首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phytoplankton, such as diatoms, experience great variations of photon flux density (PFD) and light spectrum along the marine water column. Diatoms have developed some rapidly-regulated photoprotective mechanisms, such as the xanthophyll cycle activation (XC) and the non-photochemical chlorophyll fluorescence quenching (NPQ), to protect themselves from photooxidative damages caused by excess PFD. In this study, we investigate the role of blue fluence rate in combination with red radiation in shaping photoacclimative and protective responses in the coastal diatom Pseudo-nitzschia multistriata. This diatom was acclimated to four spectral light conditions (blue, red, blue-red, blue-red-green), each of them provided with low and high PFD. Our results reveal that the increase in the XC pool size and the amplitude of NPQ is determined by the blue fluence rate experienced by cells, while cells require sensing red radiation to allow the development of these processes. Variations in the light spectrum and in the blue versus red radiation modulate either the photoprotective capacity, such as the activation of the diadinoxanthin-diatoxanthin xanthophyll cycle, the diadinoxanthin de-epoxidation rate and the capacity of non-photochemical quenching, or the pigment composition of this diatom. We propose that spectral composition of light has a key role on the ability of diatoms to finely balance light harvesting and photoprotective capacity.  相似文献   

2.
植株叶片的光合色素构成对遮阴的响应   总被引:16,自引:0,他引:16       下载免费PDF全文
叶绿素在植株体内负责光能的吸收、传递和转化, 类胡萝卜素则行使光能捕获和光破坏防御两大功能, 它们在光合作用中起着非常重要的作用。该文综述了几大主要光合色素的分布和功能, 以及不同物种的色素含量和构成差异。阳生植物的叶黄素库较大, 但脱环氧化水平不及阴生植物。黄体素与叶黄素库的比值与植物的耐阴性呈正相关关系。由不同的遮阴源造成的遮阴环境, 光强和光质有很大的差异, 总体来说对植物生长的影响, 建筑物遮阴<阔叶林遮阴<针叶林遮阴。光强的改变可诱导类胡萝卜素的两大循环——叶黄素循环和黄体素循环。由光强诱导的叶绿素含量和叶绿素a/b比值的改变与该物种的耐阴性无关。短时间的遮阴不会对植物的生长造成危害, 叶黄素库的大小不仅与每天接受的光量子有关, 更与光量子在一天的分布有关, 因为光照和温度是协同作用的。光合作用或色素构成是蓝光、红光和远红光共同作用的结果, 不是某一种单色光所能替代的。我们总结了影响植物色素构成的内因和外因, 指出植物主要通过调整光反应中心和捕光天线色素蛋白复合体的比例, 以及两个光系统的比值来调整色素含量和构成以适应不同的光照条件, 提出了现存研究中存在的一些问题, 旨在为今后的相关研究提供建议。  相似文献   

3.
In aquatic ecosystems, the superimposition of mixing events to the light diel cycle exposes phytoplankton to changes in the velocity of light intensity increase, from diurnal variations to faster mixing-related ones. This is particularly true in coastal waters, where diatoms are dominant. This study aims to investigate if coastal diatoms differently activate the photoprotective responses, xanthophyll cycle (XC) and non-photochemical fluorescence quenching (NPQ), to cope with predictable light diel cycle and unpredictable mixing-related light variations. We compared the effect of two fast light intensity increases (simulating mixing events) with that of a slower increase (corresponding to the light diel cycle) on the modulation of XC and NPQ in the planktonic coastal diatom Pseudo-nitzschia multistriata. During each light treatment, the photon flux density (PFD) progressively increased from darkness to five peaks, ranging from 100 to 650 µmol photons m−2 s−1. Our results show that the diel cycle-related PFD increase strongly activates XC through the enhancement of the carotenoid biosynthesis and induces a moderate and gradual NPQ formation over the light gradient. In contrast, during mixing-related PFD increases, XC is less activated, while higher NPQ rapidly develops at moderate PFD. We observe that together with the light intensity and its increase velocity, the saturation light for photosynthesis (Ek) is a key parameter in modulating photoprotection. We propose that the capacity to adequately regulate and actuate alternative photoprotective ‘safety valves’ in response to changing velocity of light intensity increase further enhances the photophysiological flexibility of diatoms. This might be an evolutionary outcome of diatom adaptation to turbulent marine ecosystems characterized by unpredictable mixing-related light changes over the light diel cycle.  相似文献   

4.
Xanthophyll cycle-related nonphotochemical quenching (NPQ), which is present in most photoautotrophs, allows dissipation of excess light energy. Xanthophyll cycle-related NPQ depends principally on xanthophyll cycle pigments composition and their effective involvement in NPQ. Xanthophyll cycle-related NPQ is tightly controlled by environmental conditions in a species-/strain-specific manner. These features are especially relevant in microalgae living in a complex and highly variable environment. The goal of this study was to perform a comparative assessment of NPQ ecophysiologies across microalgal taxa in order to underline the specific involvement of NPQ in growth adaptations and strategies. We used both published results and data acquired in our laboratory to understand the relationships between growth conditions (irradiance, temperature, and nutrient availability), xanthophyll cycle composition, and xanthophyll cycle pigments quenching efficiency in microalgae from various taxa. We found that in diadinoxanthin-containing species, the xanthophyll cycle pigment pool is controlled by energy pressure in all species. At any given energy pressure, however, the diatoxanthin content is higher in diatoms than in other diadinoxanthin-containing species. XC pigments quenching efficiency is species-specific and decreases with acclimation to higher irradiances. We found a clear link between the natural light environment of species/ecotypes and quenching efficiency amplitude. The presence of diatoxanthin or zeaxanthin at steady state in all species examined at moderate and high irradiances suggests that cells maintain a light-harvesting capacity in excess to cope with potential decrease in light intensity.  相似文献   

5.
6.
7.
Diatoms are especially important microorganisms because they constitute the larger group of microalgae. To survive the constant variations of the light environment, diatoms have developed mechanisms aiming at the dissipation of excess energy, such as the xanthophyll cycle and the non-photochemical chlorophyll (Chl) fluorescence quenching. This contribution is dedicated to the relaxation of the latter process when the adverse conditions cease. An original nonlinear regression analysis of the relaxation of non-photochemical Chl fluorescence quenching, qN, in diatoms is presented. It was used to obtain experimental evidence for the existence of three time-resolved components in the diatom Phaeodactylum tricornutum: qNf, qNi and qNs. qNf (s time-scale) and qNs (h time-scale) are exponential in shape. By contrast, qNi (min time-scale) is of sigmoidal nature and is dominant among the three components. The application of metabolic inhibitors (dithiothreitol, ammonium chloride, cadmium and diphenyleneiodonium chloride) allowed the identification of the mechanisms on which each component mostly relies. qNi is linked to the relaxation of the ΔpH gradient and the reversal of the xanthophyll cycle. qNs quantifies the stage of photoinhibition caused by the high light exposure, qNf seems to reflect fast conformational changes within thylakoid membranes in the vicinity of the photosystem II complexes.  相似文献   

8.
The ultrafast caroteonid to chlorophyll a energy transfer dynamics of the isolated fucoxanthin-chlorophyll proteins FCPa and FCPb from the diatom Cyclotella meneghiniana was investigated in a comprehensive study using transient absorption in the visible and near infrared spectral region as well as static fluorescence spectroscopy. The altered oligomerization state of both antenna systems results in a more efficient energy transfer for FCPa, which is also reflected in the different chlorophyll a fluorescence quantum yields. We therefore assume an increased quenching in the higher oligomers of FCPb. The influence of the carotenoid composition was investigated using FCPa and FCPb samples grown under different light conditions and excitation wavelengths at the blue (500 nm) and red (550 nm) wings of the carotenoid absorption. The different light conditions yield in altered amounts of the xanthophyll cycle pigments diadinoxanthin and diatoxanthin. Since no significant dynamic changes are observed for high light and low light samples, the contribution of the xanthophyll cycle pigments to the energy transfer is most likely negligible. On the contrary, the observed dynamics change drastically for the different excitation wavelengths. The analyses of the decay associated spectra of FCPb suggest an altered energy transfer pathway. For FCPa even an additional time constant was found after excitation at 500 nm. It is assigned to the intrinsic lifetime of either the xanthophyll cycle carotenoids or more probable the blue absorbing fucoxanthins. Based on our studies we propose a detailed model explaining the different excitation energy transfer pathways in FCPa.  相似文献   

9.
Sour orange (Citrus aurantium L.) seedlings grown for six months under covers transmitting light of different spectral composition, were compared with others grown under a white cover (control) and outside in full daylight. The intensity of transmitted light was equalized under all covers and attained only 20% of full daylight. Seedlings grown in daylight were shorter, had more internodes, smaller leaves, less chlorophyll and more ascorbic acid than the others. Blue + far-red covers (no transmission between 560–700 nm) enhanced seedling length, the protein and chlorophyll content and peroxidase activity of leaves. When also the wave-range above 700 nm was cut out (blue) seedlings were the shortest, and leaves had very high protein and chlorophyll content, but much less ascorbic acid and lower peroxidase activity. Red + far-red covers (no transmission below 500 nm) enhanced seedling length more than blue + far-red; leaves contained as much protein as control, but had relatively high chlorophyll and peroxidase activity. Ascorbic acid was as low as in blue light.  相似文献   

10.
The dynamics of phenolic galloylglucoses (di-, tri-, tetra- and penta-galloylglucose), flavonoids (quercitin and quercitin glycosides) and sideroxylonal were compared with that of xanthophyll cycle-dependent energy dissipation during rapid induction of chilling-dependent photo-inhibition. Pre-dawn xanthophyll cycle engagement of seedlings of Eucalyptus nitens transferred from mild nursery conditions to a low temperature controlled environment increased logarithmically during eight days of treatment. Photochemical efficiency and flavonoids decreased after four days of treatment and non-photochemical quenching after two days of treatment. Galloylglucoses and sideroxylonal decreased linearly during treatment. These results demonstrate that rapid changes in foliar phenolic levels are associated with abrupt changes in the plant environment. It is argued that under these growth-chamber conditions, the xanthophyll cycle facilitated dissipation of excess light energy, lessening the requirement for the dissipation of energy or antioxidant activity through phenolic metabolites.  相似文献   

11.
The enzyme superoxide dismutase (SOD) holds a key position in the microalgal antioxidant network. The present research focused on oxidative stress responses in the Antarctic diatom Chaetoceros brevis F. Schütt during transition to excess (including ultraviolet radiation [UVR]) and limiting irradiance conditions. Over a 4 d period, cellular responses of thiobarbituric acid reactive substances (TBARS, a general oxidative stress indicator), SOD activity, photosynthetic and xanthophyll cycle pigments, PSII efficiency, and growth were determined. In addition, oxidative responses were measured during a daily cycle. Changing irradiance conditions significantly affected growth rates of C. brevis. PSII efficiency decreased significantly during periodic excess irradiance and increased under low irradiance conditions. Transition to excess irradiance increased the ratio of xanthophyll to light‐harvesting pigments, whereas the opposite was observed for cultures transferred to low irradiance. This acclimation process was completed after 2 d in the new irradiance environment. SOD activity increased significantly after the first day regardless of the new irradiance environment but returned to preexposure values on the fourth day. We hypothesize that SOD activity may be temporarily elevated in C. brevis after irradiance shifts, thereby reducing oxidative stress when photoacclimation is in progress.  相似文献   

12.
The light-dependent, cyclic changes of xanthophyll pigments: violaxanthin, antheraxanthin and zeaxanthin, called the xanthophyll cycle, have been known for about fifty years. This process was characterised for higher plants, several fern and moss species and in some algal groups. Two enzymes, violaxanthin de-epoxidase (VDE) and zeaxanthin epoxidase (ZE), belonging to the lipocalin protein family, are engaged in the xanthophyll cycle. VDE requires for its activity ascorbic acid and reversed hexagonal structure formed by monogalactosyldiacylglycerol. ZE, postulated to be a flavoprotein, has not been purified yet and it is known from its gene sequence only. Zeaxanthin epoxidation is dependent on the reducing power of NADPH and presence of additional proteins. The xanthophyll cycle is postulated to play a role in many important physiological processes. Zeaxanthin, formed from violaxanthin under high light conditions, is thought to be a main photoprotector in autotrophic cells due to its ability to dissipate excess of absorbed light energy that can be measured as a non-photochemical quenching. In addition the zeaxanthin formation is important in protection of the thylakoid membranes against lipid peroxidation. Other postulated functions of the xanthophyll cycle, which include regulation of membrane physical properties, blue light reception and regulation of abscisic acid synthesis, are also discussed.  相似文献   

13.
Mechanistic aspects of the xanthophyll dynamics in higher plant thylakoids   总被引:5,自引:0,他引:5  
Plant thylakoids have a highly conserved xanthophyll composition, consisting of β-carotene, lutein, neoxanthin and a pool of violaxanthin that can be converted to antheraxanthin and zeaxanthin in excess light conditions. Recent work has shown that xanthophylls undergo dynamic changes, not only in their composition but also in their distribution among Lhc proteins. Xanthophylls are released from specific binding site in the major trimeric LHCII complex of photosystem II and are subsequently bound to different sites into monomeric Lhcb proteins and dimeric Lhca proteins. In this work we review available evidence from in vivo and in vitro studies on the structural determinants that control xanthophyll exchange in Lhc proteins. We conclude that the xanthophyll exchange rate is determined by the structure of individual Lhc gene products and it is specifically controlled by the lumenal pH independently from the activation state of the violaxanthin de-epoxidase enzyme. The xanthophyll exchange induces important modifications in the organization of the antenna system of Photosystem II and, possibly of Photosystem I. Major changes consist into a modulation of the light harvesting efficiency and an increase of the protection from lipid peroxidation. The xanthophyll cycle thus appears to be a signal transduction system for co-ordinated regulation of the photoprotection mechanisms under persistent stress from excess light.  相似文献   

14.
Assessing leaf pigment content and activity with a reflectometer   总被引:45,自引:1,他引:45  
This study explored reflectance indices sampled with a 'leaf reflectometer' as measures of pigment content for leaves of contrasting light history, developmental stage and functional type (herbaceous annual versus sclerophyllous evergreen). We employed three reflectance indices: a modified normalized difference vegetation index (NDVI), an index of chlorophyll content; the red/green reflectance ratio ( R RED: R GREEN), an index of anthocyanin content; and the change in photochemical reflectance index upon dark–light conversions (ΔPRI), an index of xanthophyll cycle pigment activity. In Helianthus annuus (sunflower), xanthophyll cycle pigment amounts were linearly related to growth light environment; leaves in full sun contained approximately twice the amount of xanthophyll cycle pigments as leaves in deep shade, and at midday a larger proportion of these pigments were in the photoprotective, de-epoxidized forms relative to shade leaves. Reflectance indices also revealed contrasting patterns of pigment development in leaves of contrasting structural types (annual versus evergreen). In H. annuus sun leaves, there was a remarkably rapid increase in amounts of both chlorophyll and xanthophyll cycle pigments along a leaf developmental sequence. This pattern contrasted with that of Quercus agrifolia (coast live oak, a sclerophyllous evergreen), which exhibited a gradual development of both chlorophyll and xanthophyll cycle pigments along with a pronounced peak of anthocyanin pigment content in newly expanding leaves. These temporal patterns of pigment development in Q. agrifolia leaves suggest that anthocyanins and xanthophyll cycle pigments serve complementary photoprotective roles during early leaf development. The results illustrate the use of reflectance indices for distinguishing divergent patterns of pigment activity in leaves of contrasting light history and functional type.  相似文献   

15.
In this work we characterize the changes induced by iron deficiency in the pigment composition of pear (Pyrus communis L.) leaves grown under high light intensities in field conditions in Spain. Iron deficiency induced decreases in neoxanthin and β-carotene concomitantly with decreases in chlorophyll a, whereas lutein and carotenoids within the xanthophyll cycle were less affected. Iron deficiency caused major increases in the lutein/chlorophyll a and xanthophyll cycle pigments/chlorophyll a molar ratios. The chlorophyll a/chlorophyll b ratio increased in response to iron deficiency. The carotenoids within the xanthophyll cycle in iron-deficient and in iron-sufficient (control) leaves underwent epoxidations and de-epoxidations in response to ambient light conditions. In control leaves dark-adapted for several hours, most of the xanthophyll cycle pigment pool was in the epoxidated form vio-laxanthin, whereas iron-deficient leaves had significant amounts of zeaxanthin. Iron-deficient leaves also exhibited an increased non-photochemical quenching, supporting the possibility of a role for pigments within the xanthophyll cycle in photoprotection.  相似文献   

16.
The content and composition of pigments were examined in the third leaf of Zea mays L. plants grown under controlled environment at near-optimal temperature (24°C) or sub-optimal temperature (14°C) at a light intensity of either 200 or 600 μmol m?2 s?1. Compared to leaves grown at 24°C, leaves grown at 14°C showed a large reduction in the chlorophyll (Chl) content, a marked decrease in the Chl a/b ratio, and a large increase in the ratio of total carotenoids/Chl a+b. Leaves grown at 14°C showed a much lower content of β-carotene than leaves grown at 24°C, while the content of the carotenoids of the xanthophyll cycle (violaxanthin [V] + antheraxanthin [A] + zeaxanthin [Z]) was markedly higher in the former leaves as compared to the latter leaves; neoxanthin and lutein were affected by the growth temperature to a much lesser extent. The xanthophylls/β-carotene ratio was about three times higher in leaves grown at 14°C as compared to leaves grown at 24°C. On a chlorophyll basis, the two types of leaves hardly differed in their level of β-carotene, while the levels of the xanthophylls (including lutein and neoxanthin) were higher in 14°C-grown leaves as compared to 24°C-grown leaves. In leaves grown at 14°C, 40 and 56% of the V+A+Z pool was in the form of zeaxanthin at low light intensity and high light intensity, respectively. Only trace amounts of zeaxanthin, if any, were present in leaves grown at 24°C. The changes in the pigment composition induced by growth at sub-optimal temperature were more pronounced at a light intensity of 600 as compared to 200 μmol m?2 s?1. In the given range, the light intensity slightly affected the composition of pigments in leaves grown at 24°C. The physiological significance of the modifications to the pigment composition induced by growth at sub-optimal temperature is discussed.  相似文献   

17.
The synthesis of anthocyanin, the xanthophyll cycle, the antioxidant system and the production of active oxygen species (AOS) were compared between red and non‐red apple cultivars, in response to either long‐term sunlight exposure (high light intensity) during fruit development, or to exposure of bagged fruits to lower light intensity late in fruit development. During fruit development of red and non‐red apples, the xanthophyll cycle pool size decreased much more in red apple peel late in development. With accumulation of AOS induced by long‐term sunlight exposure, enhancement of the antioxidant system was found. However, this change became significantly lower in red apple than non‐red apple as fruit developed, which might serve to accelerate the anthocyanin synthesis in red apple peel. When, late in fruit development, bagged fruits were exposed to sunlight, the accumulation of AOS was lower in red apple peel than in non‐red peel. This could be due to the higher anthocyanin concentration in the red peels. Meanwhile, compared with that in non‐red cultivar, the xanthophyll cycle and the antioxidant system in red apple peel were protected first but then down‐regulated by its higher anthocyanin concentration during sunlight exposure. In conclusions, red and non‐red apples peel possess different photoprotective mechanisms under high light conditions. The relationship between anthocyanin synthesis and the xanthophyll cycle, and the antioxidant system, depends on the light conditions that fruit undergoes.  相似文献   

18.
《BBA》2022,1863(7):148589
In diatoms, light-harvesting processes take place in a specific group of proteins, called fucoxanthin chlorophyll a/c proteins (FCP). This group includes many members and represents the major characteristic of the diatom photosynthetic apparatus, with specific pigments bound (chlorophyll c, fucoxanthin, diadino- and diatoxanthin besides chlorophyll a). In thylakoids, FCP and photosystems (PS) form multimeric supercomplexes.In this study, we compared the biochemical properties of PS supercomplexes isolated from Thalassiosira pseudonana cells grown under low light or high light conditions, respectively. High light acclimation changed the molecular features of the PS and their ratio in thylakoids. In PSII, no obvious changes in polypeptide composition were observed, whereas for PSI changes in one specific group of FCP proteins were detected. As reported before, the amount of xanthophyll cycle pigments and their de-epoxidation ratio was increased in PSI under HL. In PSII, however, no additional xanthophyll cycle pigments occurred, but the de-epoxidation ratio was increased as well. This comparison suggests how mechanisms of photoprotection might take place within and in the proximity of the PS, which gives new insights into the capacity of diatoms to adapt to different conditions and in different environments.  相似文献   

19.
The effect of prolonged illumination (60 min) with photosynthetically active monochromatic radiation of low intensity (3 μmol m−2 s−1) and high intensity (60 μmol m−2 s−1), corresponding to the physiological conditions and light stress conditions, respectively, was studied in the algae Nitellopsis obtusa. Illumination of Nitellopsis obtusa cells with strong light was associated with activation of the xanthophyll cycle, manifested by the deepoxidation of violaxanthin and accumulation of antheraxanthin and zeaxanthin. At the same time, the efficient singlet excitation quenching in the photosynthetic apparatus was activated, as demonstrated by the decrease in the intensity of the chlorophyll a fluorescence emission by ca 50 %. The difference of the fluorescence excitation spectra recorded before and after the light treatment match the difference absorption spectrum of the xanthophyll cycle pigments. The illumination with low light intensity resulted also in the chlorophyll a fluorescence quenching but the effect was very small (less than 10 %). The fluorescence quenching is interpreted in terms of the energy transfer between the Qy energy level of chlorophyll a and the 21 Ag energy level of zeaxanthin. The singlet energy levels of carotenoids, corresponding to the green spectral region, are also taken into consideration in the interpretation of the excitation energy exchange between the carotenoids and chlorophylls. Possible molecular mechanisms involved in the activation of the strong and the weak excitation quenching, including violaxanthin isomerization, and possible physiological functions of such pathways of energy transfer are discussed.  相似文献   

20.
Cells of Phaeodactylum tricornutum were precultured under axenic conditions in a full medium and then exposed to natural light conditions at various depths in the eutrophic lake „Meerfelder Maar”︁ (Eifel, FRG) for several days. After exposition the cells were characterized with respect to growth parameters, photosynthetic performance and xanthophyll cycle pigments. In order to test the resistance of the cells grown at different depths against photostress, the cells were illuminated with photoinhibitory light. The variable chlorophyll a-fluorescence and the oxygen quantum yield at a non-saturating light intensity were simultaneously measured after photostress and subsequent recovery. The xanthophyll cycle pigments and the content in α-tocopherol were monitored during photostress to get molecular information about the physiological reasons of light-stress resistance. The data give evidence that cells grown close to the surface show a faster decline in photosynthetic performance and a more efficient recovery than cells from lower depths. There is clear indication that under natural conditions when the light is fluctuating between optimal, sub- and supraoptimal intensities the photostress resistance is much higher than under conditions of the absence of light stress. The molecular basis for light stress resistance seems to be the pool size and the conversion kinetics of the xanthophyll cycle pigments and the capacity of the oxygen-scavenging system. The effect of in-situ light adaptation is discussed with respect to the assessment of the potential of the primary production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号