首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simple sequence repeat (SSR) markers were developed from expressed sequence tags (ESTs) for Rhododendron section Brachycalyx in order to elucidate its evolutionary processes and reproductive ecology. Nineteen polymorphic EST‐SSR markers were developed from EST libraries of R. amagianum and R. hyugaense. Polymorphisms for these markers were assessed using four species of section Brachycalyx. The number of alleles ranged from 1 to 14, and the observed and expected heterozygosity ranged from 0.000 to 0.931 and 0.000 to 0.904, respectively. The EST‐SSR markers developed in this study will be useful for elucidating population genetic structure and breeding systems in section Brachycalyx.  相似文献   

2.
Gobiobotia filifer is a small benthic fish distributed in Yangtze River Basin. The abundance of G. filifer increased after impoundment of Xiluodu Dam and Xiangjiaba Dam. The state of population structure and changes of genetic diversity before and after impoundment of Xiluodu Dam and Xiangjiaba Dam were interesting issues. However, efficient molecular markers were rare, which will limit us to solve above problems. Twenty‐eight expressed sequence tag SSRs (EST‐SSRs) were successfully identified and verified as stable amplification and polymorphic loci by polyacrylamide gel electrophoresis (PAGE) and capillary electrophoresis. The number of alleles at these EST‐SSR loci ranged from 3 to 14, the polymorphism information content values were 0.125–0.897, and the observed and expected heterozygosities were 0.0–0.857 and 0.132–0.928, respectively. Cross‐species amplification of the 28 loci developed in this study was examined in seven individuals of each of the 7 taxa. The amplification efficiency of 28 EST‐SSRs primer pairs is related to the distance of genetic relationship between cross‐species with G. filifer, and same subfamily species (Xenophysogobio boulengeri and Xenophysogobio nudicorpa) showed the highest (50%) amplification efficiency. These EST‐SSR markers could be used to analyse genetic diversity and population structure of G. filifer and related species.  相似文献   

3.
4.
The availability of expressed sequence data derived from gene discovery programs enables mining for simple sequence repeats (SSR), providing useful genetic markers for crop improvement. These markers are inexpensive, require minimal labour to produce and can frequently be associated with functionally annotated genes. This study presents the development and characterization of 16 expressed sequence tags (EST)‐SSR markers from Brassica juncea and their cross‐amplification across Brassica species. Sixteen primer pairs were assessed for polymorphism in all genomes of the diploid and amphidiploid Brassica species. The markers show reliable amplification, considerable polymorphism and high transferability across species, demonstrating the utility of EST‐SSRs for genetic analysis of brassicas.  相似文献   

5.
A set of expressed sequence tag‐simple sequence repeat (EST‐SSR) markers for the genus Mytilus was developed through bioinformatic mining of the GenBank public database. A total of 33 782 EST sequences from GenBank were downloaded and screened for di‐, tri‐ and tetranucleotide, with 1274 EST containing SSR markers. Nine microsatellite markers were characterized in Mytilus californianus with a number of alleles per locus ranging from two to six, and total observed and expected heterozygosities ranging from 0.490 to 0.730 and from 0.510 to 0.860 respectively. Cross‐species amplification was achieved in several other species, confirming the usefulness of these markers in Mytilus genetics.  相似文献   

6.
The availability of expressed sequence data derived from gene discovery programs enables mining for simple sequence repeats (SSR), providing useful genetic markers for crop improvement. These markers are inexpensive, require minimal labour to produce and can frequently be associated with functionally annotated genes. This study presents the development and characterization of 24 expressed sequence tags (EST)‐SSR markers from Brassica napus and their cross‐amplification across Brassica species. The markers show reliable amplification, genome specificity and considerable polymorphism, demonstrating the utility of EST‐SSRs for genetic analysis of wild Brassica populations and commercial Brassica germplasm.  相似文献   

7.
Simple sequence repeats (SSRs) derived from expressed sequence tags (ESTs) are valuable markers because they represent transcribed regions and often have putative functions. We mined and characterized microsatellites in melon ESTs. Three hundred and eighty‐three SSR loci were identified in 309 of 3188 unigenes assembled by 5747 EST and mRNA sequences in GenBank with occurring frequency of 1/4.7 kb. Twenty‐two polymorphic EST‐SSR markers were developed with the mean allele number of 2.9 per locus and mean expected heterozygosity of 0.442. Amplification products were also detected by 15 pairs of primer in Cucumis sativus. Those informative EST‐SSR markers can be used in melon genetic improvement projects.  相似文献   

8.
Conservation of the local genetic variation and evolutionary integrity of economically and ecologically important trees is a key aspect of studies involving forest genetics, and a population demographic history of the target species provides valuable information for this purpose. Here, the genetic structure of 48 populations of Betula maximowicziana was assessed using 12 expressed sequence tag–simple sequence repeat (EST‐SSR) markers. Genetic diversity was lower in northern populations than southern ones and structure analysis revealed three groups: northern and southern clusters and an admixed group. Eleven more genomic‐SSR loci were added and the demographic history of these three groups was inferred by approximate Bayesian computation (ABC). The ABC revealed that a simple split scenario was much more likely than isolation with admixture, suggesting that the admixture‐like structure detected in this species was due to ancestral polymorphisms. The ABC analysis suggested that the population growth and divergence of the three groups occurred 96 800 (95% CI, 20 500–599 000) and 28 300 (95% CI, 8700–98 400) years ago, respectively. We need to be aware of several sources of uncertainty in the inference such as assumptions about the generation time, overlapping of generations, confidence intervals of the estimated parameters and the assumed model in the ABC. However, the results of the ABC together with the model‐based maps of reconstructed past species distribution and palaeoecological data suggested that the modern genetic structure of B. maximowicziana originated prior to the last glacial maximum (LGM) and that some populations survived in the northern range even during the LGM.  相似文献   

9.
Simple sequence repeats (SSRs) are preferred molecular markers because of their abundance, robustness, high reproducibility, high efficiency in detecting variation and suitability for high‐throughput analysis. In this study, an attempt was made to mine and analyse the SSRs from the genomes of two seed‐borne fungal pathogens, viz Ustilago maydis, which causes common smut of maize, and Tilletia horrida, the cause of rice kernel smut. After elimination of redundant sequences, 2,703 SSR loci of U. maydis were identified. Of the remaining SSRS, 44.5% accounted for di‐nucleotide repeats followed by 29.8% and 2.7% tri‐ and tetranucleotide repeats, respectively. Similarly, 2,638 SSR loci were identified in T. horrida, of which 20.2% were di‐nucleotide, 50.4% tri‐ and 20.5% tetra‐nucleotide repeats. A set of 65 SSRs designed from each fungus were validated, which yielded 23 polymorphic SSRs from Ustilago and 21 from Tilletia. These polymorphic SSR loci were also successfully cross‐amplified with the Ustilago segetum tritici and Tilletia indica. Principal coordinate analysis of SSR data clustered isolates according to their respective species. These newly developed and validated microsatellite markers may have immediate applications for detection of genetic variability and in population studies of bunt and smut of wheat and other related host plants. Moreover, this is first comprehensive report on molecular markers suitable for variability studies in wheat seed‐borne pathogens.  相似文献   

10.
Simple sequence repeat markers derived from expressed sequence tags (EST‐SSR) are potentially valuable tools for plant breeding and germplasm collection conservation, and increasingly, efforts have been made for developing this type of marker. We have identified 20 polymorphic SSR markers from cucumber ESTs deposited in public sequence database. The average allele number was 3.3 per locus, ranging from two to six alleles during screening 20 cucumber genotypes with the mean expected heterozygosity of 0.477. Amplification products were also detected by 13 pairs of primer in Cucumis melo. These informative EST‐SSR markers can be used in cucumber genetic improvement projects.  相似文献   

11.
We developed and evaluated simple sequence repeat (SSR) markers derived from expressed sequence tags (ESTs) of Liriodendron tulipifera. Characteristics of 15 EST‐SSR loci were investigated using 33 L. tulipifera individuals. The number of alleles per locus ranged from two to five. The expected and observed heterozygosities ranged from 0.216 to 0.751 and from 0.182 to 0.97, respectively. These loci were further tested for their cross‐species transferability to Liriodendron Chinense. Because of their high level of polymorphism and transferability, our 15 single‐locus EST‐SSR markers will be valuable tools for research on mating system, population genetics and systemic evolution of Liriodendron.  相似文献   

12.
Using next‐generation sequencing, we developed the first whole‐genome resources for two hybridizing Nothofagus species of the Patagonian forests that crucially lack genomic data, despite their ecological and industrial value. A de novo assembly strategy combining base quality control and optimization of the putative chloroplast gene map yielded ~32 000 contigs from 43% of the reads produced. With 12.5% of assembled reads, we covered ~96% of the chloroplast genome and ~70% of the mitochondrial gene content, providing functional and structural annotations for 112 and 52 genes, respectively. Functional annotation was possible on 15% of the contigs, with ~1750 potentially novel nuclear genes identified for Nothofagus species. We estimated that the new resources (13.41 Mb in total) included ~4000 gene regions representing ~6.5% of the expected genic partition of the genome, the remaining contigs potentially being nongenic DNA. A high‐quality single nucleotide polymorphisms resource was developed by comparing various filtering methods, and preliminary results indicate a strong conservation of cpDNA genomes in contrast to numerous exclusive nuclear polymorphisms in both species. Finally, we characterized 2274 potential simple sequence repeat (SSR) loci, designed primers for 769 of them and validated nine of 29 loci in 42 individuals per species. Nothofagus obliqua had more alleles (4.89) on average than N. nervosa (2.89), 8 SSRs were efficient to discriminate species, and three were successfully transferred in three other Nothofagus species. These resources will greatly help for future inferences of demographic, adaptive and hybridizing events in Nothofagus species, and for conserving and managing natural populations.  相似文献   

13.
A (GA)n microsatellite‐enriched library was constructed and 16 nuclear simple sequence repeat (SSR) loci were characterized in Phoenix dactylifera. Across‐taxa amplification and genotyping tests showed the utility of most SSR markers in 11 other Phoenix species and the transferability of some of them in Elaeis guineensis, 11 species of Pritchardia, Pritchardiopsis jeanneneyi and six species of Astrocaryum. The first to be published for P. dactylifera, these new SSR resources are available for cultivar identification, pedigree analysis, germplasm diversity as well as genetic mapping studies.  相似文献   

14.
Miscanthus × giganteus (Mxg) is an important bioenergy feedstock crop, however, genetic diversity among legacy cultivars may be severely constrained. Only one introduction from Japan to Denmark of this sterile, triploid, vegetatively propagated crop was recorded in the 1930s. We sought to determine if the Mxg cultivars in North America were all synonyms, and if they were derived from the European introduction. We used 64 nuclear and five chloroplast simple sequence repeat (SSR) markers to estimate genetic similarity for 27 Mxg accessions from North America, and compared them with six accessions from Europe, including the species’ type‐specimen. A subset of accessions was also evaluated by restriction‐site associated DNA sequencing (RAD‐seq). In addition, we assessed the potential of new crosses to increase Mxg genetic diversity by comparing eight new triploid Mxg progeny grown from seed, along with samples of the parental species M. sacchariflorus and M. sinensis. Estimates of genotyping error rates were essential for distinguishing between experimental error and true genotypic differences among accessions. Given differences in estimated error rates and costs per marker for SSRs and RAD‐seq, the former is currently more cost‐effective for determining if two accessions are genetically identical. We concluded that all of the Mxg legacy cultivars were derived via vegetative propagation from a single genet. In contrast with the Mxg legacy cultivars, genetic similarity to the type‐specimen of eight new triploid Mxg progeny ranged from 0.46 to 0.56. Though genetic diversity among the Mxg legacy cultivars is critically low, new crosses can provide much‐needed variation to growers.  相似文献   

15.
The common smooth‐hound (Mustelus mustelus ) is the topmost bio‐economically and recreationally important shark species in southern Africa, western Africa, and Mediterranean Sea. Here, we used the Illumina HiSeq? 2000 next‐generation sequencing (NGS ) technology to develop novel microsatellite markers for Mustelus mustelus . Two microsatellite multiplex panels were constructed from 11 polymorphic loci and characterized in two populations of Mustelus mustelus representative of its South African distribution. The markers were then tested for cross‐species utility in Galeorhinus galeus , Mustelus palumbes , and Triakis megalopterus , three other demersal coastal sharks also subjected to recreational and/or commercial fishery pressures in South Africa. We assessed genetic diversity (N A, A R, H O, H E, and PIC) and differentiation (F ST and D est) for each species and also examined the potential use of these markers in species assignment. In each of the four species, all 11 microsatellites were variable with up to a mean N A of 8, A R up to 7.5, H E and PIC as high as 0.842. We were able to reject genetic homogeneity for all species investigated here except for T . megalopterus . We found that the panel of the microsatellite markers developed in this study could discriminate between the study species, particularly for those that are morphologically very similar. Our study provides molecular tools to address ecological and evolutionary questions vital to the conservation and management of these locally and globally exploited shark species.  相似文献   

16.
Bread wheat (Triticum aestivum L.) is the most important staple food crop for 35% of the world's population. International efforts are underway to facilitate an increase in wheat production, of which the International Wheat Genome Sequencing Consortium (IWGSC) plays an important role. As part of this effort, we have developed a sequence‐based physical map of wheat chromosome 6A using whole‐genome profiling (WGP?). The bacterial artificial chromosome (BAC) contig assembly tools fingerprinted contig (fpc ) and linear topological contig (ltc ) were used and their contig assemblies were compared. A detailed investigation of the contigs structure revealed that ltc created a highly robust assembly compared with those formed by fpc . The ltc assemblies contained 1217 contigs for the short arm and 1113 contigs for the long arm, with an L50 of 1 Mb. To facilitate in silico anchoring, WGP? tags underlying BAC contigs were extended by wheat and wheat progenitor genome sequence information. Sequence data were used for in silico anchoring against genetic markers with known sequences, of which almost 79% of the physical map could be anchored. Moreover, the assigned sequence information led to the ‘decoration’ of the respective physical map with 3359 anchored genes. Thus, this robust and genetically anchored physical map will serve as a framework for the sequencing of wheat chromosome 6A, and is of immediate use for map‐based isolation of agronomically important genes/quantitative trait loci located on this chromosome.  相似文献   

17.
18.
SSR (simple sequence repeats) markers derived from ESTs (expressed sequence tags), commonly called EST‐SSRs or genic SSRs provide useful genetic markers for crop improvement. These are easy and economical to develop as by‐products of large‐scale EST resources that have become available as part of the functional genomic studies in many plant species. Here, we describe for the first time, nine genic‐SSRs of coffee that are developed from the microsatellite containing ESTs from a cDNA library of moisture‐stressed leaves of coffee variety, ‘CxR’ (a commercial interspecific hybrid between Coffea congensis and Coffea canephora). The markers show considerable allelic diversity with PIC values up to 0.70 and 0.75 for Coffea arabica and Coffea canephora, respectively, and robust cross‐species amplification in 16 other related taxa of coffee. The validation studies thus demonstrate the potential utility of the EST‐SSRs for genetic analysis of coffee germplasm.  相似文献   

19.
Nearly 5 000 aphid species damage crops, either by sucking plant sap or as disease‐transmitting vectors. Microsatellites are used for understanding molecular diversity and eco‐geographical relationships among aphid species. Expressed sequence tag (EST)‐microsatellite motifs were identified through an in silico approach using inbuilt simple sequence repeat mining tools in aphid EST dataset. Microsatellite mining revealed one in every five aphid genes as containing a repeat motif, and out of 9 290 EST microsatellites mined from Aphis gossypii Glover and Acyrthosiphon pisum (Harris) (both Hemiptera: Aphididae), 80% were of A and/or T (AT, ATA, AAT, AATA, and ATTT) motifs, and the rest contained G and/or C motifs. All microsatellite sequences were annotated using BLAST. Primers for EST microsatellites were designed using the Primer 3.0 tool. 106 primer pairs of both dinucleotide repeats (DNRs) and trinucleotide repeats (TNRs), representing open reading frames (ORFs) and untranslated regions (UTRs), were synthesized to amplify 15 aphid species belonging to the subfamily Aphidinae, collected from diverse hosts. Four hundred forty‐five polymorphic alleles were amplified. Fifty TNR and 23 DNR microsatellites amplified across the species studied. Polymorphism information content values of microsatellites ranged from 0.23 to 0.91, amplifying 2–16 alleles. Genetic similarity indices were estimated using the ‘NTSYS‐pc’ software package. Unweighted pair group with arithmetic mean and principal component analysis resolved taxonomic relationships of the aphid species studied. The new aphid microsatellites developed will provide valuable information to researchers to study Indian aphid species diversity and genetic relationships.  相似文献   

20.
By applying second‐generation sequencing technologies to microsatellite genotyping, sequence information is produced which can result in high‐resolution population genetics analysis populations and increased replicability between runs and laboratories. In the present study, we establish an approach to study the genetic structure patterns of two European hedgehog species Erinaceaus europaeus and E. roumanicus. These species are usually associated with human settlements and are good models to study anthropogenic impacts on the genetic diversity of wild populations. The short sequence repeats genotyping by sequence (SSR‐GBS) method presented uses amplicon sequences to determine genotypes for which allelic variants can be defined according to both length and single nucleotide polymorphisms (SNPs). To evaluate whether complete sequence information improved genetic structure definition, we compared this information with datasets based solely on length information. We identified a total of 42 markers which were successfully amplified in both species. Overall, genotyping based on complete sequence information resulted in a higher number of alleles, as well as greater genetic diversity and differentiation between species. Additionally, the structure patterns were slightly clearer with a division between both species and some potential hybrids. There was some degree of genetic structure within species, although only in E. roumanicus was this related to geographical distance. The statistically significant results obtained by SSR‐GBS demonstrate that it is superior to electrophoresis‐based methods for SSR genotyping. Moreover, the greater reproducibility and throughput with lower effort which can be obtained with SSR‐GBS and the possibility to include degraded DNA into the analysis, allow for continued relevance of SSR markers during the genomic era.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号