portion of the mtDNA including the control region. Digestion with seven restriction enzymes identified 47 haplotypes in a sample of 326 individuals. Samples collected from reef sites within each location were not significantly differentiated based on ΦST or spatial distribution of haplotypes, indicating that dispersal is high over short to moderate distances. Evidence of gene flow is further supported by the low divergence among haplotypes and the lack of any clear geographical structuring among different haplotypes in the gene phylogeny. However, analysis of molecular variance ( AMOVA ), ΦST and contingency χ2 analyses of the spatial distribution of haplotypes demonstrate the presence of significant broad scale population genetic structure among the four widespread locations examined. RFLP data are consistent with high gene flow between the Philippines and Western Australia and moderate gene flow between the Great Barrier Reef (GBR) and Fiji, but only limited gene flow between either the Philippines or Western Australia and either the GBR or Fiji. The presence of mtDNA structure contrasts with previous allozyme data which suggest that dispersal among widely separated locations is equivalent to dispersal among populations within the highly connected GBR studies. This discordance between patterns of gene flow inferred from these two markers cannot be fully accounted for by differences in effective population size for mtDNA. This might suggest that while mtDNA variation may represent contemporary patterns of gene flow, allozyme variation among populations is yet to reach equilibrium between drift and migration over the range surveyed.  相似文献   

9.
The marine species usually show high dispersal capabilities accompanied by high levels of gene flow. On the other hand, many physical barriers distribute along the continental marginal seas and may prevent dispersals and increase population divergence. These complexities along the continental margin generate serious challenges to population genetic studies of marine species. Chinese sea bass Lateolabrax maculatus distributes broad latitudinal gradient spanning from the tropical to the mid-temperate zones in the continental margin seas of the Northwest Pacific Ocean. Using the double digest restriction-site-associated DNA tag sequencing (ddRAD) approach, we genotyped 10,297 SNPs for 219 Chinese seabass individuals of 12 populations along the Chinese coast in the Northwest Pacific region. Genetic divergence among these populations was evaluated, and population structure was established. The results suggested that geographically distant populations in the Bohai Gulf and the Beibu Gulf retain significant genetic divergence, which are connected by a series of intermediate populations in between. The results also suggested that Leizhou Peninsula, Hainan Island, and Shandong Peninsula are major physical barriers and substantially block gene flow and genetic admixture of L. maculatus. We also investigated the potential genetic basis of local adaptation correlating with population differentiation of L. maculatus. The sea surface temperature is a significantly differentiated environmental factor for the distribution of L. maculatus. The correlation of water temperature and genetic variations in extensively distributed populations was investigated with Bayesian-based approaches. The candidate genes underlying the local selection in geographically divergent populations were identified and annotated, providing clues to understand the potential mechanisms of adaptive evolution. Overall, our genome scale population genetic analysis provided insight into population divergence and local adaptation of Chinese sea bass in the continental marginal seas along Chinese coast.  相似文献   

10.
Seagrasses are marine angiosperms and play an essential ecological role in coastal ecosystems; however, seagrass meadows are threatened locally by anthropogenic disturbances. Understanding the dispersal patterns of seagrasses is essential for appropriate ecosystem management and establishment of marine protected areas (MPAs) in coastal ecosystems. In the Guimaras Strait in the Philippines, Banate (BAN) has been established as an MPA. However, there is a lack of information on the genetic diversity of seagrasses in BAN and the surrounding areas. In the present study, population genetics analysis of Enhalus acoroides was performed by using polymorphic microsatellite markers, for the estimation of genetic diversity, differentiation, and migration patterns of seagrasses within the regional geographical scale (~200 km) around the Guimaras Strait. The results showed that the genetic diversity of BAN is extremely low, although the Guimaras Strait is located in the tropical central habitat. Guimaras Island geographically divides the populations of E. acoroides into south and north. However, the genetic structure did not show any relationship between the geographical location and distance. The floating, buoyant fruits of E. acoroides may play a role in their long-distance dispersal; however, such dispersal is not frequent. Almost all of the seeds and fruits are derived from self-recruitment in the natal meadow. This study suggests that E. acoroides populations possess a weak genetic connectivity, and that the persistence of the meadow is threatened due to the low genetic diversity and high degree of population isolation in BAN. To maintain and enhance the genetic diversity of seagrasses within the MPA, the seagrass meadows in the surrounding areas should also be conserved.  相似文献   

11.
Insight into a species’ native and introduced range is essential in understanding the invasion process. Genetic diversity, propagule pressure and environmental conditions all have been recognised as playing a determinant role in invasion success. Here, we aimed to investigate the genetic diversity and population genetic structure (using the COI mtDNA gene region and 22 nDNA microsatellite markers) of the Asian green mussel Perna viridis within its potential native range in Asia and at introduced locations in the USA and the Caribbean. We also analyse genetic data from vessel intercepts and an incursion. By doing so, we aimed to identify genetic signatures that could allow to track vessel samples to their source and provide further insight into potential high-risk invasive populations or areas. Three top hierarchical clusters were identified using the individual-based Bayesian clustering method in STRUCTURE, corresponding to populations in three world regions: (1) USA and Caribbean, (2) India and (3) Southeast Asia. Within Southeast Asia, additional analysis indicate a shallow genetic differentiation of three subgroups consisting of (3a) Thailand, (3b) Taiwan and Hong-Kong, and (3c) a cluster of Singapore–Indonesia samples. Overall, the population structure found in this study suggests that the markers used could be useful in identifying source populations, particularly between the three mains world regions. Most surprisingly however, this study shows that the genetic diversity of samples collected from vessel intercepts and incursions did not differ significantly from established populations in Southeast Asia. In this region, in addition to the high vessel connectivity and number of P. viridis transported, all sampled populations are likely to pose a comparable risk in terms of genetic diversity. The present work represents the most comprehensive population genetic study of P. viridis, and the first to address the potential genetic introduction risk posed by populations of this species. The information and genetic markers in this study constitute a valuable addition to the tools already used to infer on potential high-risk source populations of P. viridis. They should therefore prove useful for biosecurity surveillance and management actions directed at this species.  相似文献   

12.
The number of Asian black bears (Ursus thibetanus) in Japan has been reduced and their habitats fragmented and isolated because of human activities. Our previous study examining microsatellite DNA loci revealed significant genetic differentiation among four local populations in the western part of Honshu. Here, an approximate 700-bp nucleotide sequence of mitochondrial DNA (mtDNA) control region was analysed in 119 bears to infer the evolutionary history of these populations. Thirteen variable sites and variation in the number of Ts at a T-repeat site were observed among the analysed sequences, which defined 20 mtDNA haplotypes with the average sequence divergence of 0.0051 (SD = 0.00001). The observed haplotype frequencies differed significantly among the four populations. Phylogeographic analysis of the haplotypes suggested that black bears in this region have gone through two different colonisation histories, since the observed haplotypes belonged to two major monophyletic lineages and the lineages were distributed with an apparent border. The spatial genetic structure revealed by using mtDNA was different from that observed using microsatellite DNA markers, probably due to female philopatry and male-biased dispersal. Since nuclear genetic diversity will be lost in the three western populations because of the small population size and genetic isolation, their habitats need to be preserved, and these four populations should be linked to each other by corridors to promote gene flow from the easternmost population with higher nuclear genetic diversity.  相似文献   

13.
To understand the geographical patterns of genetic variation in freshwater fishes in western Japan, the genetic structures of populations of Tanakia lanceolata and T. limbata (Teleostei, Cyprinidae) in this area were investigated using mitochondrial DNA (mtDNA) cytb sequences. Neighbor-joining trees of mtDNA haplotypes revealed four and three genetically divergent groups in T. lanceolata and T. limbata, respectively. Each group was restricted to one or the other of the geographical regions in the area studied. The patterns of geographical divergence in the two species showed some similarities, which seem to reflect common historical events experienced by freshwater fishes distributed in western Japan. On the other hand, dissimilarities were also found in the patterns, indicating that species-specific historical processes also occurred. Within one region, T. lanceolata was less differentiated than T. limbata, suggesting a difference in the dispersal abilities of the two bitterlings. In addition, several individuals in Kunichika River on Shikoku island were morphologically identified as T. lanceolata but had mtDNA haplotypes of T. limbata. We tentatively suggest that these individuals are hybrids of the two species, but further studies employing nuclear markers are necessary to validate this hypothesis.  相似文献   

14.
The Manchurian trout, Brachymystax lenok tsinlingensis (family: Salmonidae), is a cold freshwater fish endemic to Northeast Asia. South Korean populations of this species, which comprise its southern range limit, have recently decreased markedly in size and are now becoming critically endangered. We assessed the current population status of this species in South Korea by estimating the levels of genetic diversity and genetic structure of five natural and four restored populations using mitochondrial DNA (mtDNA) control region sequences and eight nuclear microsatellite loci. Levels of within-population genetic diversity were low, suggesting that past effective population sizes (N e) have been small. Each population had one or a maximum of two mtDNA haplotypes. Microsatellite allelic richness (AR) was significantly higher for natural populations (mean AR?=?3.51; 95% confidence interval, 3.00–4.03) than for restored populations (mean AR?=?2.61; 2.38–2.98). South Korean populations were significantly genetically isolated from one another, with private mtDNA haplotypes and microsatellite alleles, suggesting that limited gene flow has been occurring among populations. A mtDNA phylogeny revealed that South Korean lineages were more closely related to those of China than to those of North Korea and Russia. Overall, we suggest that future restoration efforts aimed at South Korean populations should consider the genetic characteristics reported here, which should help to fulfil effective conservation strategies for this highly cherished species. Our results will inform other conservation efforts, including assisted migration of freshwater fish populations at the equatorial end of the geographical range limit of the species.  相似文献   

15.
The melon aphid, Aphis gossypii Glover (Hemiptera: Aphididae), is a highly polyphagous species. To investigate its genetic diversity among seasonal host plants, we conducted a field study in a diversified vegetable growing area in Beijing, China. The molecular marker mtDNA COI (1563-bp long) was used to analyze the genetic diversity of aphid populations collected from eight plant species belonging to families Malvaceae, Cucurbitaceae and Rosaceae. A total of 33 haplotypes were identified, five of which were shared haplotypes, while the remaining 28 were unique haplotypes. At least one haplotype was shared by all eight A. gossypii populations. Aphid populations showed high levels of nucleotide and haplotype diversity. The genetic diversity indices were maximal on the hibiscus (the primary host), whereas minimal on cucumber and strawberry (the secondary hosts). The analysis of molecular variance showed that most of the variance was distributed within populations. Based on the genetic distances, the eight populations can be divided into two groups, associated with primary and the secondary host plant, respectively. The aphids possibly migrated from Hibiscus to watermelon, thereafter dispersed from watermelon to other secondary host plants. Watermelon was an important host probably due to its early growing season and large planting area. Our results highlighted the need to target the population dispersal for effective control.  相似文献   

16.
The genetic structure of the Asiatic black bear (Ursus thibetanus) in Japan was studied to understand the events that occurred during its evolution. The left domain of the mitochondrial control region (about 240 bp) was sequenced, defining 27 haplotypes that consisted of 23 haplotypes from 333 bears in Japan and 22 bears in the Asian continent. The network tree of the control region indicated that the Japanese population formed a distinct clade from the continental population. The phylogeographic analysis of the haplotypes indicated that the Shikoku and Kii Hanto populations had diverged during the initial phase from the ancestral population. After the 3 dominant haplotypes were rapidly distributed throughout Japan in the early stage of the population dispersal, the Japanese population diverged into eastern and western populations. Using the entire mitochondrial cytochrome b sequence, divergence time between the Japanese and the Continental populations suggested that the Japanese population might have colonized into Japan through the land bridge from the Korean Peninsula around 500 ka, which is consistent with paleontological evidence. Our finding that bears in western Japan exhibit lower genetic diversity and higher levels of genetic differentiation than bears in eastern Japan provides a vital contribution to conservation policy for these isolated populations.  相似文献   

17.
Many peninsulas in the temperate zone played an important role as refugia of various flora and fauna, and the southern Korean Peninsula also served as a refugium for many small mammals in East Asia during the Pleistocene. The Asian lesser white-toothed shrew, Crocidura shantungensis, is a widely distributed species in East Asia, and is an appropriate model organism for exploring the role of the Korean Peninsula as a refugium of small mammals. Here, we investigated phylogenetic relationships and genetic diversity based on the entire sequence of the mitochondrial cytochrome b gene (1140 bp). A Bayesian tree for 98 haplotypes detected in 228 C. shantungensis specimens from East Asia revealed the presence of three major groups with at least 5 subgroups. Most haplotypes were distributed according to their geographic proximity. Pairwise FST’s and analysis of molecular variance (AMOVA) revealed a high degree of genetic differentiation and variance among regions as well as among populations within region, implying little gene flow among local populations. Genetic evidence from South Korean islands, Jeju-do Island of South Korea, and Taiwan leads us to reject the hypothesis of recent population expansion. We observed unique island-type genetic characteristics consistent with geographic isolation and resultant genetic drift. Phylogeographic inference, together with estimates of genetic differentiation and diversity, suggest that the southern most part the Korean Peninsula, including offshore islands, played an important role as a refugium for C. shantungensis during the Pleistocene. However, the presence of several refugia on the mainland of northeast Asia is also proposed.  相似文献   

18.
The amago salmon, Oncorhynchus masou ishikawae, is an endemic subspecies of O. masou in Japan. Owing to the extensive stocking of hatchery fish throughout Japan, indigenous populations of O. m. ishikawae are now on the verge of extinction. We examined the genetic effects of stocking hatchery fish on wild populations in the River Koza, Japan, using microsatellite and mitochondrial DNA (mtDNA) markers. For mtDNA, haplotype mt1, which is common in wild populations, was present exclusively in isolated wild populations assumed to be unaffected by previous stocking, while it was never observed in hatchery fish. Genetic diversity was much higher in wild populations in the stocked area, which shared many mtDNA haplotypes with hatchery fish, than in isolated wild populations with haplotype mt1. Pairwise F ST estimates based on microsatellites showed significant differentiation among the isolated populations with many microsatellite loci monomorphic. Significant deviation from Hardy–Weinberg equilibrium was observed in wild populations in the area subject to stocking, where a Bayesian-based assignment test showed a high level of introgression with hatchery fish. These results suggest that wild populations with haplotype mt1, which became isolated through anthropogenic environmental change in the 1950–1960s, represent indigenous populations of O. m. ishikawae in the River Koza. They have low genetic diversity, most likely caused by genetic bottlenecks following damming and environmental deterioration, while stocking of hatchery fish over the past 30 years apparently had a large impact on the genetic structure of wild populations in the main channel of the River Koza.  相似文献   

19.
Over 70% of North American freshwater mussel species (families Unionidae and Margaritiferidae) are listed as threatened or endangered. Knowledge of the genetic structure of target species is essential for the development of effective conservation plans. Because Ambelma plicata is a common species, its population genetic structure is likely to be relatively intact, making it a logical model species for investigations of freshwater mussel population genetics. Using mtDNA and allozymes, we determined the genotypes of 170+ individuals in each of three distinct drainages: Lake Erie, Ohio River, and the Lower Mississippi River. Overall, within-population variation increased significantly from north to south, with unique haplotypes and allele frequencies in the Kiamichi River (Lower Mississippi River drainage). Genetic diversity was relatively low in the Strawberry River (Lower Mississippi River drainage), and in the Lake Erie drainage. We calculated significant among-population structure using both molecular markers (A.p. Φst = 0.15, θst = 0.12). Using a hierarchical approach, we found low genetic structure among rivers and drainages separated by large geographic distances, indicating high effective population size and/or highly vagile fish hosts for this species. Genetic structure in the Lake Erie drainage was similar to that in the Ohio River, and indicates that northern populations were founded from at least two glacial refugia following the Pleistocene. Conservation of genetic diversity in Amblema plicata and other mussel species with similar genetic structure should focus on protection of a number of individual populations, especially those in southern rivers.  相似文献   

20.
Aim Invasive alien species usually exhibit very high adaptation and rapid evolution in a new environment, but they often have low levels of genetic diversity (invasive species paradox). Genetic variation and population genetic structure of feral American mink, Neovison vison, in Poland was investigated to explain the invasion paradox and to assess current gene flow. Furthermore, the influence of mink farming on adaptation of the feral population was evaluated by comparing the genetic structure of feral and ranch mink. Location Samples from feral mink were collected in 11 study areas in northern and central Poland and from ranch mink at 10 farms distributed throughout the country. Methods A 373‐bp‐long mtDNA control region fragment was amplified from 276 feral and 166 ranch mink. Results Overall, 31 haplotypes, belonging to two groups from genetically diverse sources, were detected: 11 only in feral mink, 12 only in ranch mink and eight in both. The genetic differentiation of feral mink from the trapping sites was high, while that among ranch mink from various farms was moderate. There was no significant relationship between genetic and geographic distance. The number of trapping sites where given haplotypes occurred correlated with the number of farms with these haplotypes. The mink from two sites were the most divergent, both from all other feral mink and from ranch mink. Comparison of mtDNA and microsatellite differentiation suggests male‐biased dispersal in this species. Main conclusions American mink in Poland exhibit high genetic diversity and originate from different source populations of their native range. The process of colonization was triggered by numerous escapees from various farms and by immigrants from Belarus. The genetic structure of local feral mink populations was shaped by the founder effect and multiple introductions. The genomic admixture that occurred during mixing of different populations might have increased the fitness of individuals and accelerated the invasiveness of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号