首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transporter proteins are a vital interface between cells and their environment. In nutrient-limited environments, microbes with transporters that are effective at bringing substrates into their cells will gain a competitive advantage over variants with reduced transport function. Microbial ammonium transporters (Amt) bring ammonium into the cytoplasm from the surrounding periplasm space, but diagnosing Amt adaptations to low nutrient environments solely from sequence data has been elusive. Here, we report altered Amt sequence amino acid distribution from deep marine samples compared to variants sampled from shallow water in two important microbial lineages of the marine water column community—Marine Group I Archaea (Thermoproteota) and the uncultivated gammaproteobacterial lineage SAR86. This pattern indicates an evolutionary pressure towards an increasing dipole in Amt for these clades in deep ocean environments and is predicted to generate stronger electric fields facilitating ammonium acquisition. This pattern of increasing dipole charge with depth was not observed in lineages capable of accessing alternative nitrogen sources, including the abundant alphaproteobacterial clade SAR11. We speculate that competition for ammonium in the deep ocean drives transporter sequence evolution. The low concentration of ammonium in the deep ocean is therefore likely due to rapid uptake by Amts concurrent with decreasing nutrient flux.  相似文献   

2.
The role of bacterioplankton in the cycling of marine dissolved organic matter (DOM) is central to the carbon and energy balance in the ocean, yet there are few model organisms available to investigate the genes, metabolic pathways, and biochemical mechanisms involved in the degradation of this globally important carbon pool. To obtain microbial isolates capable of degrading semi-labile DOM for growth, we conducted dilution to extinction cultivation experiments using seawater enriched with high molecular weight (HMW) DOM. In total, 93 isolates were obtained. Amendments using HMW DOM to increase the dissolved organic carbon concentration 4x (280 μM) or 10x (700 μM) the ocean surface water concentrations yielded positive growth in 4–6% of replicate dilutions, whereas <1% scored positive for growth in non-DOM-amended controls. The majority (71%) of isolates displayed a distinct increase in cell yields when grown in increasing concentrations of HMW DOM. Whole-genome sequencing was used to screen the culture collection for purity and to determine the phylogenetic identity of the isolates. Eleven percent of the isolates belonged to the gammaproteobacteria including Alteromonadales (the SAR92 clade) and Vibrio. Surprisingly, 85% of isolates belonged to the methylotrophic OM43 clade of betaproteobacteria, bacteria thought to metabolically specialize in degrading C1 compounds. Growth of these isolates on methanol confirmed their methylotrophic phenotype. Our results indicate that dilution to extinction cultivation enriched with natural sources of organic substrates has a potential to reveal the previously unsuspected relationships between naturally occurring organic nutrients and the microorganisms that consume them.  相似文献   

3.
Because allochthonous organic matter (OM) loading supplements autochthonous OM in supporting lake and reservoir food webs, C and N elemental and isotopic ratios of sedimenting particulate OM were measured during an annual cycle in a polymictic, eutrophic reservoir. Particulate organic C and N deposition rates were greatest during winter and lowest during spring. C:N ratios decreased through our study indicating that OM largely originated from allochthonous sources in winter and autochthonous sources thereafter. δ13C were influenced by C4 plant signatures and became increasingly light from winter through autumn. δ15N indirectly recorded the OM source shift through nitrate utilization degree with maximum values occurring in May as nitrate concentrations decreased. Unlike relationships from stratified systems, δ13C decreased with increasing algal biomass. This relationship suggests that minimal inorganic C fixation relative to supplies maintained photosynthetic isotopic discrimination during productive periods. Water column mixing likely maintained adequate inorganic C concentrations in the photic zone. Alternatively, OM isotopic composition may have been influenced by changing dissolved inorganic nutrient pools in this rapidly flushed system. δ15N also recorded increased N2 fixation as nitrate concentrations declined through autumn. Secondary sediment transport mechanisms strongly influenced OM delivery. Particulate organic C and N deposition rates were 3× greater near the sediment-water interface. Isotopic ratio mixing models suggested that river plume sedimentation, sediment resuspension, and horizontal advection influenced excess sediment deposition with individual mechanisms being more important seasonally. Our findings suggest that allochthonous OM loading and secondarily-transported OM seasonally supplement phytoplankton production in productive reservoirs.  相似文献   

4.
In two montane watersheds that receive minimal deposition of atmospheric nitrogen, 15–71% of dissolved organic nitrogen (DON) was bioavailable in stream water over a 2-year period. Discharge-weighted concentrations of bulk DON were between 102 and 135 μg/l, and the C:N ratio differed substantially between humic and non-humic fractions of DON. Approximately 70% of DON export occurred during snowmelt, and 40% of that DON was biologically available to microbes in stream sediments. Concentrations of bioavailable DON in stream water were 2–16 times greater than dissolved inorganic nitrogen (DIN) during the growing season, and bioavailable DON was depleted within 2–14 days during experimental incubations. Uptake of DON was influenced by the concentration of inorganic N in stream water, the concentration of non-humic DON in stream water, and the C:N ratio of the non-humic fraction of dissolved organic matter (DOM). Uptake of DON declined logarithmically as the concentration of inorganic N in stream water increased. Experimental additions of inorganic N also caused a decline in uptake of DON and net production of DON when the C:N ratio of non-humic DOM was high. This study indicates that the relative and absolute amount of bioavailable DON can vary greatly within and across years due to interactions between the availability of inorganic nutrients and composition of DOM. DOM has the potential to be used biotically at a high rate in nitrogen-poor streams, and it may be generated by heterotrophic microbes when DIN and labile DOM with low relative nitrogen content become abundant.  相似文献   

5.
1. Chronic nitrogen (N) deposition may alter the bioavailability of dissolved organic matter (DOM) in streams by multiple pathways. Elevated N deposition may alter the nutrient stoichiometry of DOM as well as nutrient availability in stream water. 2. We evaluated the influence of a decadal‐scale experimental N enrichment on the relative importance of DOM nutrient content and inorganic nutrient availability on the bioavailability of DOM. We measured the consumption of dissolved organic carbon (DOC) and changes in nutrient concentration, DOM components and enzyme activity in a bottle incubation assay with different DOM and nutrient treatments. To evaluate the effect of DOM stoichiometry, we used leaf leachates of different carbon/N/phosphorus (C : N :P) ratio, made from leaf litter sourced in the reference and N‐enriched catchments at the Bear Brook Watershed in Maine (BBWM). We also manipulated the concentration of inorganic N and P to compare the effect of nutrient enrichment with DOM stoichiometry. 3. DOC from the N‐enriched catchment was consumed 14% faster than that from the reference catchment. However, mean DOC consumption for both leachates was more than doubled by the simultaneous addition of N and P, compared to controls, while the addition of N or P alone increased consumption by 42 and 23%, respectively. The effect of N and/or P enrichment consistently had a greater effect than DOM source for all response variables considered. 4. We subsequently conducted DOC uptake measurements using leaf leachate addition under ambient and elevated N and P in the streams draining the reference and N‐enriched catchments at BBWM. In both streams, DOC uptake lengths were shorter when N and P were elevated. 5. Although both DOM stoichiometry and inorganic nutrient availability affect DOM bioavailability, N and P co‐limitation appears to be the dominant driver of reach‐scale processing of DOM.  相似文献   

6.
Coral reefs are highly productive ecosystems bathed in unproductive, low-nutrient oceanic waters, where microbially dominated food webs are supported largely by bacterioplankton recycling of dissolved compounds. Despite evidence that benthic reef organisms efficiently scavenge particulate organic matter and inorganic nutrients from advected oceanic waters, our understanding of the role of bacterioplankton and dissolved organic matter (DOM) in the interaction between reefs and the surrounding ocean remains limited. In this study, we present the results of a 4-year study conducted in a well-characterized coral reef ecosystem (Paopao Bay, Moorea, French Polynesia) where changes in bacterioplankton abundance and dissolved organic carbon (DOC) concentrations were quantified and bacterial community structure variation was examined along spatial gradients of the reef:ocean interface. Our results illustrate that the reef is consistently depleted in concentrations of both DOC and bacterioplankton relative to offshore waters (averaging 79 μmol l−1 DOC and 5.5 × 108 cells l−1 offshore and 68 μmol l−1 DOC and 3.1 × 108 cells l−1 over the reef, respectively) across a 4-year time period. In addition, using a suite of culture-independent measures of bacterial community structure, we found consistent differentiation of reef bacterioplankton communities from those offshore or in a nearby embayment across all taxonomic levels. Reef habitats were enriched in Gamma-, Delta-, and Betaproteobacteria, Bacteriodetes, Actinobacteria and Firmicutes. Specific bacterial phylotypes, including members of the SAR11, SAR116, Flavobacteria, and Synechococcus clades, exhibited clear gradients in relative abundance among nearshore habitats. Our observations indicate that this reef system removes oceanic DOC and exerts selective pressures on bacterioplankton community structure on timescales approximating reef water residence times, observations which are notable both because fringing reefs do not exhibit long residence times (unlike those characteristic of atoll lagoons) and because oceanic DOC is generally recalcitrant to degradation by ambient microbial assemblages. Our findings thus have interesting implications for the role of oceanic DOM and bacterioplankton in the ecology and metabolism of reef ecosystems.  相似文献   

7.
We investigated the impact of viruses, nutrient loading, and microzooplankon grazing on phytoplankton communities in two New York estuaries that hosted blooms of the brown tide alga Aureococcus anophagefferens during 2000 and 2002. The absence of a bloom at one location during 2002 allowed for the fortuitous comparison of a bloom and non-bloom year at the same location as well as a comparison of two sites experiencing bloom and non-bloom conditions during the same year. During the study, blooms were found at locations with high levels of dissolved organic nitrogen and lower nitrate concentrations compared to a non-bloom location. Experimental additions of inorganic nitrogen and phosphorus yielded growth rates within the total phytoplankton community which significantly exceeded control treatments in 83% of experiments, while A. anophagefferens experienced significantly increased growth during only 20% of experimental inorganic nutrient additions. Consistent with prior research, these results suggest brown tides are not caused by eutrophication, but instead are more likely to occur when sources of labile DOM are readily available. Microzooplankton grazing rates on the total phytoplankton community during a bloom were lower than grazing rates at a non-bloom site, and grazing rates on A. anophagefferens were lower than grazing rates on the total community on some dates, suggesting that reduced grazing mortality may also promote brown tides. Mean densities of viruses during blooms (3 × 108 ml−1) were elevated compared to most estuarine environments and were twice the levels found at a non-bloom site. Experimental enrichment of the natural viral densities yielded a significant increase in A. anophagefferens growth rates relative to control treatments when background levels of viruses were low (<1.7 × 108 ml−1), suggesting that viruses may promote bloom occurrence by regenerating DOM or altering the composition of microbial communities.  相似文献   

8.
There is limited understanding of the spatial plasticity of conifer root growth in response to inorganic and organic nitrogen (N). In this study, slow-growing amabilis fir and fast-growing Douglas-fir, and slow- and fast-growing seedlots of the latter species were examined for their ability to proliferate roots preferentially in compartments of sand/peat medium enriched in organic and inorganic forms of N. In one experiment, N was supplied as 7.1 or 0.71 mM ammonium, nitrate and ammonium nitrate, and in a second experiment, N was supplied as ammonium or glycine. The seedlings’ ability to compensate for the starvation of a portion of the root system was assessed by measuring biomass of leaves, stems and roots, and foliar N concentration. Both fast- and slow-growing seedlots of Douglas-fir and slow-growing amabilis fir were able to proliferate roots in compartments of soil enriched with inorganic and organic N. In the first experiment, whole plant and root biomass was greatest when N was provided as ammonium followed by nitrate, and in the second experiment, seedling whole and root biomasses did not differ between ammonium and glycine treatments. All seedlings were able to compensate for the starvation of a portion of the root system, thus total plant biomass did not differ between split-root treatments; however, foliar N contents were lower in the 7.1/0.71 mM inorganic N split-root treatments. Foliar N concentrations were also lower in seedlings supplied with glycine.  相似文献   

9.
The impact of human activities on the concentrations and composition of dissolved organic matter (DOM) and particulate organic matter (POM) was investigated in the Walloon Region of the Meuse River basin (Belgium). Water samples were collected at different hydrological periods along a gradient of human disturbance (50 sampling sites ranging from 8.0 to 20,407 km2) and during a 1.5 year monitoring of the Meuse River at the city of Liège. This dataset was completed by the characterization of the DOM pool in groundwaters. The composition of DOM and POM was investigated through elemental (C:N ratios), isotopic (δ13C) and optical measurements including excitation emission matrix fluorescence with parallel factor analysis (EEM–PARAFAC). Land use was a major driver on fluvial OM composition at the regional scale of the Meuse Basin, the composition of both fluvial DOM and POM pools showing a shift toward a more microbial/algal and less plant/soil-derived character as human disturbance increased. The comparison of DOM composition between surface and groundwaters demonstrated that this pattern can be attributed in part to the transformation of terrestrial sources by agricultural practices that promote the decomposition of soil organic matter in agricultural lands and subsequent microbial inputs in terrestrial sources. In parallel, human land had contrasting effects on the autochthonous production of DOM and POM. While the in-stream generation of fresh DOM through biological activity was promoted in urban areas, summer autochthonous POM production was not influenced by land use. Finally, soil erosion by agricultural management practices favored the transfer of terrestrial organic matter via the particulate phase. Stable isotope data suggest that the hydrological transfer of terrestrial DOM and POM in human-impacted catchment are not subject to the same controls, and that physical exchange between these two pools of organic matter is limited.  相似文献   

10.
11.
Nitrate produced by bacterially mediated nitrification in soils is isotopically distinct from atmospheric nitrate in precipitation. 15N/14N and 18O/16O isotopic ratios of nitrate can therefore be used to distinguish between these two sources of nitrate in surface waters and groundwaters. Two forested catchments in the Turkey Lakes Watershed (TLW) near Sault Ste. Marie, Ontario, Canada were studied to determine the relative contributions of atmospheric and microbial nitrate to nitrate export. The TLW is reasonably undisturbed and receives a moderate amount of inorganic nitrogen bulk deposition (8.7 kg N · ha−1· yr−1) yet it exhibits unusually low inorganic nitrogen retention (average = 65% of deposition). The measured isotopic ratios for nitrate in precipitation ranged from +35 to +59‰ (VSMOW) for δ18O and −4 to +0.8‰ (AIR) for δ15N. Nitrate produced from nitrification at the TLW is expected to have an average isotope value of approximately −1.0‰ for δ18O and a value of about 0 to +6‰ for δ15N, thus, the isotopic separation between atmospheric and soil sources of nitrate is substantial. Nitrate produced by nitrification of ammonium appears to be the dominant source of the nitrate exported in both catchments, even during the snowmelt period. These whole catchment results are consistent with the results of small but intensive plot scale studies that have shown that the majority of the nitrate leached from these catchments is microbial in origin. The isotopic composition of stream nitrate provides information about N-cycling in the forested upland and riparian zones on a whole catchment basis. Received 5 October 1999; accepted 18 August 2000  相似文献   

12.
In aquatic ecosystems, carbon (C) availability strongly influences nitrogen (N) dynamics. One manifestation of this linkage is the importance in the dissolved organic matter (DOM) pool of dissolved organic nitrogen (DON), which can serve as both a C and an N source, yet our knowledge of how specific properties of DOM influence N dynamics are limited. To empirically examine the impact of labile DOM on the responses of bacteria to DON and dissolved inorganic nitrogen (DIN), bacterial abundance and community composition were examined in controlled laboratory microcosms subjected to various combinations of dissolved organic carbon (DOC), DON, and DIN treatments. Bacterial communities that had colonized glass beads incubated in a stream were treated with various glucose concentrations and combinations of inorganic and organic N (derived from algal exudate, bacterial protein, and humic matter). The results revealed a strong influence of C availability on bacterial utilization of DON and DIN, with preferential uptake of DON under low C concentrations. Bacterial DON uptake was affected by the concentration and by its chemical nature (labile versus recalcitrant). Labile organic N sources (algal exudate and bacterial protein) were utilized equally well as DIN as an N source, but this was not the case for the recalcitrant humic matter DON treatment. Clear differences in bacterial community composition among treatments were observed based on terminal restriction fragment length polymorphisms (T-RFLP) of 16S rRNA genes. C, DIN, and DON treatments likely drove changes in bacterial community composition that in turn affected the rates of DON and DIN utilization under various C concentrations.  相似文献   

13.
Soil carbon (C) and nitrogen (N) stoichiometry is a main driver of ecosystem functioning. Global N enrichment has greatly changed soil C : N ratios, but how altered resource stoichiometry influences the complexity of direct and indirect interactions among plants, soils, and microbial communities has rarely been explored. Here, we investigated the responses of the plant‐soil‐microbe system to multi‐level N additions and the role of dissolved organic carbon (DOC) and inorganic N stoichiometry in regulating microbial biomass in semiarid grassland in northern China. We documented a significant positive correlation between DOC and inorganic N across the N addition gradient, which contradicts the negative nonlinear correlation between nitrate accrual and DOC availability commonly observed in natural ecosystems. Using hierarchical structural equation modeling, we found that soil acidification resulting from N addition, rather than changes in the plant community, was most closely related to shifts in soil microbial community composition and decline of microbial respiration. These findings indicate a down‐regulating effect of high N availability on plant–microbe interactions. That is, with the limiting factor for microbial biomass shifting from resource stoichiometry to soil acidity, N enrichment weakens the bottom‐up control of soil microorganisms by plant‐derived C sources. These results highlight the importance of integratively studying the plant‐soil‐microbe system in improving our understanding of ecosystem functioning under conditions of global N enrichment.  相似文献   

14.
15.
High rates of inorganic nitrogen (N) deposition or internal N turnover increases the risks of N loss from forests with negative effects on stream water quality. We hypothesized that soil fungi may be more important N sinks than bacteria, and thus examined the impact of soil microbial community composition on N leaching from forests. We studied 19 spruce stands to examine relationships between microbial community composition, stem growth, soil-, and lysimeter-collected soil solution characteristics, and N leaching. We used nitrate concentration in the soil solution below the rooting zone as an N leaching index and phospholipid fatty acid (PLFA) analysis for characterisation of microbial communities. Microbial community composition in the organic horizon and soil solution chemistry below the rooting zone was highly correlated. Stands with low concentrations of nitrate (NO3 ?) and aluminium (Al) had higher fungi: bacteria ratio compared with stands with higher concentrations of NO3 ? and Al. Stem growth and fungi: bacteria ratio explained 70 % of the variation in N and Al leaching. We identified three microbial predictors of variation in soil solution chemistry, of which the fungi: bacteria was the strongest. The other two were putative indicators of microbial C limitation, a condition known to stimulate N mineralisation and nitrification.  相似文献   

16.
17.
Organic matter decomposition and soil CO2 efflux are both mediated by soil microorganisms, but the potential effects of temporal variations in microbial community composition are not considered in most analytical models of these two important processes. However, inconsistent relationships between rates of heterotrophic soil respiration and abiotic factors, including temperature and moisture, suggest that microbial community composition may be an important regulator of soil organic matter (SOM) decomposition and CO2 efflux. We performed a short-term (12-h) laboratory incubation experiment using tropical rain forest soil amended with either water (as a control) or dissolved organic matter (DOM) leached from native plant litter, and analyzed the effects of the treatments on soil respiration and microbial community composition. The latter was determined by constructing clone libraries of small-subunit ribosomal RNA genes (SSU rRNA) extracted from the soil at the end of the incubation experiment. In contrast to the subtle effects of adding water alone, additions of DOM caused a rapid and large increase in soil CO2 flux. DOM-stimulated CO2 fluxes also coincided with profound shifts in the abundance of certain members of the soil microbial community. Our results suggest that natural DOM inputs may drive high rates of soil respiration by stimulating an opportunistic subset of the soil bacterial community, particularly members of the Gammaproteobacteria and Firmicutes groups. Our experiment indicates that variations in microbial community composition may influence SOM decomposition and soil respiration rates, and emphasizes the need for in situ studies of how natural variations in microbial community composition regulate soil biogeochemical processes.  相似文献   

18.
How Arctic climate change might translate into alterations of biogeochemical cycles of carbon (C) and nitrogen (N) with respect to inorganic and organic N utilization is not well understood. This study combined 15N uptake rate measurements for ammonium, nitrate, and urea with 15N- and 13C-based DNA stable-isotope probing (SIP). The objective was to identify active bacterial and archeal plankton and their role in N and C uptake during the Arctic summer and winter seasons. We hypothesized that bacteria and archaea would successfully compete for nitrate and urea during the Arctic winter but not during the summer, when phytoplankton dominate the uptake of these nitrogen sources. Samples were collected at a coastal station near Barrow, AK, during August and January. During both seasons, ammonium uptake rates were greater than those for nitrate or urea, and nitrate uptake rates remained lower than those for ammonium or urea. SIP experiments indicated a strong seasonal shift of bacterial and archaeal N utilization from ammonium during the summer to urea during the winter but did not support a similar seasonal pattern of nitrate utilization. Analysis of 16S rRNA gene sequences obtained from each SIP fraction implicated marine group I Crenarchaeota (MGIC) as well as Betaproteobacteria, Firmicutes, SAR11, and SAR324 in N uptake from urea during the winter. Similarly, 13C SIP data suggested dark carbon fixation for MGIC, as well as for several proteobacterial lineages and the Firmicutes. These data are consistent with urea-fueled nitrification by polar archaea and bacteria, which may be advantageous under dark conditions.  相似文献   

19.
The clear, shallow, oligotrophic waters of Florida Bay are characterized by low phytoplankton biomass, yet periodic cyanobacteria and diatom blooms do occur. We hypothesized that allochthonous dissolved organic matter (DOM) was providing a subsidy to the system in the form of bound nutrients. Water from four bay sites was incubated under natural light and dark conditions with enrichments of either DOM ( > 1 kD, 2×DOM) or inorganic nutrients (N+P). Samples were analyzed for bacterial numbers, bacterial production, phytoplankton biomass, phytoplankton community structure, and production, nutrients, and alkaline phosphatase (AP) activity. The influence of 2×DOM enrichment on phytoplankton biomass developed slowly during the incubations and was relatively small compared to nutrient additions. Inorganic nutrient additions resulted in an ephemeral bloom characterized initially as cyanobacterial and brown algae but which changed to dinoflagellate and/or brown algae by day six. The DIN:TP ratio decreased 10-fold in the N+P treatments as the system progressed towards N limitation. This ratio did not change significantly for 2×DOM treatments. In addition, these experiments indicated that both autotrophic and heterotrophic microbial populations in Florida Bay may fluctuate in their limitation by organic and inorganic nutrient availability. Both N+P and 2×DOM enrichments revealed significant and positive response in bioavailability of dissolved organic carbon (BDOC). Potential BDOC ranged from 1.1 to 35.5%, with the most labile forms occurring in Whipray Basin. BDOC at all sites was stimulated by the 2×DOM addition. Except for Duck Key, BDOC at all sites was also stimulated by the addition of N+P. BDOC was lower in the dry season than in the wet season (5.56% vs. 16.86%). This may be explained by the distinct chemical characteristics of the DOM produced at different times of year. Thus, both the heterotrophic and autotrophic microbial communities in Florida Bay are modulated by bioavailability of DOM. This has ramifications for the fate of DOM from the Everglades inputs, implicating DOM bioavailability as a contributing factor in regulating the onset, persistence, and composition of phytoplankton blooms.  相似文献   

20.
Nitrogen fixation, the biological reduction of dinitrogen gas (N2) to ammonium (NH4+), is quantitatively the most important external source of new nitrogen (N) to the open ocean. Classically, the ecological niche of oceanic N2 fixers (diazotrophs) is ascribed to tropical oligotrophic surface waters, often depleted in fixed N, with a diazotrophic community dominated by cyanobacteria. Although this applies for large areas of the ocean, biogeochemical models and phylogenetic studies suggest that the oceanic diazotrophic niche may be much broader than previously considered, resulting in major implications for the global N-budget. Here, we report on the composition, distribution and abundance of nifH, the functional gene marker for N2 fixation. Our results show the presence of eight clades of diazotrophs in the oxygen minimum zone (OMZ) off Peru. Although proteobacterial clades dominated overall, two clusters affiliated to spirochaeta and archaea were identified. N2 fixation was detected within OMZ waters and was stimulated by the addition of organic carbon sources supporting the view that non-phototrophic diazotrophs were actively fixing dinitrogen. The observed co-occurrence of key functional genes for N2 fixation, nitrification, anammox and denitrification suggests that a close spatial coupling of N-input and N-loss processes exists in the OMZ off Peru. The wide distribution of diazotrophs throughout the water column adds to the emerging view that the habitat of marine diazotrophs can be extended to low oxygen/high nitrate areas. Furthermore, our statistical analysis suggests that NO2 and PO43− are the major factors affecting diazotrophic distribution throughout the OMZ. In view of the predicted increase in ocean deoxygenation resulting from global warming, our findings indicate that the importance of OMZs as niches for N2 fixation may increase in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号