首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The plant growth‐promoting fungi (PGPF) have long been known to improve plant growth and suppress plant diseases. The PGPF Penicillium viridicatum GP15‐1 elicited plant growth and induced systemic resistance (ISR) in Arabidopsis thaliana against Pseudomonas syringae pv. tomato DC3000 (Pst), leading to a restriction of pathogen growth and disease development. Examination of local and systemic genes indicated that GP15‐1 did not modulate the expression of any of the tested defence‐related marker genes involved in salicylic acid (SA), jasmonic acid (JA) and ethylene signalling pathways. Subsequent challenge of GP15‐1‐colonized plants with Pst bacterium primed Arabidopsis plants for enhanced activation of the JA‐inducible Atvsp (vegetative storage protein) gene at a later stage of infection. To assess the contribution of different signalling pathways in GP15‐1‐elicited plant growth and ISR, Arabidopsis genotypes implicated in SA signalling expressing the nahG transgene (NahG) or carrying disruption in NPR1 (npr1), JA signalling (jar1) and ethylene signalling (ein2) were tested. The GP15‐1‐induced plant growth and ISR were fully compromised in an ein2 mutation. Root colonization assay revealed that the inability of the ein2 mutant to express GP15‐1‐induced plant growth and ISR was not associated with reduced root colonization by GP15‐1. In conclusion, our results demonstrate the ethylene signalling pathway is involved in plant growth promotion and ISR elicitation by the PGPF P. viridicatum GP15‐1 in Arabidopsis. These results provide evidence that ethylene signalling has a substantial role in plant growth and disease resistance.  相似文献   

2.
Plant growth-promoting rhizobacteria (PGPR) colonize plant roots and exert beneficial effects on plant health and development. We are investigating the mechanisms by which PGPR elicit plant growth promotion from the viewpoint of signal transduction pathways within plants. We report here our first study to determine if well-characterized PGPR strains, which previously demonstrated growth promotion of various other plants, also enhance plant growth in Arabidopsis thaliana. Eight different PGPR strains, including Bacillus subtilis GB03, B. amyloliquefaciens IN937a, B. pumilus SE-34, B. pumilus T4, B. pasteurii C9, Paenibacillus polymyxa E681, Pseudomonas fluorescens 89B-61, and Serratia marcescens 90-166, were evaluated for elicitation of growth promotion of wild-type and mutant Arabidopsis in vitro and in vivo. In vitro testing on MS medium indicated that all eight PGPR strains increased foliar fresh weight of Arabidopsis at distances of 2, 4, and 6 cm from the site of bacterial inoculation. Among the eight strains, IN937a and GB03 inhibited growth of Arabidopsis plants when the bacteria were inoculated 2 cm from the plants, while they significantly increased plant growth when inoculated 6 cm from the plants, suggesting that a bacterial metabolite that diffused into the agar accounted for growth promotion with this strain. In vivo, eight PGPR strains promoted foliar fresh weight under greenhouse conditions 4 weeks after sowing. To define signal transduction pathways associated with growth promotion elicited by PGPR, various plant-hormone mutants of Arabidopsis were evaluated in vitro and in vivo. Elicitation of growth promotion by PGPR strains in vitro involved signaling of brassinosteroid, IAA, salicylic acid, and gibberellins. In vivo testing indicated that ethylene signaling was involved in growth promotion. Results suggest that elicitation of growth promotion by PGPR in Arabidopsis is associated with several different signal transduction pathways and that such signaling may be different for plants grown in vitro vs. in vivo.  相似文献   

3.
Although a wealth of information is available regarding resistance induced by plant growth-promoting rhizobacteria (PGPR), not much is known about plant growth-promoting fungi (PGPF). Hence, the goal of the present research was to provide more information on this matter. In Arabidopsis thaliana L., root colonizing PGPF Penicillium sp. GP16-2 or its cell free filtrate (CF) elicited an induced systemic resistance (ISR) against infection by Pseudomonas syringae pv. tomato DC3000 (Pst), leading to a restriction of pathogen growth and disease development. We demonstrate that signal transduction leading to GP16-2-mediated ISR requires responsiveness to JA and ET in a NPR1-dependent manner, while CF-mediated ISR shows dispensability of SA, JA, ET and NPR1-dependent signaling (at least individually). In addition, root colonization by GP16-2 is not associated with a direct effect on expression of known defense-related genes, but potentiates the activation of JA/ET-inducible ChitB, which only becomes apparent after infection by Pst. However, CF-mediated ISR was partly associated with the direct activation of marker genes responsive to both SA and JA/ET signaling pathways and partly associated with priming, leading to activation of JA-/ET-inducible ChitB and Hel genes. These suggest that CF may contain one or more elicitors that induce resistance by way where at least SA, JA and ET may play a role in defense signaling in Arabidopsis. Therefore, defense gene changes and underlying signaling pathways induced by Penicillium sp. GP16-2 root colonization and its CF application are not the same and only partially overlap.  相似文献   

4.
5.
Archaea have inhabited the earth for a long period of time and are ubiquitously distributed in diverse environments. However, few studies have focused on the interactions of archaea with other organisms, including eukaryotes such as plants, since it is difficult to cultivate sufficient numbers of archaeal cells for analysis. In this study, we investigated the interaction between soil archaea and Arabidopsis thaliana. We demonstrate for the first time that soil archaea promote plant growth and trigger induced systemic resistance (ISR) against the necrotrophic bacterium Pectobacterium carotovorum subsp. carotovorum SCC1 and biotrophic bacterium Pseudomonas syringae pv. tomato DC3000. Ammonia-oxidizing archaeon Nitrosocosmicus oleophilus MY3 cells clearly colonized the root surface of Arabidopsis plants, and increased resistance against both pathogenic species via the salicylic acid-independent signalling pathway. This mechanism of bacterial resistance resembles that underlying soil bacteria- and fungi-mediated ISR signalling. Additionally, volatile emissions from N. oleophilus MY3 were identified as major archaeal determinants that elicit ISR. Our results lay a foundation for archaea–plant interactions as a new field of research.  相似文献   

6.
The endophytic fungus Falciphora oryzae was initially isolated from wild rice (Oryza granulata) and colonizes many crop species and promotes plant growth. However, the molecular mechanisms underlying F. oryzae-mediated growth promotion are still unknown. We found that F. oryzae was able to colonize Arabidopsis thaliana. The most dramatic change after F. oryzae inoculation was observed in the root architecture, as evidenced by increased lateral root growth but reduced primary root length, similar to the effect of auxin, a significant plant growth hormone. The expression of genes responsible for auxin biosynthesis, transport, and signalling was regulated in Arabidopsis roots after F. oryzae cocultivation. Indole derivatives were detected at significantly higher levels in liquid media after cocultivation compared with separate cultivation of Arabidopsis and F. oryzae. Consistently, the expression of indole biosynthetic genes was highly upregulated in F. oryzae upon treatment with Arabidopsis exudates. Global analysis of Arabidopsis gene expression at the early stage after F. oryzae cocultivation suggested that signals were exchanged to initiate ArabidopsisF. oryzae interactions. All these results suggest that signalling molecules from Arabidopsis roots are perceived by F. oryzae and induce the biosynthesis of indole derivatives in F. oryzae, consequently stimulating Arabidopsis lateral root growth.  相似文献   

7.
In a previous study, we demonstrated the ability of the rhizobacterium Bacillus cereus AR156 (AR156) to protect tomato against bacterial wilt caused by Ralstonia solanacearum and root-knot disease caused by Meloidogyne incognita. Here, we investigate the ability of AR156 to promote plant growth and its role in the systemic protection of tomatoes cultivated in greenhouses against bacterial speck disease caused by Pseudomonas syringae pv. tomato DC3000 (DC3000). In our experiments, the AR156 population reached 105–106 CFU/g rhizosphere soil, and remained at that level in the rhizosphere of tomato plants for more than 2 months. In terms of its ability to promote plant growth, AR156 increased the average biomass of the tomato by 47.7%. AR156 also elicited induced systemic resistance against DC3000, significantly reduced bacterial speck disease severity 1.6-fold, and inhibited proliferation of the pathogen by approximately 15-fold. This strain triggered the accumulation of defence-related genes (PR1 and PIN2) in tomato leaves and primed the leaves for accelerated defence-related gene expression upon challenge with DC3000. That suggested simultaneous activation of the salicylic acid and the jasmonic acid dependent signalling pathways by AR156 against DC3000. In conclusion, B. cereus AR156 was found to form robust colonies in the roots of tomato and had some beneficial effects, including biological control of bacterial speck disease via ISR and promotion of plant growth.  相似文献   

8.
The production of indole-3-acetic acid (IAA), by rhizobacteria, has been associated with plant growth promotion, especially root initiation and elongation. Isolate TO3 selected from 103 fluorescent pseudomonads, identified as Pseudomonas aeruginosa, showed maximum production of IAA. Isolate TO3 having biocontrol activity against Macrophomina phaseolina also showed production of siderophore and HCN was used to screen the role of bacterial IAA in reducing the level of charcoal rot disease occurrence in chickpea. Four IAA defective stable mutants of isolate TO3 having biocontrol activity against M. phaseolina were developed through 5-bromouracil mutagenesis. Mutant TO52 showed 76.47% reduction in production of IAA. Standard IAA was used in similar concentration as present in cell-free culture supernatant of wild isolate TO3 and its mutant TO52. The in vitro and in vivo study showed that IAA-defective mutant TO52 caused reduced biocontrol and plant growth promotory activity than wild isolate TO3. Standard IAA showed comparable biocontrol activity to the culture supernatant. To some extent better biocontrol and growth promotory activity in supernatant than standard IAA indicates the synergistic role of siderophore and HCN. The study clearly reports the role of bacterial IAA in suppression of charcoal rot disease of chickpea.  相似文献   

9.
Zoospores play an important role in the infection of plant and animal hosts by oomycetes and other zoosporic fungi. In this study, six fluorescent Pseudomonas isolates with zoosporicidal activities were obtained from the wheat rhizosphere. Zoospores of multiple oomycetes, including Pythium species, Albugo candida, and Phytophthora infestans, were rendered immotile within 30 s of exposure to cell suspensions or cell culture supernatants of the six isolates, and subsequent lysis occurred within 60 s. The representative strain SS101, identified as Pseudomonas fluorescens biovar II, reduced the surface tension of water from 73 to 30 mN m−1. The application of cell suspensions of strain SS101 to soil or hyacinth bulbs provided significant protection against root rot caused by Pythium intermedium. Five Tn5 mutants of strain SS101lacked the abilities to reduce the surface tension of water and to cause lysis of zoospores. Genetic characterization of two surfactant-deficient mutants showed that the transposons had integrated into condensation domains of peptide synthetases. A partially purified extract from strain SS101 reduced the surface tension of water to 30 mN m−1 and reached the critical micelle concentration at 25 μg ml−1. Reverse-phase high-performance liquid chromatography yielded eight different fractions, five of which had surface activity and caused lysis of zoospores. Mass spectrometry and nuclear magnetic resonance analyses allowed the identification of the main constituent as a cyclic lipopeptide (1,139 Da) containing nine amino acids and a 10-carbon hydroxy fatty acid. The other four zoosporicidal fractions were closely related to the main constituent, with molecular massesranging from 1,111 to 1,169 Da.  相似文献   

10.
Jasmonic acid (JA) is a crucial plant defence signalling substance that has recently been shown to mediate herbivory-induced root growth reduction in the ecological model species Nicotiana attenuata . To clarify whether JA-induced reduction of root growth might be a general response increasing plant fitness under biotic stress, a suite of experiments was performed with the model plant Arabidopsis thaliana . JA bursts were elicited in leaves of A. thaliana in different ways. Root growth reduction was neither induced by foliar application of herbivore oral secretions nor by direct application of methyl jasmonate to leaves. Root growth reduction was observed when leaves were infected with the pathogen Pseudomonas syringae pv. tomato, which persistently induces the JA signalling pathway. Yet, high resolution growth analyses of this effect in wild type and JA biosynthesis knock-out mutants showed that it was elicited by the bacterial toxin coronatine that suggests ethylene- but not JA-induced root growth reduction in A. thaliana . Overall, the results demonstrate that the reaction of root growth to herbivore-induced JA signalling differs among species, which is discussed in the context of different ecological defence strategies among species.  相似文献   

11.
Despite its importance for membrane stability and pathogenicity of mammalian pathogens, functions of the O-polysaccharide (OPS) of lipopolysaccharide (LPS) remain unclear in plant-associated bacteria. Genetic information about OPS biosynthesis in these bacteria is largely missing. Genome analysis of various plant-associated Pseudomonas strains revealed that one of the two known OPS biosynthesis clusters from Pseudomonas aeruginosa PAO1, the common polysaccharide antigen (CPA) gene cluster, is only conserved in some strains of the Pseudomonas fluorescens group. For the O-specific antigen (OSA) biosynthesis cluster, the putative genomic position could be identified, but orthologues of most functional important OSA biosynthesis enzymes could not be detected. Nevertheless, orthologues of the glycosyltransferase WbpL, required for initiation of CPA and OSA synthesis in P. aeruginosa PAO1, could be identified in the analysed Pseudomonas genomes. Knockout mutations of wbpL orthologues in Pseudomonas syringae pv. tomato DC3000 (Pst) and Pseudomonas cichorii ATCC10857/DSM50259 (Pci) resulted in strains lacking the OPS. Infection experiments of Arabidopsis thaliana plants revealed a reduced entry into the leaf apoplast after spray inoculation and a reduced apoplastic amplification of PstwbpL. Stab and spray inoculation of lettuce (Lactuca sativa) leaves with PciwbpL causes reduced infection symptoms compared to the wild-type strain. Furthermore, swarming motility was reduced in ∆wbpL mutants of Pst and Pci. This might be a possible reason for reduced bacterial titres after surface inoculation and reduced bacterial amplification in the plant. Our results imply that the presence of lipopolysaccharide OPS is required for efficient host colonization and full virulence of plant-pathogenic Pseudomonas bacteria.  相似文献   

12.
Auxin is a key plant growth regulator that also impacts plant–pathogen interactions. Several lines of evidence suggest that the bacterial plant pathogen Pseudomonas syringae manipulates auxin physiology in Arabidopsis thaliana to promote pathogenesis. Pseudomonas syringae strategies to alter host auxin biology include synthesis of the auxin indole‐3‐acetic acid (IAA) and production of virulence factors that alter auxin responses in host cells. The application of exogenous auxin enhances disease caused by P. syringae strain DC3000. This is hypothesized to result from antagonism between auxin and salicylic acid (SA), a major regulator of plant defenses, but this hypothesis has not been tested in the context of infected plants. We further investigated the role of auxin during pathogenesis by examining the interaction of auxin and SA in the context of infection in plants with elevated endogenous levels of auxin. We demonstrated that elevated IAA biosynthesis in transgenic plants overexpressing the YUCCA 1 (YUC1) auxin biosynthesis gene led to enhanced susceptibility to DC3000. Elevated IAA levels did not interfere significantly with host defenses, as effector‐triggered immunity was active in YUC1‐overexpressing plants, and we observed only minor effects on SA levels and SA‐mediated responses. Furthermore, a plant line carrying both the YUC1‐overexpression transgene and the salicylic acid induction deficient 2 (sid2) mutation, which impairs SA synthesis, exhibited additive effects of enhanced susceptibility from both elevated auxin levels and impaired SA‐mediated defenses. Thus, in IAA overproducing plants, the promotion of pathogen growth occurs independently of suppression of SA‐mediated defenses.  相似文献   

13.
ABSTRACT

A newly identified chemical, 4-{3-[(3,5-dichloro-2-hydroxybenzylidene)amino]propyl}-4,5-dihydro-1H-pyrazol-5-one (BAPP) was characterized as a plant immunity activator. BAPP enhanced disease resistance in rice against rice blast disease and expression of a defense-related gene without growth inhibition. Moreover, BAPP was able to enhance disease resistance in dicotyledonous tomato and Arabidopsis plants against bacterial pathogen without growth inhibition, suggesting that BAPP could be a candidate as an effective plant activator. Analysis using Arabidopsis sid2-1 and npr1-2 mutants suggested that BAPP induced systemic acquired resistance (SAR) by stimulating between salicylic acid biosynthesis and NPR1, the SA receptor protein, in the SAR signaling pathway.  相似文献   

14.
Accumulating evidence indicates that plant growth promoting rhizobacteria (PGPR) influence plant growth and development by the production of phytohormones such as auxins, gibberellins, and cytokinins. Little is known on the genetic basis and signal transduction components that mediate the beneficial effects of PGPRs in plants. We recently reported the identification of a Bacillus megaterium strain that promoted growth of A. thaliana and P. vulgaris seedlings. In this addendum, the role of cytokinin signaling in mediating the plant responses to bacterial inoculation was investigated using A. thaliana mutants lacking one, two or three of the putative cytokinin receptors CRE1, AHK2 and AHK3, and RPN12 a gene involved in cytokinin signaling. We show that plant growth promotion by B. megaterium is reduced in AHK2-2 single and double mutant combinations and in RPN12. Furthermore, the triple cytokinin-receptor CRE1-12/AHK2-2/AHK3-3 knockout was insensitive to inoculation in terms of growth promotion and root developmental responses. Our results indicate that cytokinin receptors play a complimentary role in plant growth promotion by B. megaterium.Key words: Arabidopsis, plant growth stimulation, root development, rhizobacteria  相似文献   

15.
Plant chitinases have been known as pathogenesis-related (PR) proteins, but recent studies suggest that they play functional roles during normal plant growth and development. We previously isolated two cDNA clones encoding endochitinases,EuNOD-CHT1 and -CHT2, from the root nodules ofElaeagnus umbellata. These genes show differential expression patterns, with theEuNOD-CHT1 gene being active in the root nodules and meristems, whileEuNOD-CHT2 is preferentially expressed in the infected cells of those nodules. To elucidate the functional roles of these two endochitinases, we have now constitutively expressed each gene in a heterologous plant system,Arabidopsis thaliana. Stable inheritance and expression of the transgenes were confirmed by genomic Southern hybridization and RT-PCR. Our transgenic plants did not differ morphologically from the wild types. However, constitutive expression ofEuNOD-CHT1 and -CHT2 inArabidopsis resulted in increased resistance against a fungal pathogen,Botrytis cinerea, but not against a bacterial agent,Pseudomonas syringae pv. Tomato DC3000. Expression levels were enhanced by both wounding and jasmonic acid treatments (forEuNOD-CHT1), or by jasmonic acid only (forEuNOD-CHT2). These data suggest thatEuNOD-CHT1 and -CHT2 primarily play defensive roles during root nodule development inE. umbellata.  相似文献   

16.
Members of the MILDEW RESISTANCE LOCUS O (MLO) gene family confer susceptibility to powdery mildews in different plant species, and their existence therefore seems to be disadvantageous for the plant. We recognized that expression of the Arabidopsis MLO2 gene is induced after inoculation with the bacterial pathogen Pseudomonas syringae, promoted by salicylic acid (SA) signaling, and systemically enhanced in the foliage of plants exhibiting systemic acquired resistance (SAR). Importantly, distinct mlo2 mutant lines were unable to systemically increase resistance to bacterial infection after inoculation with P. syringae, indicating that the function of MLO2 is necessary for biologically induced SAR in Arabidopsis. Our data also suggest that the close homolog MLO6 has a supportive but less critical role in SAR. In contrast to SAR, basal resistance to bacterial infection was not affected in mlo2. Remarkably, SAR‐defective mlo2 mutants were still competent in systemically increasing the levels of the SAR‐activating metabolites pipecolic acid (Pip) and SA after inoculation, and to enhance SAR‐related gene expression in distal plant parts. Furthermore, although MLO2 was not required for SA‐ or Pip‐inducible defense gene expression, it was essential for the proper induction of disease resistance by both SAR signals. We conclude that MLO2 acts as a critical downstream component in the execution of SAR to bacterial infection, being required for the translation of elevated defense responses into disease resistance. Moreover, our data suggest a function for MLO2 in the activation of plant defense priming during challenge by P. syringae.  相似文献   

17.
18.
19.
The type VI secretion system (T6SS) is a contractile nanomachine widespread in Gram-negative bacteria. The T6SS injects effectors into target cells including eukaryotic hosts and competitor microbial cells and thus participates in pathogenesis and intermicrobial competition. Pseudomonas fluorescens MFE01 possesses a single T6SS gene cluster that confers biocontrol properties by protecting potato tubers against the phytopathogen Pectobacterium atrosepticum (Pca). Here, we demonstrate that a functional T6SS is essential to protect potato tuber by reducing the pectobacteria population. Fluorescence microscopy experiments showed that MFE01 displays an aggressive behaviour with an offensive T6SS characterized by continuous and intense T6SS firing activity. Interestingly, we observed that T6SS firing is correlated with rounding of Pectobacterium cells, suggesting delivery of a potent cell wall targeting effector. Mutagenesis coupled with functional assays then revealed that a putative T6SS secreted amidase, Tae3Pf, is mainly responsible for MFE01 toxicity towards Pca. Further studies finally demonstrated that Tae3Pf is toxic when produced in the periplasm, and that its toxicity is counteracted by the Tai3Pf inner membrane immunity protein.  相似文献   

20.
Six strains of Plant growth promoting Rhizobacteria (PGPR) were tested for their ability to promote growth and induce resistance in pearl millet against downy mildew disease. All the PGRP strains showed a significant (P < 0.01) increase in growth promotion in laboratory as well as greenhouse conditions. Only two strains of Pseudomonas spp., UOM ISR 17 and UOM ISR 23, were capable of protecting pearl millet against downy mildew significantly. Pseudomonas UOM ISR 17 and UOM ISR 23 were able to offer 56.3 and 47.5%, respectively against downy mildew disease. When tested for the time gap needed to offer maximum protection, it was found that both the strains needed four days to offer maximum protection of 73.3% and 59.7%, respectively. While both the Acetobacter strains UOM Ab9 and Ab11 and Azospirillum strain UOM Az3 were able to promote growth and offered disease protection of 39.2, 22.3 and 17.40% respectively, they were not as efficient as the two Pseudomonas strains in protecting pearl millet against downy mildew. Maximum growth promotion was recorded by Pseudomonas spp. UOM ISR 17 with 33.9 cm height which was 44, 45, 42 and 46.8% more in height, fresh weight, dry weight and leaf area over the control which recorded 27 cm height, 8.1 g fresh weight, 2.1 g dry weight and 29 cm2 leaf area, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号