首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method is described for estimating the rate of accumulation of epiphyte biomass on leaves of the seagrass, Heterozostera tasmanica (Martens ex Aschers.) den Hartog and for estimating the effect of epiphyte biomass on photosynthesis of the seagrass. Epiphyte biomass was determined by comparison of the weight per unit area of epiphyte-covered and epiphyte-free leaf blades. Epiphyte weight increased as age of the seagrass leaves increased. Linear regression on epiphyte biomass vs. leaf age estimated the rate of biomass accumulation. Rates varied from 5.7 to 104 μg epiphyte dry weight per cm2 of leaf surface per day at three sites in Western Port and Port Phillip Bay, Victoria. Rates of accumulation of epiphyte biomass were generally higher during December through March (summer) than in May (autumn), August (winter) or October (Spring). Light attenuation by epiphytes increase linearly with biomass. The rate of biomass accumulation of epiphytes was compared with leaf growth rate, ambient photon flux density in H. tasmanica beds and the photosynthesis—photon flux density curve of H. tasmanica. This comparison demonstrated that epiphyte biomass can accumulate fast enough to shade H. tasmanica leaves and significantly reduce the time (to less than one half of the leaf life span) in which positive net photosynthesis of the leaf blade is possible.  相似文献   

2.
Neutral density screens were used to reduce the level of irradiance available to an intertidal population of Heterozostera tasmanica (Martens ex Aschers.) den Hartog in Western Port, Victoria, Australia. When irradiance was reduced to 9 and 2% of control (ambient) levels, death of all leaf clusters of H. tasmanica resulted within 2 to 10 months. Reduction of irradiance to 35 and 25% of control levels resulted in a 25–50% decrease in leaf cluster density for the duration of the experiment (14 months). As irradiance level decreased leaf length increased (leaf length at 9% irradiance was twice leaf length in control areas) while leaf growth rate and leaf width remained the same. It is suggested that leaf growth rate per leaf cluster remains the same under reduced irradiance because of decreased likelihood of self-shading by surviving leaf clusters and increased surface area per leaf cluster. Density decreased more rapidly during summer than during winter at reduced light levels. This response may be due to an increase in the plant's light compensation point because of increased respiration at summer temperatures. Information on the lower limits of vertical distribution H. tasmanica in Western Port and Port Phillip Bay, Victoria together with the experimental irradiance reduction data suggests that H. tasmanica requires a minimum of ≈ 5% of surface irradiance for survival.  相似文献   

3.
Standing crop, density and leaf growth rate of Heterozostera tasmanica (Martens ex Aschers.) den Hartog along with light, temperature, nutrient and sediment characteristics were determined monthly for fifteen months at three study sites in Western Port and one site in Port Phillip Bay, Victoria, Australia. Erect vegetative stems of H. tasmanica were frequently branched, were present throughout the year and accounted for 25–60% of the above-sediment biomass, with the stem proportion higher during winter than summer. At three of the four sites there was a unimodal seasonal pattern in which minimum leaf standing crop (27–61 g dry wt. m?2), density (600–2000 leaf cluster m?2) and leaf productivity (0.34–0.77 g dry wt. m?2 day?1) generally occurred during winter (June–August) and maximum leaf standing crop (105–173 g dry wt. m?2), density (2700–5000 leaf cluster m?2) and leaf productivity (2.6–4.2 g dry wt. m?2 day?1) occurred during summer (December–February). A bimodal seasonal pattern with minimum standing crop and density during midsummer occurred at one site. This anomalous seasonal pattern may be due to exposure and desiccation stress during spring low tides. At the site receiving the lowest irradiance, standing crop, density and annual leaf production also were lowest, but length and width of leaves, shoot height and leaf growth rate per leaf cluster were the highest of the four study sites. On average, each leaf cluster at any one of the study sites produced 30–31 leaves per year with mean leaf turnover rates of 1.3–1.7% day?1. Annual leaf production of H. tasmanica ranged from 410 to 640 g dry wt.m?2 at the four sites.  相似文献   

4.
5.
物种组成对高寒草甸植被冠层降雨截留容量的影响   总被引:2,自引:0,他引:2  
余开亮  陈宁  余四胜  王刚 《生态学报》2011,31(19):5771-5779
高寒草甸退化减少地上生物量、叶面积指数(LAI),因而减少冠层降雨截留容量(S)。但是,未有研究评价物种组成改变对S的影响。用水浸泡法和水量平衡法研究青藏高原高寒草甸3个不同退化阶段下(未退化、轻度退化、中度退化)的S变化规律,并评价物种组成改变对S的影响。结果表明:高寒草甸退化显著减少S(P<0.05)。在未退化、轻度退化、中度退化的高寒草甸,水浸泡法测得的S分别为0.612 mm,0.289 mm 和0.217 mm;水量平衡法测得的S分别为0.979 mm,0.493 mm 和0.419 mm。物种组成改变对S的影响表现为:随着高寒草甸的3个不同退化阶段,S减少的幅度先大于后小于LAI减少的幅度。原因是:(1)在未退化的草甸,鹅绒委陵菜(Potentilla arserina)的叶面积占有显著优势,占总叶面积的31.18%;在轻度退化的草甸,禾本科植物(Graminoid)的叶面积占有显著优势,占总叶面积的44.41%,而鹅绒委陵菜是稀有种,仅占总叶面积的3.76%;在中度退化的草甸,鹅绒委陵菜的叶面积占有显著优势,占总叶面积的19.91%;(2)鹅绒委陵菜的叶单位面积吸附水量(SL)是禾本科植物的大约2.5倍。  相似文献   

6.
Chondracanthus chamissoi (C. Agardh) Kützing is an economically important red seaweed with an extended latitudinal distribution along the south-east Pacific. Here we report on the seasonal in vitro germination of carpospores and tetraspores from four populations distributed from 27 to 41° S on the Chilean coast. Our results show that both types of spores exhibited a different physiological behavior related to the geographic origin of the specimens. Germination occurred throughout the year for both spore types in the four populations. However, for the northern locations (Calderilla, La Herradura and Puerto Aldea) germination was higher in spring, while for the southern location (Lechagua), germination was higher in summer. The growth rate of carposporelings and tetrasporelings varied seasonally in all locations studied, with higher growth in spring. Among all, carposporelings from Lechagua specimens reached the highest growth rates (9.3 ± 0.2% d−1). However, spores from Herradura and P. Aldea had a good germination and SGR in all seasons and would be good candidates to start spores-based cultivation of this valuable resource in Chile.  相似文献   

7.
Rapid light curves (RLCs), based on pulse amplitude modulated (PAM) fluorometry, were used to investigate the spatio-temporal variability in photosynthesis versus irradiance parameters (α, Ik and Pmax) and the Fv/Fm ratio of the seagrass Zostera tasmanica (formerly Heterozostera tasmanica). Spatial variation was examined across scales ranging from within a leaf (cms) to across the bed (ms), using a nested analysis of covariance sampling design. Overall, significant variation was identified at all scales examined, excluding the largest scale (area). Patterns of variability differed among individual parameters; however a high percentage of the variation was consistently assigned to the covariates, age (within and between leaves) for all parameters, except Pmax.  相似文献   

8.
In situ nitrogen uptake by leaves and epiphytes was studied in a Mediterranean seagrass (Posidonia oceanica) meadow impacted from a fish farm and a pristine meadow, using 15NH4 and 15NO3 as tracers. In the impacted meadow both leaves and epiphytes yielded higher N concentrations and showed higher specific N uptake, suggesting a linkage between N uptake and its accumulation. Epiphytes took up N faster than leaves in relation to their corresponding biomass, but when assessed per unit area, N uptake was higher in leaves. Leaf N uptake was negatively correlated with epiphyte N uptake. With increasing epiphyte load on leaves, N leaf uptake decreased while N epiphyte uptake increased, indicating that epiphyte overgrowth hinders N uptake by P. oceanica leaves. Epiphyte contribution to total N uptake increased, while that of leaves decreased at the impacted meadow. However, 2-3 times less N was transferred daily from the water column to the benthic compartment, through seagrass and epiphyte uptake on total, at the impacted meadow. Therefore, it is probably still the loss of the key species - the seagrass - which plays the most important role in N cycling in seagrass ecosystems.  相似文献   

9.
《Aquatic Botany》1986,23(4):351-360
A functional growth model was developed for Halophila hawaiiana Doty and Stone, based on its regular plastochrone interval, and the relationship between leaf area and plant biomass. The model allows estimates of biomass, productivity and turnover from easily collected field samples. From these samples, the number of actively growing apical buds, total leaf number and total leaf area for a unit area were determined. This model was applied to a meadow in Kaneohe Bay, Oahu. The mean biomass was 104.25 g dry wt. m−2 and the productivity 7.11 g dry wt. m−2 day−1. The turnover time was 14.7 days.  相似文献   

10.
Abstract The effect of increasing planting unit size and stabilizing sediment was examined for two seagrass planting methods at Carnac Island, Western Australia in 1993. The staple method (sprigs) was used to transplant Amphibolis griffithii (J. M. Black) den Hartog and the plug method was used to transplant A. griffithii and Posidonia sinuosa Cambridge and Kuo. Transplant size was varied by increasing the number of rhizomes incorporated into a staple and increasing the diameter of plugs. Planting units were transplanted into bare sand, back into the original donor seagrass bed, or into a meadow of Heterozostera tasmanica, which is an important colonizing species. Sprigs of A. griffithii were extracted from a monospecific meadow; tied into bundles of 1, 2, 5, and 10 rhizomes; and planted into unvegetated areas. Half the units were surrounded by plastic mesh and the remainder were unmeshed. All treatments were lost within 99 days after transplanting, and although larger bundles survived better than smaller ones, no significant differences could be attributed to the effects of mesh or sprig size. Plugs of P. sinuosa and A. griffithii were extracted from monospecific meadows using polyvinyl chloride pipe of three diameters, 5, 10, and 15 cm, and planted into unvegetated areas nearby. Half the units were surrounded by plastic mesh and the remainder were unmeshed. Posidonia sinuosa plugs were also placed within a meadow of H. tasmanica (Martens ex Aschers.) den Hartog. Only 60% of A. griffithii plug sizes survived 350 days after transplanting back into the donor bed; however, survival of transplants at unvegetated areas varied considerably, and analysis of variance indicated a significant two‐way interaction between treatment and plug size. Transplants survived better when meshed (90% survived) and survival improved with increasing plug size. Posidonia sinuosa transplants survived poorly (no plugs survived beyond 220 days in bare or meshed treatments) regardless of size. Survival of 10‐ and 15‐cm plugs was markedly better than the 5‐cm plugs in vegetated areas, including the H. tasmanica meadow. The use of large seagrass plugs may be appropriate for transplantation in high‐energy wave environments.  相似文献   

11.
Human disturbances, such as anchoring and dredging, can cause physical removal of seagrass rhizomes and shoots, leading to the fragmentation of meadows. The introduced green alga, Caulerpa racemosa, is widely spread in the North-West Mediterranean and, although it can establish in both degraded and pristine environments, its ability to become a dominant component of macroalgal assemblages seems greater in the former. The aim of this study was to estimate whether the spread of C. racemosa depends on the intensity of disturbance to the canopy structure of Posidonia oceanica. A field experiment was started in July 2010 when habitat complexity of a P. oceanica meadow was manipulated to simulate mechanical disturbances of different intensity: rhizome damage (High disturbance intensity = H), leaf removal (Low disturbance intensity = L), and undisturbed (Control = C). Disturbance was applied within plots of different size (40 × 40 cm and 80 × 80 cm), both inside and at the edge of the P. oceanica meadow, according to an orthogonal multifactorial design. In November 2011 (16 months after the start of the experiment), no C. racemosa was found inside the seagrass meadow, while, at the edge, the cover of the seaweed was dependent on disturbance intensity, being greater where the rhizomes had been damaged (H) than in leaf removal (L) or undisturbed (C) plots. The results of this study indicate that physical disturbance at the margin of seagrass meadows can promote the spread of C. racemosa.  相似文献   

12.
Resistance to bacterial speck disease in tomato (Solanum lycopersicum) is activated upon recognition by the host Pto kinase of either one of two sequence-unrelated effector proteins, AvrPto or AvrPtoB, from Pseudomonas syringae pv tomato (Pst). Pto induces Pst immunity by acting in concert with the Prf protein. The recently reported structure of the AvrPto-Pto complex revealed that interaction of AvrPto with Pto appears to relieve an inhibitory effect of Pto, allowing Pto to activate Prf. Here, we present the crystal structure of the Pto binding domain of AvrPtoB (residues 121 to 205) at a resolution of 1.9Å and of the AvrPtoB121-205–Pto complex at a resolution of 3.3 Å. AvrPtoB121-205 exhibits a tertiary fold that is completely different from that of AvrPto, and its conformation remains largely unchanged upon binding to Pto. In common with AvrPto-Pto, the AvrPtoB-Pto complex relies on two interfaces. One of these interfaces is similar in both complexes, although the primary amino acid sequences from the two effector proteins are very different. Amino acid substitutions in Pto at the other interface disrupt the interaction of AvrPtoB-Pto but not that of AvrPto-Pto. Interestingly, substitutions in Pto affecting this unique interface also cause Pto to induce Prf-dependent host cell death independently of either effector protein.  相似文献   

13.
Eight temperate seagrass species (five in the genus Zostera, two in the genus Phyllospadix, and Ruppia maritima) have been previously reported in coastal waters off the Korean peninsula, which lies between 33°N and 43°N. Recently, a species of Halophila, a genus which occurs predominantly in tropical and subtropical areas, has been observed on the southern coast of Korea for the first time. The species was identified as Halophila nipponica. H. nipponica is distributed in warm temperate regions of Japan influenced by the warm Tsushima Current and was previously unknown outside the Japanese archipelago. Thus, we are able to report a range extension into Korea. The Korean Halophila meadow that we observed covered an area of about 2.1 ha, with average shoot density of about 1300 m−2. We measured morphological features of vegetative and reproductive organs between June and September 2007. Morphological and reproductive features of the Halophila species in Korea were similar to those of the species in Japan. Increased water temperature in the coastal waters of Korea may at least partially account for the persistence of this new population.  相似文献   

14.
高永  张瀚文  虞毅  王淮亮  王震  董雪  张燕 《生态学报》2014,34(20):5721-5727
利用远红外热成像技术获取半日花叶温,并根据"三温模型"原理测定半日花的蒸腾速率,结果表明:在晴朗天气条件下,测定时间段内半日花蒸腾速率的日变化曲线呈"单峰型",且峰值出现在15:00,最低值出现在17:00;叶温在测定时间内均高于气温,叶温与气温差最大为9.58 K,最小为0.71 K;在半日花所测冠幅范围内,冠幅越大,其蒸腾速率越大,蒸腾扩散系数越小。样本中,最大冠幅半日花测定时间内的蒸腾速率均值最高,为9.42×10-6MJ m-2d-1,蒸腾扩散系数最低,为0.41;最小冠幅半日花测定时间内的蒸腾速率均值最低,为4.18×10-6MJ m-2d-1,蒸腾扩散系数最高,为0.76。试验测定结果与传统测定技术结果相比较表明:利用远红外热成像技术非接触无损伤测定半日花蒸腾速率具有可行性。  相似文献   

15.
若尔盖湿地退化过程中土壤水源涵养功能   总被引:14,自引:2,他引:14  
若尔盖湿地是青藏高原上面积最大的沼泽湿地,也是长江、黄河两大河流的水源区,对区域水循环起重要调节作用。近年来在全球变化及放牧的影响下,若尔盖湿地出现了不同程度的退化。为了查明若尔盖湿地退化过程中水源涵养功能的变化趋势,2009年8月对该区域的沼泽草甸、草原草甸和沙化草甸3个阶段的土壤水源涵养功能进行了调查。结果为:若尔盖湿地由沼泽草甸向草原草甸和沙化草甸的退化过程中,土壤容重显著增加(P<0.01),毛管孔隙度和总孔隙度显著下降(P<0.01),且容重和孔隙度在土壤剖面自然分布规律也发生变化;沼泽草甸的土壤自然含水量、毛管持水量、最小持水量和最大持水量均显著高于草原草甸和沙化草甸(P<0.01);0-100 cm 深度范围内的沼泽草甸土壤的最大持水量(8486.27 t/hm2)显著高于草原草甸(4944.98 t/hm2)和沙化草甸(4637.96 t/hm2)(P<0.01)。土壤持水量与有机质含量、毛管孔隙度和总孔隙度有显著正相关(P<0.01),与土壤容重呈显著负相关(P<0.01),并受植被盖度和泥炭层厚度的影响。研究结果表明,若尔盖湿地退化过程中植被盖度、土壤有机质含量及泥炭层厚度的下降和土壤质地沙化是导致若尔盖湿地水源涵养功能下降的主要原因。  相似文献   

16.
The results of 15 years of monitoring of Posidonia oceanica in the “Cinque Terre” Marine Protected Area (NW Mediterranean) are presented. Seasonal data on meadow characteristics (cover and shoot density), plant phenology (leaf number, leaf length and width, leaf brown portion, undamaged leaves), lepidochronology, leaf epiphyte cover and herbivore pressure collected from three stations at 5, 10 and 17 m depth were compared. Time-series analyses showed both medium-term (5 < years) and long-term cycles (from 5 to more than 20 years). The comparison of annual cycles with sea surface temperatures (SST) and rainfall showed correlations that differed in relation to depth and, in the case of epiphytes, with each side (internal and external) of the leaf blade. Meadow parameters (visual cover, shoot percent cover) and plant parameters (leaf number, number of undamaged leaves, number of scales shoot−1) showed a positive trend in accordance with the rise of air and sea surface temperature recorded over these last decades. Shoot density and leaf width showed exceptions. Leaf length, leaf brown portion length and the number of undamaged leaves shoot−1 showed positive or negative long-term trends, whose variability could not be related to climate data alone. The two major groups of epiphytes (encrusting algae and the bryozoan Electra posidoniae) showed negative trends. Grazing variability could be explained only partially by climate parameters. Epiphyte cover was found to be related to the NAO index.In conclusion, data showed that the effects of the climate change in terms of both sea surface temperature rising and rainfall decreasing may affect the growth cycles of P. oceanica on two levels: on a decadal level, with positive or negative trends in meadow and plant characteristics and in epiphyte cover; on yearly and seasonal levels, influencing endogenous plant growth rhythms, as in the case of leaf production cycle.  相似文献   

17.
Khadr  F.G.M.A. 《Photosynthetica》2000,36(4):525-531
The effect of Euphorbia scordifolia and Hordeum leporinum competition on leaf area development, radiant energy absorption, and dry matter production was evaluated in a field experiment. Profile measurements (0-0.3, 0.3-0.6, 0.6-0.9, and >0.9 m above ground) of absorbed photosynthetically active radiation (APAR) and leaf area index (LAI) by species were taken at four densities of E. scordifolia (0, 1, 4, and 12 plants per m2). APAR calculated for H. leporinum in mixed communities was 79, 77, and 49 % of the APAR in H. leporinum and LAI was reduced to 81, 65, and 37 %. LAI of H. leporinum was concentrated in the 0.3-0.6 m layer, while the taller E. scordifolia plants had the greatest LAI above 0.6 m. By absorbing radiant energy in the upper canopy, E. scordifolia reduced APAR penetrating to H. leporinum. Measurements of net photosynthetic and transpiration rates, leaf temperature, and stomatal conductance confirmed the importance of competition for PAR for plant growth and metabolism.  相似文献   

18.
Resistance to Pseudomonas syringae bacteria in tomato (Solanum lycopersicum) is conferred by the Prf recognition complex, composed of the nucleotide-binding leucine-rich repeats protein Prf and the protein kinase Pto. The complex is activated by recognition of the P. syringae effectors AvrPto and AvrPtoB. The N-terminal domain is responsible for Prf homodimerization, which brings two Pto kinases into close proximity and holds them in inactive conformation in the absence of either effector. Negative regulation is lost by effector binding to the catalytic cleft of Pto, leading to disruption of its P+1 loop within the activation segment. This change is translated through Prf to a second Pto molecule in the complex. Here we describe a schematic model of the unique Prf N-terminal domain dimer and its interaction with the effector binding determinant Pto. Using heterologous expression in Nicotiana benthamiana, we define multiple sites of N domain homotypic interaction and infer that it forms a parallel dimer folded centrally to enable contact between the N and C termini. Furthermore, we found independent binding sites for Pto at either end of the N-terminal domain. Using the constitutively active mutant ptoL205D, we identify a potential repression site for Pto in the first ∼100 amino acids of Prf. Finally, we find that the Prf leucine-rich repeats domain also binds the N-terminal region, highlighting a possible mechanism for transfer of the effector binding signal to the NB-LRR regulatory unit (consisting of a central nucleotide binding and C-terminal leucine-rich repeats).  相似文献   

19.
Mesophyll structure and content of photosynthetic pigments in the leaves of three species of steppe plants, Centaurea scabiosa L., Euphorbia virgata Waldst. et Kit., Helichrysum arenarium (L.) Moench, were investigated in four geographical sites of the Volga region and the Urals located in the forest-steppe and steppe zones. Variations of the studied parameters between geographical points depended both on the species and on the structural organization of the leaf. The highest level of variation was observed for leaf area and pigment content per unit leaf area, the size and the number of chloroplasts in the cell changed to a lesser extent. The leaf thickness, leaf area and mesophyll cell sizes mostly depended on the plant species. C. scabiosa had large leaves (40–50 cm2) with large thickness (280–290 μm) and large mesophyll cells (up to 15000 μm3). The leaves of H. arenarium and E. virgata were ten times smaller and characterized by 1.5 times smaller thickness and 2?3 times smaller cell size. Geographical location and climate of the region affected leaf density, proportion of partial tissue volume, and the ratio of the photosynthetic pigments. In the southern point of Volga region with the highest climate aridity, all studied species were characterized by maximum values of volumetric leaf density (LD), due to the high proportion of sclerenchyma and vascular bundles, and specificity of the mesophyll structure. With the decline in latitude, chlorophyll (Chl) and carotenoid (Car) contents in leaf area were reduced, the ratio Chl/Car was increased, and the ratio Chl a/b was declined. The reduction of the pigment content in the leaf in all species was associated with a reduction in the amount of Chl per chloroplast, and for C. scabiosa and H. arenarium it was associated also with the reduction of chloroplast amount in the leaf area. In turn, chloroplast number per leaf area and the total cell area (Ames/A) depended on the ratio of the number and size of mesophyll cells inherent to this plant species. At the same time, we found a similar mechanism of spatial organization of leaf restructuring for all studied species—decrease in Ames/A was accompanied by increasing in the proportion of intercellular air spaces in the leaf. It is concluded that variations in structural and functional parameters of the photosynthetic apparatus of steppe plants were associated with plant adaptation to climate features. General direction of the changes of leaf parameters of the studied species with aridity was the increase of LD and the decrease of pigment content per leaf area however the cellular mechanisms of changes in the pigment content and integral parameters of mesophyll were determined by the plant species properties.  相似文献   

20.
《Aquatic Botany》1987,27(3):291-293
Propagating shoots were observed on the upright stems of Amphibolis antarctica (Labill.) Sonder & Aschers. and A. griffithii (J.M. Black) den Hartog in the summer on the west and south coast of Western Australia. They develop from intercalary meristems at the stem nodes and remain attached to the parent plant assisting in the expansion of the meadow. The propagating shoots occur more frequently on the fringes of the Amphibolis meadow where unstable substrata may prevent normal spread by underground rhizomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号