首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photo-induced toxicity of anthracene was investigated as the mortality in Antarctic shallow water amphipod, Gondogeneia antarctica, at different concentrations of anthracene and different periods of exposure to natural sunlight and artificial UVA and UVB radiations. When exposed to natural sunlight, animals contaminated in the dark and placed in clean water or in anthracene solutions showed different degrees of mortality, dose–time dependent. Effects were even more evident when these animals were exposed to artificial UVA or UVB radiations. Depuration seemed to be a slow process. The effects of UV radiation and anthracene alone and the effects of the interactions of these two stressors implied that solar radiation is an important parameter that deserves consideration in the environmental assessment of polycyclic aromatic hydrocarbons in Antarctic coastal waters. G. antarctica proved to be a good bioindicator for the phototoxicity of anthracene in Antarctic shallow waters.  相似文献   

2.
In order to better understand the relative contribution of the different UV components of sunlight to solar mutagenesis, the distribution of the bipyrimidine photolesions, cyclobutane pyrimidine dimers (CPD), (6-4) photoproducts ((6-4)PP), and their Dewar valence photoisomers (DewarPP) was examined in Chinese hamster ovary cells irradiated with UVC, UVB, or UVA radiation or simulated sunlight. The absolute amount of each type of photoproduct was measured by using a calibrated and sensitive immuno-dot-blot assay. As already established for UVC and UVB, we report the production of CPD by UVA radiation, at a yield in accordance with the DNA absorption spectrum. At biologically relevant doses, DewarPP were more efficiently produced by simulated solar light than by UVB (ratios of DewarPP to (6-4)PP of 1:3 and 1:8, respectively), but were detected neither after UVA nor after UVC radiation. The comparative rates of formation for CPD, (6-4)PP and DewarPP are 1:0.25 for UVC, 1:0. 12:0.014 for UVB, and 1:0.18:0.06 for simulated sunlight. The repair rates of these photoproducts were also studied in nucleotide excision repair-proficient cells irradiated with UVB, UVA radiation, or simulated sunlight. Interestingly, DewarPP were eliminated slowly, inefficiently, and at the same rate as CPD. In contrast, removal of (6-4)PP photoproducts was rapid and completed 24 h after exposure. Altogether, our results indicate that, in addition to CPD and (6-4)PP, DewarPP may play a role in solar cytotoxicity and mutagenesis.  相似文献   

3.
Exposure to solar UV radiation gives rise to mutations that may lead to skin cancer. UVA (320-340 nm) constitutes the large majority of solar UV radiation but is less effective than UVB (290-320 nm) at damaging DNA. Although UVA has been implicated in photocarcinogenesis, its contribution to sunlight mutagenesis has not been elucidated, and DNA damage produced by UVA remains poorly characterized. We employed HPLC-MS/MS and alkaline agarose gel electrophoresis in conjunction with the use of specific DNA repair proteins to determine the distribution of the various classes and types of DNA lesions, including bipyrimidine photoproducts, in Chinese hamster ovary cells exposed to pure UVA radiation, as well as UVB and simulated sunlight (lambda > 295 nm) for comparison. At UVA doses compatible with human exposure, oxidative DNA lesions are not the major type of damage induced by UVA. Indeed, single-strand breaks, oxidized pyrimidines, oxidized purines (essentially 8-oxo-7,8-dihydroguanine), and cyclobutane pyrimidine dimers (CPDs) are formed in a 1:1:3:10 ratio. In addition, we demonstrate that, in contrast to UVB and sunlight, UVA generates CPDs with a large predominance of TT CPDs, which strongly suggests that they are formed via a photosensitized triplet energy transfer. Moreover, UVA induces neither (6-4) photoproducts nor their Dewar isomers via direct absorption. We also show that UVA photons contained in sunlight, rather than UVB, are implicated in the photoisomerization of (6-4) photoproducts, a quickly repaired damage, into poorly repaired and highly mutagenic Dewar photoproducts. Altogether, our data shed new light on the deleterious effect of UVA.  相似文献   

4.
Abstract

In our previous report, we observed different cytokine modulation in mouse epidermis by the UVA and UVB wavebands. In the present investigations, the effects of irradiation with UVA and UVB on the Fas(CD95)/FasL system have been studied because apoptosis mediated by the interaction between Fas and FasL has been suggested recently to be associated with UVB-induced immunosuppression in mouse skin. Our results show that UVA irradiation following UVB irradiation has the ability to reduce the up-regulation of FasL expression in mouse skin resulting from the UVB irradiation.  相似文献   

5.
Striking differences are observed in the melanogenic response of normal human melanocytes to UVA and UVB irradiation depending on culture conditions and the presence of keratinocytes. Exposure of melanocytes co‐cultured with keratinocytes to UVB irradiation triggered, already at low doses (5 mJ/cm2), an increase in melanin synthesis whereas in melanocyte mono‐cultures, UVB doses up to 50 mJ/cm2 had no melanogenic effect. Unlike UVB, UVA exposure caused the same melanogenic response in both mono‐ and co‐cultures. Removing certain keratinocyte growth factors from the co‐culture medium abolished the melanogenic response to UVB, but not to UVA exposure. When integrated into the basal layer of a reconstructed human epidermis, human melanocytes similarly reacted to UVA and UVB irradiation as in vivo by increasing their production and transfer of melanin to the neighboring keratinocytes which resulted in a noticeable tanning of the reconstructed epidermis. The presence of a dense stratum corneum, known to scatter and absorb UV light, is responsible for higher minimal UVB and UVA doses required to trigger a melanogenic response in the reconstructed epidermis compared to keratinocyte–melanocyte co‐cultures. Furthermore, an immediate tanning response was observed in the pigmented epidermis following UVA irradiation. From these results we conclude that: (i) keratinocytes play an important role in mediating UVB‐induced pigmentation, (ii) UVA‐induced pigmentation is the result of a rather direct effect on melanocytes and (iii) reconstructed pigmented epidermis is the most appropriate model to study UV‐induced pigmentation in vitro.  相似文献   

6.
Phenotypic mechanisms that enhance bacterial UVR survival typically include pigmentation and DNA repair mechanisms which provide protection from UVA and UVB wavelengths, respectively. In this study, we examined the contribution of pigmentation to field survival in Clavibacter michiganensis and evaluated differences in population dynamics and leaf colonization strategies. Two C. michiganensis pigment-deficient mutants were significantly reduced in UVA radiation survival in vitro; one of these mutants also exhibited reduced field populations on peanut when compared to the wild-type strain over the course of replicate 25-day experiments. The UVR-tolerant C. michiganensis strains G7.1 and G11.1 maintained larger epiphytic field populations on peanut compared to the UVR-sensitive C. michiganensis T5.1. Epiphytic field populations of C. michiganensis utilized the strategy of solar UVR avoidance during leaf colonization resulting in increased strain survival on leaves after UVC irradiation. These results further demonstrate the importance of UVR tolerance in the ability of bacterial strains to maintain population size in the phyllosphere. However, an examination of several bacterial species from the peanut phyllosphere and a collection of environmental Pseudomonas spp. revealed that sensitivity to UVA and UVC radiation was correlated in some but not all of these bacteria. These results underscore a need to further understand the biological effects of different solar wavelength groups on microbial ecology.  相似文献   

7.
Environmentally transmitted parasites spend time in the abiotic environment, where they are subjected to a variety of stressors. Learning how they face this challenge is essential if we are to understand how host–parasite interactions may vary across environmental gradients. We used a zooplankton–bacteria host–parasite system where availability of sunlight (solar radiation) influences disease dynamics to look for evidence of parasite local adaptation to sunlight exposure. We also examined how variation in sunlight tolerance among parasite strains impacted host reproduction. Parasite strains collected from clearer lakes (with greater sunlight penetration) were most tolerant of the negative impacts of sunlight exposure, suggesting local adaptation to sunlight conditions. This adaptation came with both a cost and a benefit for parasites: parasite strains from clearer lakes produced relatively fewer transmission stages (spores) but these strains were more infective. After experimental sunlight exposure, the most sunlight-tolerant parasite strains reduced host fecundity just as much as spores that were never exposed to sunlight. Sunlight availability varies greatly among lakes around the world. Our results suggest that the selective pressure sunlight exposure exerts on parasites may impact both parasite and host fitness, potentially driving variation in disease epidemics and host population dynamics across sunlight availability gradients.  相似文献   

8.
Skin aging is a complex process influenced by intrinsic factors and environmental stressors, including ultraviolet (UV) radiation and air pollution, among others. In this study, we investigated the effects of UVA and UVB radiation, combined with urban particulate matter (UPM), on human dermal fibroblasts (HDF). We show here that treatment of HDF with a subcytotoxic dose of UVA/UVB results in a series of events leading to mitochondrial dysfunction, increased ROS levels, and DNA damage. These effects are known to trigger either cellular senescence or cell death, depending on the cells' ability to clear damage by activating autophagy. Whereas UPM treatment in isolation did not affect proliferation or survival of HDF, of note, simultaneous UPM treatment of UV-irradiated cells selectively inhibited autophagic flux, thereby changing cell fate of a fraction of the cell population from senescence to apoptotic cell death. Our findings highlight the synergistic effects of UV radiation and UPM on skin aging, emphasizing the need to consider these factors in assessing the impact of environmental stressors on human health and opening opportunities for developing comprehensive approaches to protect and preserve skin integrity in the face of growing environmental challenges.  相似文献   

9.
The effect of solar ultraviolet radiation on the survival rate of Antarctic zooplankton was examined in February–March in 2002. We investigated survival rate of calyptopis larvae of Euphausia superba and late copepodite stages (IV and V) of large dominant calanoid species, Calanoides acutus and Calanus propinquus reared in quartz jars with three different radiation regimes (total radiation, exclusion of UVB, exclusion of UVA and UVB) and a dark control. The survival rates of the krill larvae decreased after 3 days from start of the experiment, being below 50% at 4 days in the treatments with total radiation and exclusion of UVB, although most individuals could survive until the end of the experiments in the treatments with exclusion of both UVA and UVB and dark control. The calanoid juveniles showed almost same pattern of survival curves as the krill larvae did, but survived slightly longer. Although >10% of surface UVA radiation at 340 and 380 nm penetrated down to 30 m, both C. acutus and C. propinquus were mostly distributed above 20 m. Surface swarm of the krill larvae can be often recognized in the previous studies. These results suggest that not only solar UVB but also UVA radiation potentially lower the survival rate of Antarctic zooplankton at depth less than 20 m.  相似文献   

10.
To assess the effects of UV radiation and its interaction with water availability on Mediterranean plants, we performed an experiment with seedlings of six Mediterranean species (three mesophytes vs three xerophytes) grown in a glasshouse from May to October under three UV conditions (without UV, with UVA and with UVA+UVB) and two irrigation levels (watered to saturation and low watered). Morphological, physiological and biochemical measures were taken. Exposure to UVA+UVB increased the overall leaf mass per area (LMA) and the leaf carotenoids/chlorophyll a + b ratio of plants in relation to plants grown without UV or with UVA, respectively. In contrast, we did not find a general effect of UV on the leaf content of phenols or UVB‐absorbing compounds of the studied species. Regarding plant growth, UV inhibited the above‐ground biomass production of well‐watered plants of Pistacia lentiscus. Conversely, under low irrigation, UVA tended to abolish the reduction in growth experienced by P. lentiscus plants growing in a UV‐free environment, in accordance with UVA‐enhanced apparent electron transport rate (ETR) values under drought in this species. UVA also induced an overall increase in root biomass when plants of the studied species were grown under a low water supply. In conclusion, while plant exposition to UVA favored root growth under water shortage, UVB addition only gave rise to photoprotective responses, such as the increase in LMA or in the leaf carotenoids/chlorophyll a + b ratio of plants. Species‐specific responses to UV were not related with the xerophytic or mesophytic character of the studied species.  相似文献   

11.
Boreal tree species are excellent tools for studying tolerance to climate change. Bud phenology is a trait, which is highly sensitive to environmental fluctuations and thus useful for climate change investigations. However, experimental studies of bud phenology under simulated climate change outdoors are deficient. We conducted a multifactorial field experiment with single (T, UVA, UVB) and combined treatments (UVA+T, UVB+T) of elevated temperature (T, +2°C) and ultraviolet‐B radiation (+30% UVB) in order to examine their impact on both male and female genotypes of aspen (Populus tremula L.). This study focuses on the effect of the treatments in years 2 and 3 after planting (2013, 2014) and follows how bud phenology is adapting in year 4 (2015), when the treatments were discontinued. Moreover, the effect of bud removal was recorded. We found that elevated temperature played a key role in delaying bud set and forcing bud break in intact individuals, as well as slightly delaying bud break in bud‐removed individuals. UVB delayed the bud break in bud‐removed males. In addition, both UVA and UVB interacted with temperature in year 3 and even in year 4, when the treatments were off, but only in male individuals. Axillary bud removal forced both bud break and bud set under combined treatments (UVA+T, UVB+T) and delayed both under individual treatments (T, UVB). In conclusion, male aspens were more responsive to the treatments than females and that effect of elevated temperature and UV radiation on bud set and bud break of aspen is not disappearing over 4‐year study period.  相似文献   

12.
A mat-forming cyanobacterium (Phormidium mur-rayi West and West) isolated from an ice-shelf pond in Antarctica was grown under white light combined with a range of UVA and UVB irradiances. The 4-day growth rate decreased under increasing ultraviolet (UV) radiation, with a ninefold greater response to UVB relative to UVA. In vivo absorbance spectra showed that UVA and to a greater extent UVB caused a decrease in phycocyanin/ chlorophyll a and an increase in carotenoids/chlorophyll a. The phycocyanin/chlorophyll a ratio was closely and positively correlated to the UVB-inhibited growth rate. Under fixed spectral gradients of UV radiation, the growth inhibition effect was dominated by UVB. However, at specific UVB irradiances the inhibition of growth depended on the ratio of UVB to UVA, and growth rates increased linearly with increasing UVA. These results are consistent with the view that UVB inhibition represents the balance between damage and repair processes that are each controlled by separate wavebands. They also underscore the need to consider UV spectral balance in laboratory and field assays of UVB toxicity.  相似文献   

13.
14.
Summary Solar ultraviolet radiation has been associated with the induction of skin cancer. Recent studies have indicated that near-ultraviolet, especially UVB, is mutagenic. Exposure to trivalent inorganic arsenic compounds has also been associated with increased skin cancer prevalence. Trivalent arsenic compounds are not mutagenicper se, but are comutagenic with a number of cancer agents. Here, we test the hypothesis that arsenite enhances skin cancer via its comutagenic action with solar ultraviolet radiation. Irradiation of Chinese hamster V79 cells with UVA (360 nm), UVB (310 nm) and UVC (254 nm) caused a fluence-dependent increase in mutations at thehprt locus. On an energy basis, UVC was the most mutagenic and UVA the least. However, when expressed as a function of toxicity, UVB was more mutagenic than UVC. Nontoxic concentrations of arsenite increased the toxicity of UVA, UVB and UVC. Arsenite acted as a comutagen at the three wavelengths; however, higher concentrations of arsenite were required to produce a significant (P < 0.05) comutagenic response with UVB. The increased mutagenicity of UVB and UVA by arsenite may play a role in arsenite-related skin cancers.  相似文献   

15.
Different wavelengths of ultraviolet (UV) radiation elicit different responses in the skin. UVA induces immediate tanning and persistent pigment darkening through oxidation of pre-existing melanin or melanogenic precursors, while UVB induces delayed tanning which takes several days or longer to develop and requires activation of melanocytes. We compared the effects of a 2-week repetitive exposure of human skin to solar-simulated radiation (SSR), UVA or UVB at doses eliciting comparable levels of visible tanning and measured levels of melanins and melanin-related metabolites. Levels of eumelanin and pheomelanin were significantly higher in the order of SSR, UVB, UVA or unexposed control skin. Levels of free 5-S-cysteinyldopa (5SCD) were elevated about 4-fold in SSR- or UVB-exposed skin compared with UVA-exposed or control skin. Levels of protein-bound form of 5SCD tended to be higher in SSR- or UVB-exposed skin than in UVA-exposed or control skin. Total levels of 5-hydroxy-6-methoxyindole-2-carboxylic acid (5H6MI2C) and 6H5MI2C were higher in SSR- than in UVB-exposed or control skin. These results show that SSR is more effective in promoting delayed tanning than UVB radiation alone, suggesting a synergistic effect of UVA radiation. Furthermore, free 5SCD may serve as a good marker of the effect of SSR and UVB.  相似文献   

16.
Multiple natural and anthropogenic stressors impact coral reefs across the globe leading to declines of coral populations, but the relative importance of different stressors and the ways they interact remain poorly understood. Because coral reefs exist in environments commonly impacted by multiple stressors simultaneously, understanding their interactions is of particular importance. To evaluate the role of multiple stressors we experimentally manipulated three stressors (herbivore abundance, nutrient supply, and sediment loading) in plots on a natural reef in the Gulf of Panamá in the Eastern Tropical Pacific. Monitoring of the benthic community (coral, macroalgae, algal turf, and crustose coralline algae) showed complex responses with all three stressors impacting the community, but at different times, in different combinations, and with varying effects on different community members. Reduction of top–down control in combination with sediment addition had the strongest effect on the community, and led to approximately three times greater algal biomass. Coral cover was reduced in all experimental units with a negative effect of nutrients over time and a synergistic interaction between herbivore exclosures and sediment addition. In contrast, nutrient and sediment additions interacted antagonistically in their impacts on crustose coralline algae and turf algae so that in combination the treatments limited each other’s effects. Interactions between stressors and temporal variability indicated that, while each stressor had the potential to impact community structure, their combinations and the broader environmental conditions under which they acted strongly influenced their specific effects. Thus, it is critical to evaluate the effects of stressors on community dynamics not only independently but also under different combinations or environmental conditions to understand how those effects will be played out in more realistic scenarios.  相似文献   

17.
The effects of UVB radiation on the activity of heterotrophic (HPP) and autotrophic (APP) picoplankton (0.2-2 m) and of autotrophic assemblages >2 m has been measured and compared. Under natural UVB irradiance in a large, deep, oligotrophic subalpine lake (Lago Maggiore, 4555N) with mean dissolved organic carbon (DOC) concentrations of 1 mg Cl-1, the microorganisms of the two size fractions were not significantly photoinhibited in their autotrophic and heterotrophic activities. The vertical attenuation coefficient (Kd) for irradiance at 305 nm ranged from 1.45 to 1.67 during spring and summer. The mixing layer extended to a greater depth than the layer affected by UVB radiation (z1% < zmix), thus enabling the microorganisms living there to photoadapt. As the assimilation numbers of APP and nanoplankton were higher at 2 m depth than near the surface, we suspected that the influence of longer wavelength (UVA, photosynthetically active radiation) could be stronger than UVB in affecting the photosynthetic efficiency of natural populations. The artificial increase in UVB irradiance had a higher detrimental effect on HPP due to their smaller size, less protection and indirect effects through autotrophic cell inhibition. Picocyanobacteria were percentually more affected by UVB than nanoplankton during April due to the presence of diatoms, which are more resistant than other algal groups to solar UVB irradiance. Furthermore, picocyanobacteria had lower assimilation numbers with respect to larger phytoplankton in the quartz tubes during stratification.   相似文献   

18.
During the course of a day human skin is exposed to solar UV radiation that fluctuates in fluence rate within the UVA (290-315 nm) and UVB (315-400 nm) spectrum. Variables affecting the fluence rate reaching skin cells include differences in UVA and UVB penetrating ability, presence or absence of sunscreens, atmospheric conditions, and season and geographical location where the exposure occurs. Our study determined the effect of UVA fluence rate in solar-simulated (SSR) and tanning-bed radiation (TBR) on four indicators of oxidative stress---protein oxidation, glutathione, heme oxygenase-1, and reactive oxygen species--in human dermal fibroblasts after receiving equivalent UVA and UVB doses. Our results show that the higher UVA fluence rate in TBR increases the level of all four indicators of oxidative stress. In sequential exposures when cells are exposed first to SSR, the lower UVA fluence rate in SSR induces a protective response that protects against oxidative stress following a second exposure to a higher UVA fluence rate. Our studies underscore the important role of UVA fluence rate in determining how human skin cells respond to a given dose of radiation containing both UVA and UVB radiation.  相似文献   

19.
The effects of ultraviolet (UV) radiation on the photosynthetic and UV‐screening pigments in needles of Scots pine (Pinus sylvestris L.) saplings were studied in a UV‐exclusion field chamber experiment in northern Finland (67°N) during 2001–2002. The chambers held filters that excluded both UVB and UVA, only UVB, transmitted all UV, or lacked filters. Analyses of control needles (no filter and polyethene filter) showed that the first changes to occur in spring (end of April) was an abrupt increase in the epoxidation state (EPS) of the xanthophyll cycle pigments, likely in relation with the beginning of the photosynthetic activity. The concentration of chlorophyll, lutein, neoxanthin, α‐carotene, β‐carotene, and the size of the xanthophyll cycle pool (violaxanthin+antheraxanthin+zeaxanthin=VAZ) changed only later when needles reached their summer photosynthesis state. Exclusion of UV radiation significantly affected the xanthophyll cycle but not the other photosynthetic pigments analysed. Interestingly, the effects on xanthophylls were dependent on the sampling date. Under UVA/B‐exclusion, the EPS was increased and VAZ pool size was unchanged in April, whereas EPS remained unchanged and the VAZ pool size was reduced in May and June. The existence of two sustained and active antenna modes during winter and summer could be an explanation for the specific UV‐exclusion effect in the different season. A high‐performance liquid chromatography analysis of soluble phenolics showed that the exclusion of UVA/B radiation caused a significant effect on five compounds out of 46 studied, without affecting the concentration of the total soluble phenolics. Under UVA/B‐exclusion, the concentration of three of them (secoisolariciresinol‐glucopyranoside, two unknown) was reduced while the concentration of dicoumaroyl‐astragalin and pinosylvin monomethylether was increased compared with both controls separately. In general, the exclusion of UVA/B caused a stronger effect than the exclusion of UVB on both photosynthetic and UV screening pigments. The effects of UV radiation on xanthophyll cycle pigments were season‐specific and detectable only under stressful spring conditions (freezing temperatures and high irradiance due to snow reflection). The effect on the xanthophyll cycle could be a direct consequence of UV treatments, or an indirect consequence of the changed flavonoid composition, or a combination of both.  相似文献   

20.
Previous studies have shown that increasing atmospheric CO2 concentrations affect calcification in some planktonic and macroalgal calcifiers due to the changed carbonate chemistry of seawater. However, little is known regarding how calcifying algae respond to solar UV radiation (UVR, UVA+UVB, 280–400 nm). UVR may act synergistically, antagonistically or independently with ocean acidification (high CO2/low pH of seawater) to affect their calcification processes. We cultured the articulated coralline alga Corallina sessilis Yendo at 380 ppmv (low) and 1000 ppmv (high) CO2 levels while exposing the alga to solar radiation treatments with or without UVR. The presence of UVR inhibited the growth, photosynthetic O2 evolution and calcification rates by13%, 6% and 3% in the low and by 47%, 20% and 8% in the high CO2 concentrations, respectively, reflecting a synergistic effect of CO2 enrichment with UVR. UVR induced significant decline of pH in the CO2‐enriched cultures. The contents of key photosynthetic pigments, chlorophyll a and phycobiliproteins decreased, while UV‐absorptivity increased under the high pCO2/low pH condition. Nevertheless, UV‐induced inhibition of photosynthesis increased when the ratio of particulate inorganic carbon/particulate organic carbon decreased under the influence of CO2‐acidified seawater, suggesting that the calcified layer played a UV‐protective role. Both UVA and UVB negatively impacted photosynthesis and calcification, but the inhibition caused by UVB was about 2.5–2.6 times that caused by UVA. The results imply that coralline algae suffer from more damage caused by UVB as they calcify less and less with progressing ocean acidification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号