首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 940 毫秒
1.
Many forest-dwelling bats spend their diurnal inactivity period in tree cavities. During this time bats can save energy through heterothermy. A heterothermic response (torpor) is characterized by a lowered body temperature, reduced metabolic rate, and reduction of other physiological processes, and can be influenced by the microclimatic conditions of roost cavities. The thermal and physical characteristics of roosts used by the sympatric, ecologically, and morphologically similar bat species Myotis bechsteinii, M. nattereri, and Plecotus auritus were compared. These three species differ in their heterothermic behavior, with the lowest skin temperatures observed for P. auritus. Therefore, we hypothesized that roosts occupied by the three species should differ in roost characteristics and microclimatic conditions, whereby P. auritus should select colder and thermally less stable roosts. The results showed that horizontal depth of the cavity, diameter of the roost tree, and microclimatic conditions within roosts differed among species. Roosts of P. auritus had the lowest horizontal depth, lowest thermal stability, and lowest mean minimum roost temperatures. Height of the roost, diameter of the roost tree, and vertical depth were also shown to influence microclimatic conditions. With increasing diameter of the tree and increasing horizontal depth, mean minimum roost temperature increased and thermal stability improved. Furthermore, with ascending height above ground insulation and mean roost temperatures increased. Our results imply that species such as P. auritus, which use pronounced torpor as a primary energy saving strategy, prefer colder cavities that support their heterothermic strategy.  相似文献   

2.
In this study we used a multi-spatial scale approach to investigate habitat suitability, roosting characteristics, and ecological niche in two flying fox species on the Comoros Islands—Pteropus livingstonii and Pteropus seychellensis comorensis. At a broad scale, we assessed the ecological niche and habitat suitability for both species using the Species Distribution Modeling method based on the recent ensembles of small models (ESM) approach. At a fine scale, Ecological Niche Factor Analysis (ENFA) was applied to assess habitat selection by each species. Direct observation was used at each roost to estimate the total number of individuals and to identify the roost characteristics. At both broad and fine scales, the analyses highlighted clear niche partitioning by the two species. We found that P. livingstonii has a very limited distribution, restricted to steep, high-elevation slopes of the islands’ remaining natural forests, and the patterns were the same for roosting, foraging sites and the entire habitat. By contrast, P. s. comorensis has a relatively large geographic range that extends over low-elevation farmlands and villages and it was negatively correlated to natural forest across the entire area and all roosting sites, but its foraging areas were positively correlated to natural forest and high elevation areas. Both species selected large, tall trees for roosting. The total number of individuals in the studied area was estimated to be 1243 P. livingstonii and 11,898 P. s. comorensis. The results of our study demonstrated that these two species use different habitat types and ensure different ecosystem services in pollination and seed dispersion and thus are both critical for maintaining overall ecosystem dynamics. However, the currently high level of hunting pressure and roost disturbance makes them vulnerable to extinction. To ensure the viability of both species, conservation measures need to be taken by the Comoros government.  相似文献   

3.
Disease risk mapping is important for predicting and mitigating impacts of bat-borne viruses, including Hendra virus (Paramyxoviridae:Henipavirus), that can spillover to domestic animals and thence to humans. We produced two models to estimate areas at potential risk of HeV spillover explained by the climatic suitability for its flying fox reservoir hosts, Pteropus alecto and P. conspicillatus. We included additional climatic variables that might affect spillover risk through other biological processes (such as bat or horse behaviour, plant phenology and bat foraging habitat). Models were fit with a Poisson point process model and a log-Gaussian Cox process. In response to climate change, risk expanded southwards due to an expansion of P. alecto suitable habitat, which increased the number of horses at risk by 175–260% (110,000–165,000). In the northern limits of the current distribution, spillover risk was highly uncertain because of model extrapolation to novel climatic conditions. The extent of areas at risk of spillover from P. conspicillatus was predicted shrink. Due to a likely expansion of P. alecto into these areas, it could replace P. conspicillatus as the main HeV reservoir. We recommend: (1) HeV monitoring in bats, (2) enhancing HeV prevention in horses in areas predicted to be at risk, (3) investigate and develop mitigation strategies for areas that could experience reservoir host replacements.  相似文献   

4.

Background

Bat-borne virus surveillance is necessary for determining inter-species transmission risks and is important due to the wide-range of bat species which may harbour potential pathogens. This study aimed to monitor coronaviruses (CoVs) and paramyxoviruses (PMVs) in bats roosting in northwest Italian regions. Our investigation was focused on CoVs and PMVs due to their proven ability to switch host and their zoonotic potential. Here we provide the phylogenetic characterization of the highly conserved polymerase gene fragments.

Results

Family-wide PCR screenings were used to test 302 bats belonging to 19 different bat species. Thirty-eight animals from 12 locations were confirmed as PCR positive, with an overall detection rate of 12.6% [95% CI: 9.3–16.8]. CoV RNA was found in 36 bats belonging to eight species, while PMV RNA in three Pipistrellus spp. Phylogenetic characterization have been obtained for 15 alpha- CoVs, 5 beta-CoVs and three PMVs; moreover one P. pipistrellus resulted co-infected with both CoV and PMV. A divergent alpha-CoV clade from Myotis nattereri SpA is also described. The compact cluster of beta-CoVs from R. ferrumequinum roosts expands the current viral sequence database, specifically for this species in Europe. To our knowledge this is the first report of CoVs in Plecotus auritus and M. oxygnathus, and of PMVs in P. kuhlii.

Conclusions

This study identified alpha and beta-CoVs in new bat species and in previously unsurveyed Italian regions. To our knowledge this represents the first and unique report of PMVs in Italy. The 23 new bat genetic sequences presented will expand the current molecular bat-borne virus databases. Considering the amount of novel bat-borne PMVs associated with the emergence of zoonotic infections in animals and humans in the last years, the definition of viral diversity within European bat species is needed. Performing surveillance studies within a specific geographic area can provide awareness of viral burden where bats roost in close proximity to spillover hosts, and form the basis for the appropriate control measures against potential threats for public health and optimal management of bats and their habitats.
  相似文献   

5.
Seasonal changes in weather and food availability differentially impact energy budgets of small mammals such as bats. While most thermal physiological research has focused on species that experience extreme seasonal temperature variations, knowledge is lacking from less variable temperate to subtropical climates. We quantified ambient temperature (T a) and skin temperature (T sk) responses by individuals from a population of New Zealand lesser short-tailed bats (Mystacina tuberculata) during summer and winter using temperature telemetry. During summer, communal roosts were more thermally stable than T a. During winter, solitary roosts were warmer than T a indicating significant thermal buffering. Communal roost trees were used on 83 % of observation days during summer, and individuals occupying them rarely entered torpor. Solitary roosts were occupied on 93 % of observation days during winter, and 100 % of individuals occupying them used torpor. During summer and winter, bats employed torpor on 11 and 95 % of observation days, respectively. Maximum torpor bout duration was 120.8 h and winter torpor bout duration correlated negatively with mean T a. Torpor bout duration did not differ between sexes, although female minimum T sk was significantly lower than males. The summer Heterothermy Index varied, and was also significantly affected by T a. Mean arousal time was correlated with sunset time and arousals occurred most frequently on significantly warmer evenings, which are likely associated with an increased probability of foraging success. We provide the first evidence that torpor is used flexibly throughout the year by M. tuberculata, demonstrating that roost choice and season impact torpor patterns. Our results add to the growing knowledge that even small changes in seasonal climate can have large effects on the energy balance of small mammals.  相似文献   

6.
ABSTRACT In Arizona, USA, Allen's lappet-browed bat (Idionycteris phyllotis) forms maternity colonies in ponderosa pine (Pinus ponderosa) snags. There is little information on the roosting habitat of males. We used radiotelemetry to locate 16 maternity, 3 postlactating, and 2 bachelor roosts and combined data with unpublished data for maternity roosts (n = 11) located in 1993–1995. Most (96%) maternity roosts were in large-diameter ( ± SE: 64 ± 2.7 cm) ponderosa pine snags under sloughing bark. Models that best predicted the probability of a snag's use as a maternity roost indicated bats selected taller snags closer to forest roads than comparison snags. Maternity roosts averaged 11 bats per roost (SE = 2, n = 15; from exit counts) and were an average distance of 1.6 km from capture sites (SE = 0.3, n = 17). Bachelor roosts were in vertical sandstone cliff faces in pinyon-juniper (Pinus edulis-Juniperus spp.) woodlands approximately 12 km from capture sites; these and other capture records in Arizona indicated sexual segregation may have occurred during the maternity season. Of 11 maternity snag roosts located in 1993–1995, only one continued to function as a roost. Resource managers should maintain patches of large-diameter ponderosa pine snags with peeling bark to provide maternity roosting habitat for Allen's lappet-browed bat.  相似文献   

7.
8.
Social dynamics are an important but poorly understood aspect of bat ecology. Herein we use a combination of graph theoretic and spatial approaches to describe the roost and social network characteristics and foraging associations of an Indiana bat (Myotis sodalis) maternity colony in an agricultural landscape in Ohio, USA. We tracked 46 bats to 50 roosts (423 total relocations) and collected 2,306 foraging locations for 40 bats during the summers of 2009 and 2010. We found the colony roosting network was highly centralized in both years and that roost and social networks differed significantly from random networks. Roost and social network structure also differed substantially between years. Social network structure appeared to be unrelated to segregation of roosts between age classes. For bats whose individual foraging ranges were calculated, many shared foraging space with at least one other bat. Compared across all possible bat dyads, 47% and 43% of the dyads showed more than expected overlap of foraging areas in 2009 and 2010 respectively. Colony roosting area differed between years, but the roosting area centroid shifted only 332 m. In contrast, whole colony foraging area use was similar between years. Random roost removal simulations suggest that Indiana bat colonies may be robust to loss of a limited number of roosts but may respond differently from year to year. Our study emphasizes the utility of graphic theoretic and spatial approaches for examining the sociality and roosting behavior of bats. Detailed knowledge of the relationships between social and spatial aspects of bat ecology could greatly increase conservation effectiveness by allowing more structured approaches to roost and habitat retention for tree-roosting, socially-aggregating bat species.  相似文献   

9.
One of the largest gaps in the knowledge of ectoparasitic flies of the families Nycteribiidae and Streblidae in Brazil is the northeastern region, where most states do not have any record. Here, we present the first records of those two bat fly families for the state of Paraíba. We recorded a total of 10 species of five genera parasitizing eight bat species of four families. Trichobius diphyllae Wenzel (Streblidae) was the most abundant species, found parasitizing Diphylla ecaudata (Phyllostomidae), and T. dugesioides dugesioides Wenzel, the second, found on Trachops cirrhosus (Phyllostomidae). Three species were recorded for the first time in northeastern Brazil and seven species are new for the semi-arid Caatinga. We collected T. galei Wenzel and T. pallidus (Curran) on Natalus macrourus (Natalidae) and Furipterus horrens (Furipteridae), respectively, two endangered bat species, and the species-specific relationship with their hosts points out to some degree of vulnerability. In addition, we present information on host-parasite relationship, and data that extend the known geographic distribution of some species.  相似文献   

10.
Forest roosting bats use a variety of ephemeral roosts such as snags and declining live trees. Although conservation of summer maternity habitat is considered critical for forest-roosting bats, bat response to roost loss still is poorly understood. To address this, we monitored 3 northern long-eared bat (Myotis septentrionalis) maternity colonies on Fort Knox Military Reservation, Kentucky, USA, before and after targeted roost removal during the dormant season when bats were hibernating in caves. We used 2 treatments: removal of a single highly used (primary) roost and removal of 24% of less used (secondary) roosts, and an un-manipulated control. Neither treatment altered the number of roosts used by individual bats, but secondary roost removal doubled the distances moved between sequentially used roosts. However, overall space use by and location of colonies was similar pre- and post-treatment. Patterns of roost use before and after removal treatments also were similar but bats maintained closer social connections after our treatments. Roost height, diameter at breast height, percent canopy openness, and roost species composition were similar pre- and post-treatment. We detected differences in the distribution of roosts among decay stages and crown classes pre- and post-roost removal, but this may have been a result of temperature differences between treatment years. Our results suggest that loss of a primary roost or ≤ 20% of secondary roosts in the dormant season may not cause northern long-eared bats to abandon roosting areas or substantially alter some roosting behaviors in the following active season when tree-roosts are used. Critically, tolerance limits to roost loss may be dependent upon local forest conditions, and continued research on this topic will be necessary for conservation of the northern long-eared bat across its range.  相似文献   

11.
Understanding habitat quality and landscape connectivity and exploring corridors connecting habitat patches are crucial for conservation, particularly for species distributed among isolated populations. The Sichuan golden snub-nosed monkey, Rhinopithecus roxellana, is an Endangered primate species endemic to mountainous forests in China. Its easternmost distribution lies in the Shennongjia area, which harbors an isolated subspecies, R. roxellana hubeiensis. Unfortunately, it has experienced significant habitat loss, fragmentation, and dramatic population decline in recent decades, primarily due to increased human disturbance. To quantify habitat quality, identify suitable habitat patches, and detect possible linkages among these patches for R. roxellana hubeiensis, we conducted habitat suitability assessments and landscape connectivity analyses in the Shennongjia area based on a set of environmental factors. We created a habitat quality model and a movement cost surface for the Shennongjia area based on a habitat suitability index, graph theory, expert knowledge, field experience, and information from the literature. Our results show that suitable habitat for R. roxellana hubeiensis in Shennongjia is fragmented and limited, and that this is particularly true for highly suitable habitats. We detected six core habitat patches and six least-cost paths and corridors. Our study does not provide accurate distributions of the monkeys and their habitat use. However, it identifies the most feasible and traversable habitats and corridors, which should be conservation priorities for this subspecies, and provides valuable guidance for reevaluating habitat conservation plans.  相似文献   

12.
Abstract: Despite prevalent use of anthropogenic structures by bats and the associated implications for public health, management, and bat conservation, very little quantitative information exists about urban roost characteristics and their selection by bats. During the summers of 2001 to 2004 we conducted fieldwork in Fort Collins, Colorado, USA, situated on the northern end of Colorado's Front Range, to address questions of roost selection by the big brown bat (Eptesicus fuscus). The city has experienced its greatest growth in the past half century, with its population increasing by 30% in the last decade. Similar growth in new buildings has occurred, with the number of new housing permits issued annually doubling in the past decade. We located 142 roosts using radiotelemetry or by citizen calls in response to a newspaper article and flyers. To determine characteristics of roost selectivity by bats, we compared variables for known maternity roosts and randomly selected buildings at microhabitat and landscape scales using logistic regression; we used an information theoretic approach to determine which variables were most important. We considered 44 and 100 buildings in the microhabitat and landscape scale analyses, respectively. At the microhabitat scale maternity roosts had exit points with larger areas that were higher from the ground and had warmer average temperatures than randomly selected buildings. At the landscape scale distances to similarly categorized roosts were smaller, and urbanization variables such as lower building density, higher street density, and lower traffic count density were most important. Results for variables important to urban-roosting big brown bats were often analogous to studies that characterized maternity roosts found in tree snags and rock crevices. In addition, changes in the landscape, not only in the form of anthropogenic structures but also in water availability and vegetation structure such as riparian forests, may have led to population increases and range expansions of the big brown bat. Because big brown bats appear to selectively choose specific combinations of characteristics found at maternity roosts, not all available structures can be considered suitable and exclusion from established maternity roosts may negatively impact bat populations.  相似文献   

13.
A rise in Arctic shipping activity resulting from global warming and resource exploitation is expected to increase the likelihood of aquatic invasive species (AIS) introductions in the region. In this context, the potential threat of future AIS incursions at a Canadian Arctic regional scale was examined. Habitat suitability under current environmental conditions and future climate change scenarios was projected for a subset of eight potential invaders ranked as having a high risk of establishment in the Canadian Arctic based on dispersal pathways/donor regions, biological attributes and invasion history: (1) Amphibalanus improvisus, (2) Botrylloides violaceus, (3) Caprella mutica, (4) Carcinus maenas, (5) Littorina littorea, (6) Membranipora membranacea, (7) Mya arenaria and (8) Paralithodes camtschaticus. Habitat modelling was performed using MaxEnt based on globally known native and non-native occurrence records and environmental ranges for these species. Results showed that under current environmental conditions the habitat is suitable in certain regions of the Canadian Arctic such as the Hudson Complex and Beaufort Sea for L. littorea, M. arenaria and P. camtschaticus. Under a future climate change scenario, all species showed poleward gains in habitat suitability with at least some regions of the Canadian Arctic projected to be suitable for the complete suite of species modelled. The use of these models is helpful in understanding potential future AIS incursions as a result of climate change and shipping at large spatial scales. These approaches can aid in the identification of high risk regions and species to allow for more focused AIS monitoring and research efforts in response to climate change.  相似文献   

14.
Conservation of bat species is one of the most daunting wildlife conservation challenges in North America, requiring detailed knowledge about their ecology to guide conservation efforts. Outside of the hibernating season, bats in temperate forest environments spend their diurnal time in day-roosts. In addition to simple shelter, summer roost availability is as critical as maternity sites and maintaining social group contact. To date, a major focus of bat conservation has concentrated on conserving individual roost sites, with comparatively less focus on the role that broader habitat conditions contribute towards roost-site selection. We evaluated roost-site selection by a northern population of federally-endangered Indiana bats (Myotis sodalis) at Fort Drum Military Installation in New York, USA at three different spatial scales: landscape, forest stand, and individual tree level. During 2007–2011, we radiotracked 33 Indiana bats (10 males, 23 females) and located 348 roosting events in 116 unique roost trees. At the landscape scale, bat roost-site selection was positively associated with northern mixed forest, increased slope, and greater distance from human development. At the stand scale, we observed subtle differences in roost site selection based on sex and season, but roost selection was generally positively associated with larger stands with a higher basal area, larger tree diameter, and a greater sugar maple (Acer saccharum) component. We observed no distinct trends of roosts being near high-quality foraging areas of water and forest edges. At the tree scale, roosts were typically in American elm (Ulmus americana) or sugar maple of large diameter (>30 cm) of moderate decay with loose bark. Collectively, our results highlight the importance of considering day roost needs simultaneously across multiple spatial scales. Size and decay class of individual roosts are key ecological attributes for the Indiana bat, however, larger-scale stand structural components that are products of past and current land use interacting with environmental aspects such as landform also are important factors influencing roost-tree selection patterns.  相似文献   

15.
We know little about how forest bats, which are cryptic and mobile, use roosts on a landscape scale. For widely distributed species like the endangered Indiana bat Myotis sodalis, identifying landscape-scale roost habitat associations will be important for managing the species in different regions where it occurs. For example, in the southern Appalachian Mountains, USA, M. sodalis roosts are scattered across a heavily forested landscape, which makes protecting individual roosts impractical during large-scale management activities. We created a predictive spatial model of summer roosting habitat to identify important predictors using the presence-only modeling program MaxEnt and an information theoretic approach for model comparison. Two of 26 candidate models together accounted for >0.93 of AICc weights. Elevation and forest type were top predictors of presence; aspect north/south and distance-to-ridge were also important. The final average best model indicated that 5% of the study area was suitable habitat and 0.5% was optimal. This model matched our field observations that, in the southern Appalachian Mountains, optimal roosting habitat for M. sodalis is near the ridge top in south-facing mixed pine-hardwood forests at elevations from 260–575 m. Our findings, coupled with data from other studies, suggest M. sodalis is flexible in roost habitat selection across different ecoregions with varying topography and land use patterns. We caution that, while mature pine-hardwood forests are important now, specific areas of suitable and optimal habitat will change over time. Combining the information theoretic approach with presence-only models makes it possible to develop landscape-scale habitat suitability maps for forest bats.  相似文献   

16.
Estimating occupancy patterns and identifying vegetation characteristics that influence the presence of butterfly species are essential approaches needed for determining how habitat changes may affect butterfly populations in the future. The montane butterfly species, Parnassius clodius, was investigated to identify patterns of occupancy relating to habitat variables in Grand Teton National Park and Bridger-Teton National Forest, Wyoming, United States. A series of presence–absence surveys were conducted in 2013 in 41 mesic to xeric montane meadows that were considered suitable habitat for P. clodius during their flight season (June–July) to estimate occupancy (ψ) and detection probability (p). According to the null constant parameter model, P. clodius had high occupancy of ψ?=?0.78?±?0.07 SE and detection probability of p?=?0.75?±?0.04 SE. In models testing covariates, the most important habitat indicator for the occupancy of P. clodius was a strong negative association with big sagebrush (Artemisia tridentata; β = ??21.39?±?21.10 SE) and lupine (Lupinus spp.; β?=???20.03?±?21.24 SE). While P. clodius was found at a high proportion of meadows surveyed, the presence of A. tridentata may limit their distribution within montane meadows at a landscape scale because A. tridentata dominates a large percentage of the montane meadows in our study area. Future climate scenarios predicted for high elevations globally could cause habitat shifts and put populations of P. clodius and similar non-migratory butterfly populations at risk.  相似文献   

17.
In Europe, several species of bats, owls and kestrels exemplify highly urbanised, flying vertebrates, which may get close to humans or domestic animals. Bat droppings and bird pellets may have epidemiological, as well as diagnostic significance from the point of view of pathogens. In this work 221 bat faecal and 118 bird pellet samples were screened for a broad range of vector-borne bacteria using PCR-based methods. Rickettsia DNA was detected in 13 bat faecal DNA extracts, including the sequence of a rickettsial insect endosymbiont, a novel Rickettsia genotype and Rickettsia helvetica. Faecal samples of the pond bat (Myotis dasycneme) were positive for a Neorickettsia sp. and for haemoplasmas of the haemofelis group. In addition, two bird pellets (collected from a Long-eared Owl, Asio otus, and from a Common Kestrel, Falco tinnunculus) contained the DNA of a Rickettsia sp. and Anaplasma phagocytophilum, respectively. In both of these bird pellets the bones of Microtus arvalis were identified. All samples were negative for Borrelia burgdorferi s.l., Francisella tularensis, Coxiella burnetii and Chlamydiales. In conclusion, bats were shown to pass rickettsia and haemoplasma DNA in their faeces. Molecular evidence is provided for the presence of Neorickettsia sp. in bat faeces in Europe. In the evaluated regions bat faeces and owl/kestrel pellets do not appear to pose epidemiological risk from the point of view of F. tularensis, C. burnetii and Chlamydiales. Testing of bird pellets may provide an alternative approach to trapping for assessing the local occurrence of vector-borne bacteria in small mammals.  相似文献   

18.
This article provides a phylogenetic analysis of five nuclear and mitochondrial cytochrome b genes of palaearctic serotines. Nuclear data yield five monophyletic clades: Botta’s serotine and the South African long-tailed house bat E. hottentottus; the common serotine bat (including all studied E. serotinus subspecies and andersoni form of undefined status) and the meridional serotine E. isabellinus; the Gobi serotine, including Bobrinski’s serotine; the northern bat; and New World serotines. We found latest taxonomic decisions regarding mirza and pachyomus questionable and needing further revision. The significant inconsistency between mitochondrial and nuclear phylogenies obtained for genes of different inheritance systems suggests repetitive introgression events in the evolution of the genus.  相似文献   

19.
A comparative electrophoretic assay of lactate dehydrogenase (EC 1.1.1.27) isozymes has been carried out in the homogenates of the tissues of cardiac and skeletal muscles, liver, kidneys and lungs of five species of hibernating bats of the order Chiroptera: the northern bat Eptesicus nilssonii Keyserling and Blasius, the brown long-eared bat Plecotus auritus L., Brandt’s bat Myotis brandtii Eversmann, Daubenton’s bat Myotis daubentonii Kuhl, and the whiskered bat Myotis mystacinus Kuhl, which live in Karelia near the northern border of their distribution area. High contents of aerobic lactate dehydrogenase 1 and lactate dehydrogenase 2 isozymes have been detected in the skeletal muscle of the studied bats. The lactate dehydrogenase isozyme spectra of the tissues of kidneys and skeletal muscles from the smaller representatives of bats (the whiskered and Brandt’s bats) contained the highest content of H subunits among the studied species. In contrast, the predominance of M subunits has been revealed in the lactate dehydrogenase isozyme spectra of the kidneys of the northern and the brown long-eared bats. The discovered interspecies differences are discussed in the context of the adaptation of bats to hibernation.  相似文献   

20.
The San Martin titi monkey (Plecturocebus oenanthe) is endemic to a small area of northern Peru and is considered Critically Endangered on the IUCN due to massive habitat loss. Between 1994 and 2005 small scale reforestation efforts in the 23.5 ha area of Pucunucho have led to the recuperation of habitat from an area of pasture and crop lands. The first record of P. oenanthe re-establishment in the area is from 2010, although re-establishment probably began earlier. We carried out short population surveys using triangulation to monitor densities of P. oenanthe in Pucunucho in 2011, 2012 and 2016. We estimate the current population of P. oenanthe in this area at 27 individuals, giving population densities of 35 groups/km2 and 124 individuals/km2. The successful regeneration of habitat and natural re-population of the area by this Critically Endangered species provides evidence of successful reforestation based conservation activities for this and potentially other primate species. Although now protected as a Private Conservation Area, Pucunucho remains threatened.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号