首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An irregular fiord-like outline of a S. marcescens colony expanding on a hard agar medium was shown to be fractal which promised an extremely long array of outermost cells. For the analysis of such spreading growth, mutants defective in production of surface active exolipids (serawettin W1 and W3) and flagella-less mutants were isolated. The fractal spreading growth was found to be correlated with serrawettin production. Furthermore, serrawettin-less mutants demonstrated spreading growth when purified serrawettin W1 or W3 were supplied exogenously.  相似文献   

2.
The spreading of bacterial populations is central to processes in agriculture, the environment, and medicine. However, existing models of spreading typically focus on cells in unconfined settings—despite the fact that many bacteria inhabit complex and crowded environments, such as soils, sediments, and biological tissues/gels, in which solid obstacles confine the cells and thereby strongly regulate population spreading. Here, we develop an extended version of the classic Keller-Segel model of bacterial spreading via motility that also incorporates cellular growth and division, and explicitly considers the influence of confinement in promoting both cell-solid and cell-cell collisions. Numerical simulations of this extended model demonstrate how confinement fundamentally alters the dynamics and morphology of spreading bacterial populations, in good agreement with recent experimental results. In particular, with increasing confinement, we find that cell-cell collisions increasingly hinder the initial formation and the long-time propagation speed of chemotactic pulses. Moreover, also with increasing confinement, we find that cellular growth and division plays an increasingly dominant role in driving population spreading—eventually leading to a transition from chemotactic spreading to growth-driven spreading via a slower, jammed front. This work thus provides a theoretical foundation for further investigations of the influence of confinement on bacterial spreading. More broadly, these results help to provide a framework to predict and control the dynamics of bacterial populations in complex and crowded environments.  相似文献   

3.
CENP-E is a large kinesin motor protein which plays pivotal roles in mitosis by facilitating chromosome capture and alignment, and promoting microtubule flux in the spindle. So far, it has not been possible to obtain active human CENP-E to study its molecular properties. Xenopus CENP-E motor has been characterized in vitro and is used as a model motor; however, its protein sequence differs significantly from human CENP-E. Here, we characterize human CENP-E motility in vitro. Full-length CENP-E exhibits an increase in run length and longer residency times on microtubules when compared to CENP-E motor truncations, indicating that the C-terminal microtubule-binding site enhances the processivity when the full-length motor is active. In contrast with constitutively active human CENP-E truncations, full-length human CENP-E has a reduced microtubule landing rate in vitro, suggesting that the non-motor coiled-coil regions self-regulate motor activity. Together, we demonstrate that human CENP-E is a processive motor, providing a useful tool to study the mechanistic basis for how human CENP-E drives chromosome congression and spindle organization during human cell division.  相似文献   

4.
Dynamic texture spreading is a filling-in phenomenon where a colored pattern perceptually spreads onto an area confined by virtual contours in a multi-aperture motion display. The spreading effect is qualitatively similar to static texture spreading but widely surpasses it in strength, making it particularly suited for quantitative studies of visual interpolation processes. We first carried out two experiments to establish with objective tasks that texture spreading is a genuine representation of surface qualities and thus goes beyond mere contour interpolation. Two subsequent experiments serve to relate the phenomenon to ongoing discussions about potentially responsible mechanisms for spatiotemporal integration. With a phenomenological method, we examined to what extent simple sensory persistence might be causally involved in the effect under consideration. Most of our findings are consistent with the idea of sensory persistence, and indicate that information fragments are integrated over a time window of about 100 to 180 ms to form a complete surface representation.  相似文献   

5.
《The Journal of cell biology》1988,107(5):1863-1871
The molecular mechanisms underlying cell attachment and subsequent cell spreading on laminin are shown to be distinct form one another. Cell spreading is dependent upon the binding of cell surface galactosyltransferase (GalTase) to laminin oligosaccharides, while initial cell attachment to laminin occurs independent of GalTase activity. Anti-GalTase IgG, as well as the GalTase modifier protein, alpha-lactalbumin, both block GalTase activity and inhibited B16-F10 melanoma cell spreading on laminin, but not initial attachment. On the other hand, the addition of UDP galactose, which increases the catalytic turnover of GalTase, slightly increased cell spreading. None of these reagents had any effect on cell spreading on fibronectin. When GalTase substrates within laminin were either blocked by affinity- purified GalTase or eliminated by prior galactosylation, cell attachment appeared normal, but subsequent cell spreading was totally inhibited. The laminin substrate for GalTase was identified as N-linked oligosaccharides primarily on the A chain, and to a lesser extent on B chains. That N-linked oligosaccharides are necessary for cell spreading was shown by the inability of cells to spread on laminin surfaces pretreated with N-glycanase, even though cell attachment was normal. Cell surface GalTase was distinguished from other reported laminin binding proteins, most notably the 68-kD receptor, since they were differentially eluted from laminin affinity columns. These data show that surface GalTase does not participate during initial cell adhesion to laminin, but mediates subsequent cell spreading by binding to its appropriate N-linked oligosaccharide substrate. These results also emphasize that some of laminin's biological properties can be attributed to its oligosaccharide residues.  相似文献   

6.
With an improved separation procedure for Plasmodium berghei sporozoites, up to 2000 mosquitoes can be processed in 3 to 4 hr. The method is based on density gradient centrifugation in Percoll. The small amount of contaminating microbial material did not noticeably interfere with the radiolabeling of surface proteins of the purified sporozoites. Two labeled proteins, with molecular weights of about 110,000 and 53,000 daltons, respectively, were identified using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Both proteins reacted specifically with antibodies against salivary gland sporozoites raised in rabbits and in rats. These two proteins were also present on the surface of “immature” sporozoites isolated from mosquitoes 12 days after the infective blood meal. None of these proteins, apparently, is involved in the cross-reactivity of sporogonic stages with blood stages.  相似文献   

7.
First structures of an active bacterial tyrosinase reveal copper plasticity   总被引:2,自引:0,他引:2  
Tyrosinase is a member of the type 3 copper enzyme family that is involved in the production of melanin in a wide range of organisms. The crystal structures of a tyrosinase from Bacillus megaterium were determined at a resolution of 2.0-2.3 Å. The enzyme crystallized as a dimer in the asymmetric unit and was shown to be active in crystal. The overall monomeric structure is similar to that of the monomer of the previously determined tyrosinase from Streptomyces castaneoglobisporus, but it does not contain an accessory Cu-binding “caddie” protein. Two Cu(II) ions, serving as the major cofactors within the active site, are coordinated by six conserved histidine residues. However, determination of structures under different conditions shows varying occupancies and positions of the copper ions. This apparent mobility in copper binding modes indicates that there is a pathway by which copper is accumulated or lost by the enzyme. Additionally, we suggest that residues R209 and V218, situated in a second shell of residues surrounding the active site, play a role in substrate binding orientation based on their flexibility and position. The determination of a structure with the inhibitor kojic acid, the first tyrosinase structure with a bound ligand, revealed additional residues involved in the positioning of substrates in the active site. Comparison of wild-type structures with the structure of the site-specific variant R209H, which possesses a higher monophenolase/diphenolase activity ratio, lends further support to a previously suggested mechanism by which monophenolic substrates dock mainly to CuA.  相似文献   

8.
Glioblastoma multiforme (GBM) is the most common malignant brain tumour in adults. One main source of its high malignancy is the invasion of isolated tumour cells into the surrounding parenchyma, which makes surgical resection an insufficient therapy in nearly all cases. The invasion is triggered by several cell surface receptors including receptor tyrosine kinases (RTKs), G protein‐coupled receptors (GPCRs), TGF‐β receptor, integrins, immunoglobulins, tumour necrosis factor (TNF) family, cytokine receptors, and protein tyrosine phosphatase receptors. The cross‐talk between cell‐surface receptors and the redundancy of downstream effectors make analysis of invasive signals even more complex. Therapies involving inhibition of single receptors do not give promising outcomes and a thorough knowledge of invasive signals of common and exclusive signalling components is required for design of best combinatory treatment schemes to fight the disease. J. Cell. Physiol. 222:1–10, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
The Igf2r imprinted cluster is an epigenetic silencing model in which expression of a ncRNA silences multiple genes in cis. Here, we map a 250 kb region in mouse embryonic fibroblast cells to show that histone modifications associated with expressed and silent genes are mutually exclusive and localized to discrete regions. Expressed genes were modified at promoter regions by H3K4me3 + H3K4me2 + H3K9Ac and on putative regulatory elements flanking active promoters by H3K4me2 + H3K9Ac. Silent genes showed two types of nonoverlapping profile. One type spread over large domains of tissue-specific silent genes and contained H3K27me3 alone. A second type formed localized foci on silent imprinted gene promoters and a nonexpressed pseudogene and contained H3K9me3 + H4K20me3 +/- HP1. Thus, mammalian chromosome arms contain active chromatin interspersed with repressive chromatin resembling the type of heterochromatin previously considered a feature of centromeres, telomeres, and the inactive X chromosome.  相似文献   

10.

Objective

To develop a deliberately engineered expression and purification system for an active chimeric-recombinant tissue plasminogen activator (crtPA) using co-expression with polyhydroxybutyrate (PHB) operon genes.

Results

Fusion of crtPA with PhaC-synthase simplified the purification steps through crtPA sedimentation with PHB particles. Moreover, the covalently immobilized crtPA was biologically active as shown in a chromogenic assay. Upon WELQut-protease activity, the released single-chain crtPA converted to the two-chain form which produced a pattern of bands with approx. MW of 32 and 11 kDa in addition to the full length crtPA.

Conclusion

Fusion of crtPA with PhaC-synthase not only simplifies purification from the bacterial host lysate, but also co-expression of PHB operon genes creates an oxidative environment, thereby reducing the inclusion body formation possibility. The isolated crtPA-PHB granules exhibited crtPA serine protease activity. Thus, fusion with the PhaC protein could be used as a scaffold for covalent displaying of functional disulfide-rich proteins.
  相似文献   

11.
Many bacteria are propelled by flagellar motors that stochastically switch between the clockwise and counterclockwise rotation direction. Although the switching dynamics is one of their most important characteristics, the mechanisms that control it are poorly understood. We present a statistical–mechanical model of the bacterial flagellar motor. At its heart is the assumption that the rotor protein complex, which is connected to the flagellum, can exist in two conformational states and that switching between these states depends on the interactions with the stator proteins, which drive the rotor. This couples switching to rotation, making the switch sensitive to torque and speed. Another key element is that after a switch, it takes time for the load to build up, due to conformational transitions of the flagellum. This slow relaxation dynamics of the filament leads, in combination with the load dependence of the switching frequency, to a characteristic switching time, as recently observed. Hence, our model predicts that the switching dynamics is not only controlled by the chemotaxis‐signaling network, but also by mechanical feedback of the flagellum.  相似文献   

12.
Temperature-induced switching of the bacterial flagellar motor.   总被引:2,自引:0,他引:2       下载免费PDF全文
L Turner  S R Caplan    H C Berg 《Biophysical journal》1996,71(4):2227-2233
Chemotaxis signaling proteins normally control the direction of rotation of the flagellar motor of Escherichia coli. In their absence, a wild-type motor spins exclusively counterclockwise. Although the signaling pathway is well defined, relatively little is known about switching, the mechanism that enables the motor to change direction. We found that switching occurs in the absence of signaling proteins when cells are cooled to temperatures below about 10 degrees C. The forward rate constant (for counterclockwise to clockwise, CCW to CW, switching) increases and the reverse rate constant (for CW to CCW switching) decreases as the temperature is lowered. At about -2 degrees C, most motors spin exclusively CW. At temperatures for which reversals are frequent enough to generate a sizable data set, both CCW and CW interval distributions appear to be exponential. From the rate constants we computed equilibrium constants and standard free energy changes, and from the temperature dependence of the standard free energy changes we determined standard enthalpy and entropy changes. Using transition-state theory, we also calculated the activation free energy, enthalpy, and entropy. We conclude that the CW state is preferred at very low temperatures and that it is relatively more highly bonded and restricted than the CCW state.  相似文献   

13.
The proton flux through the bacterial flagellar motor   总被引:18,自引:0,他引:18  
M Meister  G Lowe  H C Berg 《Cell》1987,49(5):643-650
Bacterial flagella are driven by a rotary motor that utilizes the free energy stored in the electrochemical proton gradient across the cytoplasmic membrane to do mechanical work. The flux of protons coupled to motor rotation was measured in Streptococcus and found to be directly proportional to motor speed. This supports the hypothesis that the movement of protons through the motor is tightly coupled to the rotation of its flagellar filament. Under this assumption the efficiency of energy conversion is close to unity at the low speeds encountered in tethered cells but only a few percent at the high speeds encountered in swimming cells. This difference appears to be due to dissipation by processes internal to the motor. The efficiency at high speeds exhibits a steep temperature dependence and a sizable deuterium solvent isotope effect.  相似文献   

14.
Enteropeptidase (EC 3.4.21.9) plays a key role in mammalian digestion as the enzyme that physiologically activates trypsinogen by highly specific cleavage of the trypsinogen activation peptide following the recognition sequence D4K. The high specificity of enteropeptidase makes it a powerful tool in modern biotechnology. Here we describe the application of phage display technology to express active human enteropeptidase catalytic subunits (L-HEP) on M13 filamentous bacteriophage. The L-HEP/C122S gene was cloned in the g3p-based phagemid vector pHEN2m upstream of the sequence encoding the phage g3p protein and downstream of the signal peptide-encoding sequence. Heterogeneous catalysis of the synthetic peptide substrate (GDDDDK-β-naphthylamide) cleavage by phage-bound L-HEP was shown to have kinetic parameters similar to those of soluble enzyme, with the respective Km values of 19 μM and 20 μM and kcat of 115 and 92 s−1. Fusion proteins containing a D4K cleavage site were cleaved with phage-bound L-HEP/C122S as well as by soluble L-HEP/C122S, and proteolysis was inhibited by soybean trypsin inhibitor. Rapid large-scale phage production, one-step purification of phage-bound L-HEP, and easy removal of enzyme activity from reaction samples by PEG precipitation make our approach suitable for the efficient removal of various tag sequences fused to the target proteins. The functional phage display technology developed in this study can be instrumental in constructing libraries of mutants to analyze the effect of structural changes on the activity and specificity of the enzyme or generate its desired variants for biotechnological applications.  相似文献   

15.
Active transport in cells, utilizing molecular motors like kinesin and myosin, provides the inspiration for the integration of active transport into synthetic devices. Hybrid devices, employing motor proteins in a synthetic environment, are the first prototypes of molecular shuttles. Here the basic characteristics of motor proteins are discussed from an engineering point of view, and the experiments aimed at incorporating motor proteins, such as myosins and kinesins, into devices are reviewed. The key problems for the construction of a molecular shuttle are: guiding the direction of motion, controlling the speed, and loading and unloading of cargo. Various techniques, relying on surface topography and chemistry as well as flow fields and electric fields, have been developed to guide the movement of molecular shuttles on surfaces. The control of ATP concentration, acting as a fuel supply, can serve as a means to control the speed of movement. The loading process requires the coupling of cargo to the shuttle, ideally by a strong and specific link. Applications of molecular shuttles can be envisioned, e.g. in the field of nano-electro-mechanical systems (NEMS), where scaling laws favor active transport over fluid flow, and in the bottom-up assembly of novel materials.  相似文献   

16.
Summary The influence of the ionic strength of the medium on the adsorption of bacteriophage T 2 to the surfaces of a mercury dropping electrode on one hand and ofbacteria E. coli B on the other hand was studied. The adsorption on the mercury surface was determined by measurement of the differential capacity of the electrode double layer, the adsorption to bacteria was estimated from the decrease of free phage particles in a bacterial suspension with time. The adsorption to the mercury electrode increases with increasing ionic strength of the medium, but adsorption to the surface of bacteria increases at first, has a maximum at concentrations between 0,1 to 0,5 M and decreases with further increase of ionic strength. The decrease of adsorption of phage to the bacterial surface is assumed to be caused by the blocking of specific sites on the bacterial surface by adsorbed ions which sterically prevent the adsorption of the phage. Such specific sites are not present on the electrode surface, therefore adsorption increases further with increasing ionic strength probably due to the neutralization of surface charges of the phage and of the electrode. The saturated surface-concentration of the phage s was calculated from the dependence of the differential capacity on the concentration. It is concluded from s value obtained that the phage particles are scattered with wide intervals on the electrode surface with a degree of coverage of approximately 140.Abbreviations used DNA deoxyribonucleic acid - N Avogadro number The authors wishes to express their gratitude to the late Prof.Ferdinand Hercík, director of the Institute of Biophysics, for the initiation of this work and stimulating interest. The authors are also indebted to Dr. J.Koudelka for his kind gift of phage T 2 sample and to Dr. M.Vízdalová for her valuable comments during preparation of this article.  相似文献   

17.
The influence of leaf surface roughness on the spreading of oil spray drops   总被引:1,自引:0,他引:1  
The effect of surface roughness of leaves on the retention and spreading of oil drops is considered. Three types of roughness have been recognized. Leaf hairs and protruding or recessed veins underlying the cuticle constitute a macroscopic roughness. Microscopic roughness is determined by epidermal cell size and arrangement, which influence the geometry of the grooves between these cells. Ultra-microscopic roughness is determined by the size, shape and organization of the epicuticular wax system. The effect of environmental conditions on surface roughness is also considered and the significance of the spreading of spray drops is discussed in relation to the application of pesticides.  相似文献   

18.
革兰氏阴性菌Ⅴ型分泌系统是细菌病原蛋白分泌的主要途径之一,可分为Ⅴa-Ⅴe5个亚型,其中Ⅴa型(即经典的单体自转运蛋白)是细菌毒力和黏附因子向细胞外分泌的重要工具,其在内膜Sec易位子和外膜BAM蛋白复合体的协助下,通过2个连续的跨膜步骤介导蛋白质穿过阴性菌的内外膜.据信Va型是目前已知蛋白质跨膜转运时最简单的分泌途径...  相似文献   

19.
Autotransporter proteins: novel targets at the bacterial cell surface   总被引:3,自引:0,他引:3  
Autotransporter proteins constitute a family of outer membrane/secreted proteins that possess unique structural properties that facilitate their independent transport across the bacterial membrane system and final routing to the cell surface. Autotransporter proteins have been identified in a wide range of Gram-negative bacteria and are often associated with virulence functions such as adhesion, aggregation, invasion, biofilm formation and toxicity. The importance of autotransporter proteins is exemplified by the fact that they constitute an essential component of some human vaccines. Autotransporter proteins contain three structural motifs: a signal sequence, a passenger domain and a translocator domain. Here, the structural properties of the passenger and translocator domains of three type Va autotransporter proteins are compared and contrasted, namely pertactin from Bordetella pertussis, the adhesion and penetration protein (Hap) from Haemophilus influenzae and Antigen 43 (Ag43) from Escherichia coli. The Ag43 protein is described in detail to examine how its structure relates to functional properties such as cell adhesion, aggregation and biofilm formation. The widespread occurrence of autotransporter-encoding genes, their apparent uniform role in virulence and their ability to interact with host cells suggest that they may represent rational targets for the design of novel vaccines directed against Gram-negative pathogens.  相似文献   

20.
Protein turbines. I: The bacterial flagellar motor.   总被引:2,自引:0,他引:2  
The bacterial flagellar motor is driven by a flux of ions between the cytoplasm and the periplasmic lumen. Here we show how an electrostatic mechanism can convert this ion flux into a rotary torque. We demonstrate that, with reasonable parameters, the model can reproduce many of the experimental measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号