首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Species can respond to environmental pressures through genetic and epigenetic changes and through phenotypic plasticity, but few studies have evaluated the relationships between genetic differentiation and phenotypic plasticity of plant species along changing environmental conditions throughout wide latitudinal ranges. We studied inter‐ and intrapopulation genetic diversity (using simple sequence repeats and chloroplast DNA sequencing) and inter‐ and intrapopulation phenotypic variability of 33 plant traits (using field and common‐garden measurements) for five populations of the invasive cordgrass Spartina densiflora Brongn. along the Pacific coast of North America from San Francisco Bay to Vancouver Island. Studied populations showed very low genetic diversity, high levels of phenotypic variability when growing in contrasted environments and high intrapopulation phenotypic variability for many plant traits. This intrapopulation phenotypic variability was especially high, irrespective of environmental conditions, for those traits showing also high phenotypic plasticity. Within‐population variation represented 84% of the total genetic variation coinciding with certain individual plants keeping consistent responses for three plant traits (chlorophyll b and carotenoid contents, and dead shoot biomass) in the field and in common‐garden conditions. These populations have most likely undergone genetic bottleneck since their introduction from South America; multiple introductions are unknown but possible as the population from Vancouver Island was the most recent and one of the most genetically diverse. S. densiflora appears as a species that would not be very affected itself by climate change and sea‐level rise as it can disperse, establish, and acclimate to contrasted environments along wide latitudinal ranges.  相似文献   

2.
While phenotypic plasticity has been the focus of much research and debate in the recent ecological and evolutionary literature, the developmental nature of the phenomenon has been mostly overlooked. A developmental perspective must ultimately be an integral part of our understanding of how organisms cope with heterogeneous environments. In this paper I use the rapid cycling Arabidopsis thaliana to address the following questions concerning developmental plasticity. (1) Are there genetic and/or environmental differences in parameters describing ontogenetic trajectories? (2) Is ontogenetic variation produced by differences in genotypes and/or environments for two crucial traits of the reproductive phase of the life cycle, stem elongation and flower production? (3) Is there ontogenetic variability for the correlation between the two characters? I found genetic variation, plasticity, and variation for plasticity affecting at least some of the growth parameters, indicating potential for evolution via heterochronic shifts in ontogenetic trajectories. Within-population differences among families are determined before the onset of the reproductive phase, while among-population variation is the result of divergence during the reproductive phase of the ontogeny. Finally, the ontogenetic profiles of character correlations are very distinct between the ecologically meaningful categories of early- and late-flowering “ecotypes” in this species, and show susceptibility to environmental change.  相似文献   

3.
Studying the processes affecting variation for preadult viability is essential to understand the evolutionary trajectories followed by natural populations. This task requires focusing on the complex nature of the phenotype–genotype relationship by taking into account usually neglected aspects of the phenotype and recognizing the modularity between different ontogenetic stages. Here, we describe phenotypic variability for viability during the larval and pupal stages in lines derived from three natural populations of Drosophila melanogaster, as well as the variability for phenotypic plasticity and canalization at two different rearing temperatures. The results indicate that the three populations present significant phenotypic differences for preadult viability. Furthermore, distinct aspects of the phenotype (means, plasticity, canalization, plasticity of canalization) are affected by different genetic bases underlying changes in viability in a stage‐ and environment‐specific manner. These findings explain the generalized maintenance of genetic variability for this fitness trait.  相似文献   

4.
Previous studies revealed significant phenotypic plasticity, genetic variability and population differentiation of flower morphometric traits on dwarf bearded iris Iris pumila. Also, study of I. pumila flowering phenology revealed significant impact of habitat type as well as population differentiation for flowering time. Since the flowering time can influence other flower traits, we performed this analysis of flower morphometric traits in three time points during the flower bud ontogenic development in two habitat types (open vs. shaded). Analysis revealed that for most of the traits greater trait values were recorded for open habitat but only on latter time points. For most of the analyzed traits direction of differences in bud stage was the opposite to the direction of differences in mature flower stage detected in previous studies. However, length of the stem, a trait that showed the greatest variability between habitats and populations and therefore greatest genetic differentiation and phenotypic plasticity, was significantly greater in the samples from the late flowering shaded habitat in all time samples, indicating that in case of this trait different mechanisms were involved. Those findings have implications for design of the future studies on I. pumila.  相似文献   

5.
Jeffrey D. Brawn 《Oecologia》1991,86(2):193-201
Summary Environmental conditions can influence the expression and correlations of phenotypic traits. I studied phenotypic plasticity in reproductive traits of Western Bluebirds breeding in northern Arizona. Data collected over 4 years on two contrasting habitats identified significant spatial and temporal variation in bluebird reproduction. Clutch size was similar over different environmental conditions whereas timing of clutch initiation, percent fledging success, and frequency of second nest attempts were flexible. Correlations between traits varied widely—often changing sign—among samples from different years or habitats. Correlations of traits with reproductive success were also dependent on environmental conditions. Variation in traits reflected behavioral responses by nesting adults to differences in time for breeding and feeding conditions. Density of trees differed between habitats and had opposing effects on these environmental variables; breeding seasons were generally longer, but feeding rates to nestlings were lower on the more open habitat. Late Spring snows delayed reproduction and increased the importance of limited time for breeding; feeding conditions were more influential following a dry Spring. This and other studies illustrate that data on phenotypic plasticity are important when evaluating the ecological and evolutionary forces underlying life histories.  相似文献   

6.
Lindera melissifolia (Walt.) Blume seedlings were raised in a growth chamber to determine the effects of light availability on shoot growth pattern, and basic leaf and stem growth. Lindera melissifolia seedlings exhibited a sympodial shoot growth pattern for 3 months following emergence from the soil medium, but this pattern was characterized by a reduction in leaf blade area approximately 30 days after emergence, followed by increases in leaf blade area. Seedlings receiving low light were 76% taller than seedlings receiving high light. Seedlings receiving low light also had larger leaf blade dimensions, blade area, seedling leaf area, and greater mass. Seedlings raised in high light had a greater proportional distribution of biomass in the roots, suggesting possible water stress from greater vapor pressure deficits. Furthermore, these seedlings displayed sharp angles of blade inclination and blade folding – acclimation that reduces exposure to light and subsequent higher leaf temperatures in open environments. These differences in morphological response to light resulted in high phenotypic variability in L. melissifolia seedlings. Lindera melissifolia seedling development showed a brief period of phenotypic plasticity, followed by ontogenetic plasticity. The short period of phenotypic plasticity may, however, have profound ecological implications for the conservation and recovery of this federally endangered shrub. Further experimentation should take into account the development of ontogenetic standards for comparisons of plant traits in addition to temporal standards.  相似文献   

7.
Adaptive values of plasticity in Iris pumila leaf traits (morphological: SLA, specific leaf area; anatomical: SD, stomatal density; LT, leaf thickness; VBN, vascular bundle number; SW, sclerenchyma width; CW, cuticle width, and physiological: ChlT, total chlorophyll concentration; ChlA/B, chlorophyll a/b ratio) were tested at three irradiance levels in a growth-room. Siblings from 28 full-sib families from an open dune site and a woodland understory responded similarly to variation in light availability: SLA gradually increased, while anatomical and physiological traits decreased with light reduction. In the Dune population, standardized linear selection gradients were significant for SLA and ChlT at high light, VBN along the entire light gradient, SW at high- and low-, and ChlA/B at low-irradiance. In the Woods population, the significant standardized linear selection gradients were observed for SLA and LT at low- and VBN at both high- and low-irradiance. A significant nonlinear selection gradient was recorded for SD and LT at medium irradiance. Comparisons of the plastic responses to each light quantity with the phenotypes favored by selection in that environments revealed that only an increased SLA value at low light in the Woods population was ecologically significant (adaptive). In the Dune population, SD and VBN entailed plasticity costs at low irradiance, while a cost of homeostasis was recognized for ChlT and ChlA/B at medium light, SD and CW at high- and low-, and SLA at high- and medium-light level. In the shaded population, CW and ChlA/B incurred plasticity costs at high irradiance, while for ChlT plasticity costs appeared under medium- and low-light conditions. In all leaf traits, genetic variation for plasticity was statistically undetectable. Genetic correlations between these traits were mostly insignificant, implying that they possess a capability for relatively independent evolution by natural selection across different light environments.  相似文献   

8.
克隆植物蛇莓对光照强度和养分条件的适应性可塑性 表型可塑性可帮助植物缓冲环境压力并使其表型与当地环境相匹配,但目前仅少数性状的可塑性被广泛认为是适应性的。为充分理解可塑性的适应性意义,仍需进一步研究更多的植物功能性状及其环境因子。本研究将匍匐茎克隆植物蛇莓(Duchesnea indica)的21个基因型种植于不同的光照和养分条件下,并利用选择梯度分析检测了形态和生理可塑性对光照强度和养分有效性变化的适应性值。在遮荫条件下,蛇莓适合度(果实数、分株数和生物量)降低,节间缩短变细,成熟叶叶绿素含量降低,但叶柄长度、比叶面积、老叶叶绿素含量均增加。在低养分条件下,植株叶柄缩短,叶面积缩小变厚,叶绿素含量降低,但果实数量和根冠比增加。选择梯度分析表明,叶柄长度和老叶叶绿素含量对光照变化的可塑性是适应性的,老叶和成熟叶叶绿素含量对养分变化的可塑性也是适应性的。因此,不同性状的可塑性适应值取决于特定的生态背景。该研究的发现有助于理解克隆植物表型可塑性响应环境变化的适应性意义。  相似文献   

9.
The evolution of phenotypic plasticity of plant traits may be constrained by costs and limits. However, the precise constraints are still unclear for many traits under different ecological contexts. In a glasshouse experiment, we grew ramets of 12 genotypes of a clonal plant Hydrocotyle vulgaris under the control (full light and no flood), shade and flood conditions and tested the potential costs and limits of plasticity in 13 morphological and physiological traits in response to light availability and flood variation. In particular, we used multiple regression and correlation analyses to evaluate potential plasticity costs, developmental instability costs and developmental range limits of each trait. We detected significant costs of plasticity in specific petiole length and specific leaf area in response to shade under the full light condition and developmental range limits in specific internode length and intercellular CO2 concentration in response to light availability variation. However, we did not observe significant costs or limits of plasticity in any of the 13 traits in response to flood variation. Our results suggest that the evolution of phenotypic plasticity in plant traits can be constrained by costs and limits, but such constraints may be infrequent and differ under different environmental contexts.  相似文献   

10.
The evolution of environmentally-induced changes in phenotype or reaction norm implies both the existence at some time of genetic variation within a population for that plasticity measured by the presence of genotype x environment interaction (G x E), and that phenotypic variation affects fitness. Otherwise, the genetic structure of polygenic traits may restrict the evolution of the reaction norm by the lack of independent evolution of a given trait in different environments or by genetic trade-offs with other traits that affect fitness. In this paper, we analyze the existence of G x E in metamorphic traits to two environmental factors, larval density and pond duration in a factorial experiment with Bufo calamita tadpoles in semi-natural conditions and in the laboratory. Results showed no plastic temporal response in metamorphosis to pond durability at low larval density. The rank of genotypes did not change across different hydroperiods, implying a high genetic correlation that may constrain the evolution of the reaction norm. At high larval density a significant G x E interaction was found, suggesting the potential for the evolution of the reaction norm. A sibship (#1) attained the presumed “optimal” reaction norm by accelerating developmental rate in short duration ponds and delaying it in longer ponds. This could be translated in fitness by an increment in metamorphic survival and size at metamorphosis in short and long ponds respectively with respect to non-plastic sibships. However, genetic variability for plasticity suggests that optimal reaction norm for developmental rates may be variable and hard to achieve in the heterogeneous pond environment. Mass at metamorphosis was not plastic across different pond durations but decreased at high larval density. Significant adaptive plasticity for growth rates appeared in environments that differed drastically in level of crowding conditions, both in the field and in the laboratory. The fact that survival of juveniles metamorphosed at high density ponds was a monotonic function of metamorphic size, implies that response to selection may occur in this population of natterjacks and that genetic variability in plasticity may be a reliable mechanism maintaining adaptive genetic variation in growth rates in the highly variable pond environment.  相似文献   

11.
A multivariate selection analysis has been used to test the adaptiveness of several Iris pumila leaf traits that display plasticity to natural light conditions. Siblings of a synthetic population comprising 31 families of two populations from contrasting light habitats were grown at an open dune site and in the understory of a Pinus nigra stand in order to score variation in phenotypic expression of six leaf traits: number of senescent leaves, number of live leaves, leaf length, leaf width, leaf angle, and specific leaf area. The ambient light conditions affected the values of all traits studied except for specific leaf area. In accordance to ecophysiological expectations for an adaptive response to light, both leaf length and width were significantly greater while the angle between sequential leaves was significantly smaller in the woodland understory than at the exposed dune site. The relationship between leaf traits and vegetative fitness (total leaf area) differed across light habitats as predicted by functional hypotheses. The standardized linear selection gradient (β′) for leaf length and width were positive in sign in both environments, but their magnitude for leaf length was higher in the shade than under full sunlight. Since plasticity of leaf length in the woodland shade has been recognized as adaptive, fitness cost of producing plastic change in leaf length was assessed. In both of the available methods used, the two-step and the multivariate regression procedures, a rather high negative association between the fitness value and the plasticity of leaf length was obtained, indicating a cost of plasticity. The selection gradient for leaf angle was weak and significant only in the woodland understory. Genetic correlations between trait expressions in contrasting light environments were negative in sign and low in magnitude, implying a significant genetic variation for plasticity in these leaf traits. Furthermore, leaf length and leaf width were found to be genetically positively coupled, which indicates that there is a potential for these two traits to evolve toward their optimal phenotypic values even faster than would be expected if they were genetically independent.  相似文献   

12.
Characterizing the relationships between genotype and phenotype for developmental adaptive traits is essential to understand the evolutionary dynamics underlying biodiversity. In holometabolous insects, the time to reach the reproductive stage and pupation site preference are two such traits. Here we characterize aspects of the genetic architecture for Developmental Time (decomposed in Larval and Pupal components) and Pupation Height using lines derived from three natural populations of Drosophila melanogaster raised at two temperatures. For all traits, phenotypic differences and variation in plasticity between populations suggest adaptation to the original thermal regimes. However, high variability within populations shows that selection does not exhaust genetic variance for these traits. This could be partly explained by local adaptation, environmental heterogeneity and modifications in the genetic architecture of traits according to environment and ontogenetic stage. Indeed, our results show that the genetic factors affecting Developmental Time and Pupation Height are temperature-specific. Varying relationships between Larval and Pupal Developmental Time between and within populations also suggest stage-specific modifications of genetic architecture for this trait. This flexibility would allow for a somewhat independent evolution of adaptive traits at different environments and life stages, favoring the maintenance of genetic variability and thus sustaining the traits’ evolvabilities.  相似文献   

13.
The relationship between ontogenetic, static, and evolutionary levels of allometry is investigated. Extrapolation from relative size relationships in adults to relative growth in ontogeny depends on the variability of slopes and intercepts of ontogenetic vectors relative to variability in length of the vector. If variability in slopes and intercepts is low relative to variability in length, ontogenetic and static allometries will be similar. The similarity of ontogenetic and static allometries was tested by comparing the first principal component, or size vector, for correlations among 48 cranial traits in a cross-sectional ontogenetic sample of rhesus macaques from Cayo Santiago with a static sample from which all age- and sex-related variation had been removed. The vector correlation between the components is high but significantly less than one while two of three allometric patterns apparent in the ontogenetic component are not discernable in the static component. This indicates that there are important differences in size and shape relationships among adults and within ontogenies. Extrapolation from intra- or interspecific phenotypic allometry to evolutionary allometry is shown to depend on the similarity of genetic and phenotypic allometry patterns. Similarity of patterns was tested by comparing the first principal components of the phenotypic, genetic, and environmental correlation matrices calculated using standard quantitative genetic methods. The patterns of phenotypic, genetic, and environmental allometry are dissimilar; only the environmental allometries show ontogenetic allometric patterns. This indicates that phenotypic allometry may not be an accurate guide to patterns of evolutionary change in size and shape.  相似文献   

14.
Plant form and spatial structure reflect the basic architectural blue-print of a plant. In most plant species, the expression of the structural blue-print is systematically altered during ontogeny resulting in predictable changes in the allometry of plant structures and in the types of structures that are produced. The expression of the structural blue-print or the timing of ontogenetic changes is also frequently altered by environmental conditions. This latter source of variability, referred to as phenotypic plasticity, is manifested through changes in the timing and rates of meristem initiation and development, the likelihood that meristems will remain dormant or commit to different demographic fates (i.e., vegetative vs. reproductive structures), or the size and structure of the organs formed. Complex interactions among these components can result in considerable differences in form and spatial structure among individuals of the same species. This paper focuses on the importance of these different components in determining the architecture of clonal plants with long internode connections between ramets.A case study is presented that attempts to separate ontogenetic variation and phenotypic plasticity in two stoloniferous species with different structural blue-prints, in their responses to shading. In both species the rate of ontogenetic development responded to intermediate shading levels, but only at very low levels of light availability did plastic changes in branch formation occur. Under shaded conditions the two species achieved similar changes in their architecture in conspicuously different ways. We discuss how different mechanisms leading to a given architecture can be distinguished and what the ecological implications of this are.  相似文献   

15.
Summary Three species of Phlox (Polemoniaceae) were grown in 6 greenhouse treatments. A variety of traits were recorded and the correlations among them were computed for each treatment. The phenotypic correlations between characters are significantly altered when plants are grown under different environmental conditions. These changes in correlation structure result from the differential phenotypic plasticity of traits. Partial correlations between flower production and other traits are also environment-dependent. Such changes can alter the intensity of, and possibly the response to, selection on traits correlated with fitness in natural plant populations.  相似文献   

16.
Plants possess a remarkable capacity to alter their phenotype in response to the highly heterogeneous light conditions they commonly encounter in natural environments. In the present study with the weedy annual plant Sinapis arvensis, we (a) tested for the adaptive value of phenotypic plasticity in morphological and life history traits in response to low light and (b) explored possible fitness costs of plasticity. Replicates of 31 half-sib families were grown individually in the greenhouse under full light and under low light (40% of ambient) imposed by neutral shade cloth. Low light resulted in a large increase in hypocotyl length and specific leaf area (SLA), a reduction in juvenile biomass and a delayed onset of flowering. Phenotypic selection analysis within each light environment revealed that selection favoured large SLA under low light, but not under high light, suggesting that the observed increase in SLA was adaptive. In contrast, plasticity in the other traits measured was maladaptive (i.e. in the opposite direction to that favoured by selection in the low light environment). We detected significant additive genetic variance in plasticity in most phenotypic traits and in fitness (number of seeds). Using genotypic selection gradient analysis, we found that families with high plasticity in SLA had a lower fitness than families with low plasticity, when the effect of SLA on fitness was statistically kept constant. This indicates that plasticity in SLA incurred a direct fitness cost. However, a cost of plasticity was only expressed under low light, but not under high light. Thus, models on the evolution of phenotypic plasticity will need to incorporate plasticity costs that vary in magnitude depending on environmental conditions.  相似文献   

17.
Variation patterns in phenotypic plasticity and broad sense heritability of 26 characters were examined within and among closely adjacent habitats of the bearded iris,Iris pumila. It was found thatI. pumila has considerable differentiation for phenotypic plasticity and genetic variation over short distances. An analysis of relationships between character differentiation and phenotypic plasticity suggests that they could have evolved independently. Possible mechanisms for maintaining local differentiation of the observed plastic and genetic variation are also discussed.  相似文献   

18.
披针叶茴香对变化光环境的表型可塑性   总被引:1,自引:0,他引:1  
植物对变化光环境的表型可塑性大小影响其在林下生境中分布、生长和更新。为探讨披针叶茴香在不同光环境下的整体表型可塑性及其适应机制,采用遮荫试验模拟5种光照条件(100%、52%、33%、15%和6%相对光照强度),研究了不同光环境下披针叶茴香叶片形态、生理、解剖结构、根系形态以及生物量分配等的变化。结果表明:叶生物量在5种光照处理之间差异不显著,但叶面积和比叶面积均随光照强度减弱显著增加。遮荫处理增加了叶绿素a、叶绿素b和类胡萝卜素的含量,但叶绿素a/b比值随光照强度减弱而降低。遮荫降低了非结构性碳水化合物(淀粉和可溶性糖)和可溶性蛋白的含量,增加了叶片氮和磷含量,对叶片氮/磷比影响较小。在52%和33%相对光照处理下,叶片中硝酸盐含量最低,而在100%和6%相对光照处理下硝酸盐积累较多。根生物量、细根和粗根的长度、表面积以及比根长和比根表面积在5种光照处理之间均没有显著差异,根系氮含量在低光环境(15%和6%相对光照处理)中显著降低。随光照强度减弱,披针叶茴香采取保守生存策略,并没有增加叶生物量的分配,而是分配较多的生物量给枝条和树干,储存能量。综合来看,披针叶茴香具有较宽的光生态幅,在6%—100%光照强度下均能正常生长,遮荫有利于披针叶茴香地上和总生物量的积累,52%的相对光照条件下生长最佳。变化光环境下根系性状和整体结构的可塑性相对较低,叶片生理性状的可塑性在披针叶茴香适应光环境变化过程中发挥了主要作用。  相似文献   

19.
Species can adapt to new environmental conditions either through individual phenotypic plasticity, intraspecific genetic differentiation in adaptive traits, or both. Wild emmer wheat, Triticum dicoccoides, an annual grass with major distribution in Eastern Mediterranean region, is predicted to experience in the near future, as a result of global climate change, conditions more arid than in any part of the current species distribution. To understand the role of the above two means of adaptation, and the effect of population range position, we analyzed reaction norms, extent of plasticity, and phenotypic selection across two experimental environments of high and low water availability in two core and two peripheral populations of this species. We studied 12 quantitative traits, but focused primarily on the onset of reproduction and maternal investment, which are traits that are closely related to fitness and presumably involved in local adaptation in the studied species. We hypothesized that the population showing superior performance under novel environmental conditions will either be genetically differentiated in quantitative traits or exhibit higher phenotypic plasticity than the less successful populations. We found the core population K to be the most plastic in all three trait categories (phenology, reproductive traits, and fitness) and most successful among populations studied, in both experimental environments; at the same time, the core K population was clearly genetically differentiated from the two edge populations. Our results suggest that (1) two means of successful adaptation to new environmental conditions, phenotypic plasticity and adaptive genetic differentiation, are not mutually exclusive ways of achieving high adaptive ability; and (2) colonists from some core populations can be more successful in establishing beyond the current species range than colonists from the range extreme periphery with conditions seemingly closest to those in the new environment.  相似文献   

20.
The evolution of phenotypic plasticity has rarely been examined within an explicitly phylogenetic framework, making use of modern comparative techniques. Therefore, the purpose of this study was to determine phylogenetic patterns in the evolution of phenotypic plasticity in response to vegetation shade (the ‘shade avoidance’ syndrome) in the annual plant Arabidopsis thaliana and its close relatives. Specifically, we asked the following questions: (i) Do A. thaliana and related species differ within or among clades in the magnitude and/or pattern of plasticity to shade? (ii) Are the phenotypic variance–covariance matrices (phenotypic integration) of these taxa plastic to the changes in light quality induced by the presence of a canopy? (iii) To what extent does the variation in uni- and multivariate plasticity match the phylogeny of Arabidopsis? In order to address these questions we grew individuals from six taxa of known phylogenetic relationship in a greenhouse under full sun and under a grass canopy. Taxa differed in the magnitude, but not in the pattern, of plasticities for all traits. At the univariate level, the late flowering species, A. pumila and A. griffithiana, as well as the late flowering Moscow ecotype of A. thaliana, showed greater plasticity for allocation to vegetative and reproductive meristems. At the multivariate level, several taxa displayed a very low stability of their variance–covariance structures to environmental change, with only one taxon sharing as many as three principal components across environments. We conclude that both univariate and multivariate plasticities to vegetation shade can evolve rapidly within a genus of flowering plants, with little evidence of historical constraints (phylogenetic inertia).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号