首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Why are sperm small and eggs large? The dominant explanation for the evolution of gamete size dimorphism envisages two opposing selection pressures acting on gamete size: small gametes are favoured because many can be produced, whereas large gametes contribute to a large zygote with consequently increased survival chances. This model predicts disruptive selection on gamete size (i.e. selection for anisogamy) if increases in zygote size confer disproportional increases in fitness (at least over part of its size range). It therefore predicts that increases in adult size should be accompanied by stronger selection for anisogamy. Using data from the green algal order Volvocales, we provide the first phylogenetically controlled test of the model''s predictions using a published phylogeny and a new phylogeny derived by a different method. The predictions that larger organisms should (i) have a greater degree of gamete dimorphism and (ii) have larger eggs are broadly upheld. However, the results are highly sensitive to the phylogeny and the mode of analysis used.  相似文献   

3.
A study on sex-determination and karyotypic evolution inTetranychidae   总被引:1,自引:1,他引:0  
The chromosome complements of 45 species of spider mites (Tetranychidae) were studied, making the total number of species now examined in this family 57, approximately 10% of all species known. The chromosome numbers range fromn=2 ton=7. The modal number of the family is 3 (found in 44% of the species). It is argued that the ancestral number isn=2 (21% of the species).In the more primitive subfamily of theBryobiinae both thelytokous and arrhenotokous species occur, whereas the subfamily of theTetranychinae exclusively exhibits arrhenotoky. The karyotype evolution is discussed in connection with arrhenotoky. It is stated that karyotype information is a useful tool for the spider mite taxonomist.This study was financially supported by the Netherlands Foundation for the Advancement of Tropical Research (W.O.T.R.O.) and the Uyttenboogaart-Eliasen Foundation.  相似文献   

4.
5.
Chromosome numbers and karyotypic evolution of Caraboidea   总被引:2,自引:2,他引:0  
J. Serrano 《Genetica》1981,55(1):51-60
The chromosome numbers of 136 species of the Spanish caraboid fauna were studied. The most frequent karyotypes are 2n=37 (54 species) and 2n=24 (23 species), and the chromosome number ranges from 2n=21 to 2n=69, of which 2n=69 is the highest diploid number hitherto found among the Coleoptera. It is proposed that 2n=37 is the ancestral karyotype of the division Caraboidea and the suborder Adephaga as opposed to that of the suborder Polyphaga, 2n=20. Karyotypic evolution has led to increases and decreases of this number, both tendencies having taken place in four genera. Species of ten genera show a neo-XY bivalent due to an X-autosome fusion. The thirty-three chromosome numbers of Caraboidea reveal that these Coleoptera have a remarkable karyotypical heterogeneity.  相似文献   

6.
Fact, theory, test and evolution   总被引:1,自引:0,他引:1  
  相似文献   

7.
8.
Most scholars agree that avoiding predators is a central concern of lemurs, monkeys, and apes. However, given uncertainties about the frequency with which primates actually become prey, the selective importance of predation in primate evolution continues to be debated. 1 - 9 Some argue that primates are often killed by predators, 5 , 6 while others maintain that such events are relatively rare. 2 , 7 , 9 Some authors have contended that predation's influence on primate sociality has been trivial 10 , 11 ; others counter that predation need not occur often to be a powerful selective force. 12 - 14 Given the challenges of documenting events that can be ephemeral and irregular, we are unlikely ever to amass the volume of systematic, comparative data we have on such topics as feeding, social dynamics, or locomotor behavior. Nevertheless, a steady accumulation of field observations, insight gained from natural experiments, and novel taphonomic analyses have enhanced understanding of how primates interact with several predators, especially raptors, the subject of this review.  相似文献   

9.
Comparative genetic linkage maps provide a powerful tool for the study of karyotypic evolution. We constructed a joint SSR/RAPD genetic linkage map of the Helianthus petiolaris genome and used it, along with an integrated SSR genetic linkage map derived from four independent H. annuus mapping populations, to examine the evolution of genome structure between these two annual sunflower species. The results of this work indicate the presence of 27 colinear segments resulting from a minimum of eight translocations and three inversions. These 11 rearrangements are more than previously suspected on the basis of either cytological or genetic map-based analyses. Taken together, these rearrangements required a minimum of 20 chromosomal breakages/fusions. On the basis of estimates of the time since divergence of these two species (750,000-1,000,000 years), this translates into an estimated rate of 5.5-7.3 chromosomal rearrangements per million years of evolution, the highest rate reported for any taxonomic group to date.  相似文献   

10.
We present a detailed reanalysis of the comparative brain data for primates, and develop a model using path analysis that seeks to present the coevolution of primate brain (neocortex) and sociality within a broader ecological and life-history framework. We show that body size, basal metabolic rate and life history act as constraints on brain evolution and through this influence the coevolution of neocortex size and group size. However, they do not determine either of these variables, which appear to be locked in a tight coevolutionary system. We show that, within primates, this relationship is specific to the neocortex. Nonetheless, there are important constraints on brain evolution; we use path analysis to show that, in order to evolve a large neocortex, a species must first evolve a large brain to support that neocortex and this in turn requires adjustments in diet (to provide the energy needed) and life history (to allow sufficient time both for brain growth and for 'software' programming). We review a wider literature demonstrating a tight coevolutionary relationship between brain size and sociality in a range of mammalian taxa, but emphasize that the social brain hypothesis is not about the relationship between brain/neocortex size and group size per se; rather, it is about social complexity and we adduce evidence to support this. Finally, we consider the wider issue of how mammalian (and primate) brains evolve in order to localize the social effects.  相似文献   

11.
12.
This paper presents the results of a general review of predation on nonhuman primates as a selective force in primate evolution. Testable hypotheses derived from the literature on predation on primates, concerning sexual dimorphism, male defense, group size, solitaries, transfer, subgrouping, and sex ratio, were applied to the available data on populations with varying predation rates in search of significant correlations. All seven hypotheses were supported, indicating that predation is and has been an important determinant of primate evolutionary history. Suggestions for accumulating a larger and more accurate body of information on predation rates on primates are offered.  相似文献   

13.
Retroviruses and primate evolution   总被引:9,自引:0,他引:9  
Human endogenous retroviruses (HERVs), probably representing footprints of ancient germ-cell retroviral infections, occupy about 1% of the human genome. HERVs can influence genome regulation through expression of retroviral genes, either via genomic rearrangements following HERV integrations or through the involvement of HERV LTRs in the regulation of gene expression. Some HERVs emerged in the genome over 30 MYr ago, while others have appeared rather recently, at about the time of hominid and ape lineages divergence. HERVs might have conferred antiviral resistance on early human ancestors, thus helping them to survive. Furthermore, newly integrated HERVs could have changed the pattern of gene expression and therefore played a significant role in the evolution and divergence of Hominoidea superfamily. Comparative analysis of HERVs, HERV LTRs, neighboring genes, and their regulatory interplay in the human and ape genomes will help us to understand the possible impact of HERVs on evolution and genome regulation in the primates. BioEssays 22:161-171, 2000.  相似文献   

14.
Five satellite DNA families (designated as satellite I?CV) have been identified in the Cervidae so far. Among those, satellite I, II and IV are centromere specific. Satellite I and II are shared by large number of deer species, where satellite IV is highly conserved among several deer species examined. Satellite III was initially thought to be roe deer specific but later identified in Chinese water deer as well. SatelliteV is Y-chromosome specific for several Asian deer species examined but also found in the pericentric region of Indian muntjac chromosome 3 and in X chromosome of Chinese water deer. The observation of interstitial hybridization sites on Indian muntjac chromosomes with satellite DNA I probe generated from Chinese muntjac provides the first molecular evidence supporting the tandem fusion theory that 2n=6??/7??of Indian muntjac karyotype could derive from an ancestral Chinese muntjac-like species with 2n=46. Interspecies chromosome painting study and the maximum number of interstitial hybridization detected with satellite I and satellite II DNA probes lend support to the hypothesis that the Indian muntjac karyotype could evolve directly from an ancestral Chinese water deer-like species with 2n=70. Such hypothesis is further substantiated by the finding of satellite V signals presented in specific chromosome regions between the Chinese water deer and the Indian muntjac chromosomes.  相似文献   

15.
Flip through The Pictorial Guide to the Living Primates1 and you will notice a striking yet generally underappreciated aspect of primate biology: primates are extremely colorful. Primate skin and pelage coloration were highlighted examples in Darwin's2 original discussions of sexual selection but, surprisingly, the topic has received little research attention since. Here we summarize the patterns of color variation observed across the primate order and examine the selective forces that might drive and maintain this aspect of primate phenotypic diversity. We discuss how primate color patterns might be adaptive for physiological function, crypsis, and communication. We also briefly summarize what is known about the genetic basis of primate pigmentation and argue that understanding the proximate mechanisms of primate coloration will be essential, not only for understanding the evolutionary forces shaping phenotypic variation, but also for clarifying primate taxonomies and conservation priorities.  相似文献   

16.
As a closed thermodynamic system subject to an essentially constant free energy gradient, the biosphere must evolve toward a stationary state of maximum structuring and minimum dissipation with respect to this applied gradient. Since biological evolution occurs opportunistically through chance and selection, rather than as a direct response to the free energy gradient, the conformance of this phase of evolution with thermodynamics requires that natural selection, and the particular adaptive strategies employed by species of organisms, be related to the principles of increasing structuring and decreasing dissipation. In this paper, some general features of this relationship are proposed.  相似文献   

17.
Although predation is an important driving force of natural selection its effects on primate evolution are still not well understood, mainly because little is known about the hunting behaviour of the primates' various predators. Here, we present data on the hunting behaviour of the leopard (Panthera pardus), a major primate predator in the Tai; forest of Ivory Coast and elsewhere. Radio-tracking data showed that forest leopards primarily hunt for monkeys on the ground during the day. Faecal analyses confirmed that primates accounted for a large proportion of the leopards' diet and revealed in detail the predation pressure exerted on the eight different monkey and one chimpanzee species. We related the species-specific predation rates to various morphological, behavioural and demographic traits that are usually considered adaptations to predation (body size, group size, group composition, reproductive behaviour, and use of forest strata). Leopard predation was most reliably associated with density, suggesting that leopards hunt primates according to abundance. Contrary to predictions, leopard predation rates were not negatively, but positively, related to body size, group size and the number of males per group, suggesting that predation by leopards did not drive the evolution of these traits in the predicted way. We discuss these findings in light of some recent experimental data and suggest that the principal effect of leopard predation has been on primates' cognitive evolution.  相似文献   

18.
19.
Within and across species of primates, the number of males in primate groups is correlated with the number of females. This correlation may arise owing to ecological forces operating on females, with subsequent competition among males for access to groups of females. The temporal relationship between changes in male and female group membership remains unexplored in primates and other mammalian groups. We used a phylogenetic comparative method for detecting evolutionary lag to test whether evolutionary change in the number of males lags behind change in the number of females. We found that change in male membership in primate groups is positively correlated with divergence time in pairwise comparisons. This result is consistent with male numbers adjusting to female group size and highlights the importance of focusing on females when studying primate social evolution.  相似文献   

20.
Traditional explanations for the evolution of high orbital convergence and stereoscopic vision in primates have focused on how stereopsis might have aided early primates in foraging or locomoting in an arboreal environment. It has recently been suggested that predation risk by constricting snakes was the selective force that favored the evolution of orbital convergence in early primates, and that later exposure to venomous snakes favored further degrees of convergence in anthropoid primates. Our study tests this snake detection hypothesis (SDH) by examining whether orbital convergence among extant primates is indeed associated with the shared evolutionary history with snakes or the risk that snakes pose for a given species. We predicted that orbital convergence would be higher in species that: 1) have a longer history of sympatry with venomous snakes, 2) are likely to encounter snakes more frequently, 3) are less able to detect or deter snakes due to group size effects, and 4) are more likely to be preyed upon by snakes. Results based on phylogenetically independent contrasts do not support the SDH. Orbital convergence shows no relationship to the shared history with venomous snakes, likelihood of encountering snakes, or group size. Moreover, those species less likely to be targeted as prey by snakes show significantly higher values of orbital convergence. Although an improved ability to detect camouflaged snakes, along with other cryptic stimuli, is likely a consequence of increased orbital convergence, this was unlikely to have been the primary selective force favoring the evolution of stereoscopic vision in primates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号