首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
《Free radical research》2013,47(12):1054-1065
Abstract

Eukaryotic microorganisms are constantly challenged by reactive oxygen species derived endogenously or encountered in their environment. Such adversity is particularly applied to Saccharomyces cerevisiae under harsh industrial conditions. One of the major oxidants to challenge S. cerevisiae is linoleic acid hydroperoxide (LoaOOH). This study, which used genome-wide microarray analysis in conjunction with deletion mutant screening, uncovered the molecular pathways of S. cerevisiae that were altered by an arresting concentration of LoaOOH (75 μM). The oxidative stress response, iron homeostasis, detoxification through PDR transport and direct lipid β-oxidation were evident through the induction of the genes encoding for peroxiredoxins (GPX2, TSA2), the NADPH:oxidoreductase (OYE3), iron uptake (FIT2, ARN2, FET3), PDR transporters (PDR5, PDR15, SNQ2) and β-oxidation machinery (FAA2, POX1). Further, we discovered that Gpx3p, the dual redox sensor and peroxidase, is required for protection against LoaOOH, indicated by the sensitivity of gpx3Δ to a mild dose of LoaOOH (37.5 μM). Deletion of GPX3 conferred a greater sensitivity to LoaOOH than the loss of its signalling partner YAP1. Deletion of either of the iron homeostasis regulators AFT1 or AFT2 also resulted in sensitivity to LoaOOH. These novel findings for Gpx3p, Aft1p and Aft2p point to their distinct roles in response to the lipid peroxide. Finally, the expression of 89 previously uncharacterised genes was significantly altered against LoaOOH, which will contribute to their eventual annotation.  相似文献   

3.
4.
5.
6.
7.
8.
Significant production of superoxide, a known reductant of both inorganic and organically complexed iron(III), occurs in natural systems by both biotic and abiotic pathways. We have investigated the generation of superoxide by Chattonella marina (Subrahman.) Y. Hara et Chihara, a phytoplankton taxon known to produce high levels of this reactive oxygen species, and examined the role of superoxide in the acquisition of iron by this organism. Additionally, a generalized model for iron acquisition by C. marina has been developed, which includes three pathways of iron acquisition from organically complexed iron(III): nondissociative reductive uptake, dissociative reductive uptake, and nonreductive dissociative uptake. The model is shown to be particularly useful in ascertaining the relative importance of these various iron‐uptake pathways as a function of solution parameters including concentration and iron‐binding strength of the organic ligand and superoxide concentration. Our results suggest that superoxide can participate in the C. marina iron‐uptake process when iron is complexed to weak ligands, such as citrate, but plays only a minor role when iron is bound to a strong ligand. It thus appears that facilitation of iron acquisition is not the sole purpose of superoxide production by these organisms.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号