首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  1. The North American Great Plains contains thousands of lakes that vary in salinity from freshwater to hypersaline. Paleolimnological studies show that salinity levels in these lakes are tightly linked with climate, and current projections point to a more arid future in the region due to natural and anthropogenic climate change, potentially influencing lake salinity.
  2. Many zooplankton species are sensitive to changes in salinity, and their position near the base of the aquatic food web makes it important to understand how they might respond to increasing salinity levels. Zooplankton communities in lakes with rising salinity levels may exhibit changes in structure, including a shift toward more salinity-tolerant species and a reduction in abundance, species richness, and diversity. However, it is possible that dispersal of zooplankton among lakes could mitigate such community changes when migrant populations replace sensitive zooplankton with those that are locally adapted to higher salinities.
  3. To test if dispersal could reduce salinity-induced changes in zooplankton communities, we ran a field enclosure experiment at a freshwater lake in southern Saskatchewan where we manipulated salinity levels and zooplankton dispersal. We evaluated how salinity and dispersal influenced species identities and relative abundances (community structure) using multivariate statistics and comparing taxonomic and functional compositions among the different treatments (richness, diversity, and evenness).
  4. We found that increasing salinity levels in our enclosures above that in our study lake resulted in lower zooplankton abundances and species richness levels, primarily due to the loss of cladoceran species. However, patterns in our multivariate analyses suggested that cladocerans were maintained in enclosures with salinity levels of 2.5 and 5.0 g/L when those enclosures received immigration from nearby lakes.
  5. In contrast, our univariate analyses failed to find evidence that immigration affected community structure (richness, diversity, evenness). The lack of significant statistical differences could suggest that dispersal does not have an effect, or it may have been a problem with statistical power, as a power analysis suggested that fairly large effect sizes would have been required to achieve statistical significance.
  6. Based on our results, we were unable to reach a definitive conclusion on the role that dispersal might play in buffering zooplankton communities against salinity-driven changes. However, our study provides two important insights for planning future work. First, our power analyses indicated that more replication may be needed given the variability among our experimental enclosures. Second, the patterns in our multivariate analyses suggested that cladocerans could be maintained in lakes undergoing salinity increases if they receive immigration from surrounding lakes with higher salinities. Future work examining how inter- and intraspecific salinity tolerance varies across lakes with a gradient of salinities would be helpful for understanding the role that dispersal might play in buffering against salinity-driven losses of cladoceran zooplankton.
  相似文献   

2.
We conducted a metacommunity experiment to investigate the role of dispersal for bacterial community composition (BCC) and function of freshwater bacteria. Bacteria were dispersed from a common source pool into three different lake communities in their natural lake water. The experiment was conducted in dialysis bags to enable a decoupling between a change in the local environment and dispersal. BCC was determined by terminal restriction fragment length polymorphism (tRFLP) of the 16S rRNA gene. We show that the greatest changes in BCC occurred between 10% and 43% of dispersal of standing stock per day. Functioning, measured as growth rate, was also affected by dispersal in all three communities but the qualitative pattern differed between communities, sometimes showing a hump-shaped relationship to dispersal and sometimes decreasing with increasing dispersal. In all waters, functioning was related to BCC. Our results show that dispersal does affect BCC and functioning but that high dispersal rates are needed. Further, the effect of dispersal on BCC and function seem to depend on the quality of the habitat to which bacteria disperse into.  相似文献   

3.
Bacterivorous protists are known to induce changes in bacterial community composition (BCC). We hypothesized that changes in BCC could be related quantitatively to a measure of grazing: the ratio of bacterial mortality to growth rate. To test this hypothesis, we analyzed time-course changes in BCC, protistan grazing rate, and bacterial production from 3 in situ studies conducted in a freshwater reservoir and three laboratory studies. In the field experiments, samples were manipulated to yield different levels of protistan bacterivory and incubated in dialysis bags. Laboratory investigations were continuous cultivation studies in which different bacterivorous protists were added to bacterial communities. BCC was assessed using 4–6 different rRNA-targeted oligonucleotide probes for community analysis. Change in BCC (Δ BCC) was estimated as the sum of changes in the proportions of the two phylogenetic groups that showed the largest shifts. Analysis of a set of 22 estimates of shifts in the ratio of grazing to production rate over periods of 48–72 h and Δ BCC showed that Δ BCC was positively and tightly correlated (r 2 = 0.784) with shifts in the ratio of grazing mortality to cell production. While the nature of a shift in BCC is unpredictable, the magnitude of the change can be related to changes in the balance between bacterial production and protistan grazing. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
There is now clear evidence that microorganisms present biogeographic patterns, yet the processes that create and maintain them are still not well understood. In particular, the contribution of dispersal and its exact impact on local community composition is still unclear. For example, dispersing cells may not thrive in recipient environments, but may still remain part of the local species pool. Here, we experimentally tested if marine bacteria can be retrieved from freshwater communities (pelagic and sediment) and the atmosphere by exposing bacteria from three lakes, that differ in their proximity to the Norwegian Sea, to marine conditions. We found that the percentage of freshwater taxa decreased with increasing salinities, whereas marine taxa increased along the same gradient. Our results further showed that this increase was stronger for lake and sediment compared with air communities. Further, significant increases in the average niche breadth of taxa were found for all sources, and in particular lake water and sediment communities, at higher salinities. Our results therefore suggests that marine taxa can readily grow from freshwater sources, but that the response was likely driven by the growth of habitat generalists that are typically found in marine systems. Finally, there was a greater proportion of marine taxa found in communities originating from the lake closest to the Norwegian Sea. In summary, this study shows that the interplay between bacterial dispersal limitation and dispersal from internal and external sources may have an important role for community recovery in response to environmental change.  相似文献   

5.
6.
Effects of dispersal and the presence of predators on diversity, assembly and functioning of bacterial communities are well studied in isolation. In reality, however, dispersal and trophic interactions act simultaneously and can therefore have combined effects, which are poorly investigated. We performed an experiment with aquatic metacommunities consisting of three environmentally different patches and manipulated dispersal rates among them as well as the presence or absence of the keystone species Daphnia magna. Daphnia magna reduced both local and regional diversity, whereas dispersal increased local diversity but decreased beta‐diversity having no net effect on regional diversity. Dispersal modified the assembly mechanisms of bacterial communities by increasing the degree of determinism. Additionally, the combination of the D. magna and dispersal increased the importance of deterministic processes, presumably because predator‐tolerant taxa were spread in the metacommunity via dispersal. Moreover, the presence of D. magna affected community composition, increased community respiration rates but did not affect bacterial production or abundance, whereas dispersal slightly increased bacterial production. In conclusion, our study suggests that predation by a keystone species such as D. magna and dispersal additively influence bacterial diversity, assembly processes and ecosystem functioning.  相似文献   

7.
We examined the effects of nutrient amendments on epilimnetic freshwater bacteria during three distinct periods in the eutrophic Lake Mendota's seasonal cycle (spring overturn, summer stratification and autumn overturn). Microcosm treatments enriched solely with phosphorus containing compounds did not result in a large bacterial community composition (BCC) change or community activity response (assessed via alkaline phosphatase activity, APA) relative to the controls during any season. Treatments enriched with carbon‐ and nitrogen‐containing compounds resulted in a dramatic BCC change and a large APA increase in the autumn and spring seasons, but only treatments receiving carbon, nitrogen and phosphorus (CNP) exhibited similar responses in the summer season. Despite the fact that the amendments created similar CNP concentration conditions across seasons, the BCC following amendment greatly varied among seasons. 16S rRNA gene sequence analysis indicated that many common freshwater bacterial lineages from the Alpha‐ and Betaproteobacteria class and Bacteroidetes phylum were favoured following nutrient (CNP) addition, but individual taxa were generally not favoured across all seasons. Targeted quantitative PCR analysis revealed that the abundance of the Actinobacteria acIB1 cluster decreased in all microcosms during all three seasons, while the Flavobacterium aquatile (spring) and ME‐B0 (summer) clusters of Bacteroidetes increased following CNP addition. These results suggest a particular bacterial group is not universally favoured by increased nutrient loads to a lake; therefore, efforts to predict which bacteria are involved in nutrient cycling during these periods must take into account the seasonality of freshwater bacterial communities.  相似文献   

8.
【背景】荒漠草原盐沼湿地是陆地生态系统的重要组成部分,土壤水分和盐分变化是影响该生态系统土壤细菌群落构建的重要因素。【目的】土壤细菌群落构建是由确定性和随机性主导的连续生态过程,阐明荒漠草原盐沼湿地土壤细菌群落的构建机制对于加深微生物作为关键生态系统因子重要性的理解具有积极意义。【方法】以宁夏中部典型荒漠草原盐沼苦水湖湿地为研究对象,对近湖边(near the lake,NL)和远离湖边(far from the lake,FL)苦豆子群落土壤理化特性进行测定并结合土壤细菌高通量测序分析。【结果】NL和FL样地具有明显的水盐梯度变化,NL样地土壤pH、含水量和电导率均显著高于FL样地;变形菌门、放线菌门、厚壁菌门、拟杆菌门和黏菌门是研究区域土壤细菌群落的优势菌门,变形菌门相对丰度随水盐梯度上升而升高,放线菌门和厚壁菌门相对丰度则随之下降,门下成员大多与水盐变化具有明显的相关性;此外,FL样地土壤细菌网络则具有稳定的网络关系;随着NL样地向FL样地的延伸,土壤细菌群落由随机过程主导,并且受pH、电导率和环境变量的影响。【结论】荒漠草原盐沼湿地水分和盐分的变化改变了土壤细菌群落结构;土壤细菌群落通过生态位占据等策略提高逆境下的生存能力;细菌群落构建是随机过程和确定性过程组成的连续统一体,同样受环境变化的影响。本结果揭示了荒漠草原盐沼湿地细菌群落结构和相互关系对环境变化的响应特征,同时阐明了该区土壤细菌群落的构建机制及影响因素,也为相关科学研究提供了一定理论参考。  相似文献   

9.
10.
Biofilms represent a metabolically active and structurally complex component of freshwater ecosystems. Ephemeral prairie streams are hydrologically harsh and prone to frequent perturbation. Elucidating both functional and structural community changes over time within prairie streams provides a general understanding of microbial responses to environmental disturbance. We examined microbial succession of biofilm communities at three sites in a third‐order stream at Konza Prairie over a 2‐ to 64‐day period. Microbial abundance (bacterial abundance, chlorophyll a concentrations) increased and never plateaued during the experiment. Net primary productivity (net balance of oxygen consumption and production) of the developing biofilms did not differ statistically from zero until 64 days suggesting a balance of the use of autochthonous and allochthonous energy sources until late succession. Bacterial communities (MiSeq analyses of the V4 region of 16S rRNA) established quickly. Bacterial richness, diversity and evenness were high after 2 days and increased over time. Several dominant bacterial phyla (Beta‐, Alphaproteobacteria, Bacteroidetes, Gemmatimonadetes, Acidobacteria, Chloroflexi) and genera (Luteolibacter, Flavobacterium, Gemmatimonas, Hydrogenophaga) differed in relative abundance over space and time. Bacterial community composition differed across both space and successional time. Pairwise comparisons of phylogenetic turnover in bacterial community composition indicated that early‐stage succession (≤16 days) was driven by stochastic processes, whereas later stages were driven by deterministic selection regardless of site. Our data suggest that microbial biofilms predictably develop both functionally and structurally indicating distinct successional trajectories of bacterial communities in this ecosystem.  相似文献   

11.
Cyanobacterial harmful algal blooms are prevalent around the world, influencing aquatic organisms and altering the physico-chemical properties in freshwater systems. However, the response of bacterial communities to toxic cyanobacterial blooms and associated microcystins (MC) remain poorly understood even though global concentrations of MC have increased dramatically in the past few decades. To address this issue, the dynamics of bacterial community composition (BCC) in the water column and how BCC is influenced by both harmful cyanobacterial blooms and environmental factors were investigated on a monthly basis from August 2013 to July 2014 in Lake Taihu, China. Non-metric multidimensional scaling (NMDS) revealed that seasonal variation in BCC was significant, and that the succession of BCC greatly depends on changes in environmental conditions. Redundancy analysis (RDA) results showed that the overall variation of BCC was explained mainly by dissolved oxygen (DO), nitrate nitrogen (NO3-N), and Microcystis. The alpha biodiversity of the bacterial community was different among months with the highest diversity in February and the lowest diversity in October. Furthermore, significant negative relationships were found between alpha biodiversity indices and Microcystis abundance as well as with intracellular MC concentrations, indicating that Microcystis and associated MC may influence the bacterial community structure by reducing its biodiversity. This study shows that potential associations exist between toxic cyanobacterial blooms and bacterial communities but more investigations are needed to obtain a mechanistic understanding of their complex relationships.  相似文献   

12.
The estuarine copepod Acartia tonsa naturally carried diverse strains of bacteria on its body. The bacterial community composition (BCC) remained very conservative even when the copepod was fed different axenic algal species, indicating that the food per se did not much affect BCC associated with the copepod. In xenic algal treatments, however, copepod-associated BCC differed with each alga fed, even though the same bacterial source was used to inoculate the algae. In addition, starved copepods taken at the same location but at different times significantly differed in their BCC. Algal species composition and copepod life history therefore serve to regulate BCC associated with copepods, and spatial and temporal variations in algal species composition and copepod origin would alter bacteria–copepod interactions.  相似文献   

13.
Modern anthropogenic modifications to aquatic environments, specifically hydrodynamic alterations, play a major role in cyanobacterial bloom potential. In shallow-water ecosystems, salinity is a driver of microbial communities and increases in salinity may facilitate the bloom potential of competitive cyanobacteria. This study investigated the osmotic response and mortality rate of a persistent bloom-forming (18 months) cyanobacterium, Cyanothece sp., isolated from Lake St Lucia (South Africa), after sudden hypo-osmotic shock. Laboratory experiments were performed with Cyanothece sp. cells to observe osmotic responses and to determine mortalities during salinity reductions. In general, Cyanothece sp. cells conformed to the external medium at all salinity levels used in the treatments, reducing their intracellular osmolality in response to salinity downshifts. There were limits to this, however, as successful downshift was not observed during the freshwater exposure treatment. Highest mortality rates occurred in cultures that were grown at high salinities (i.e. 180, 240 and 300 units), as well as in treatments with large salinity downshifts (e.g. 120 salinity unit reduction and direct freshwater exposure). Cyanothece sp. has been shown to sustain bloom status for long periods. Its ability to tolerate high salinities and respond to sudden salinity downshifts is an important factor in its bloom success. However, it is still susceptible to reductions in salinity that may occur due to heavy rainfall and floods, which highlights the importance that freshwater plays in the bloom ecology of a persistent bloom-forming halotolerant cyanobacterium, as freshwater inputs markedly influence the physiology of the cells and their survival ability.  相似文献   

14.
Bacterial communities are immensely diverse and drive many fundamental ecosystem processes. However, the role of bacterial community composition (BCC) for functioning is still unclear. Here we evaluate the relative importance of BCC (from 454-sequencing), functional traits (from Biolog Ecoplates) and environmental conditions for per cell biomass production (BPC; 3H-leucine incorporation) in six data sets of natural freshwater bacterial communities. BCC explained significant variation of BPC in all six data sets and most variation in four. BCC measures based on 16S rRNA (active bacteria) did not consistently explain more variation in BPC than measures based on the 16S rRNA-gene (total community), and adding phylogenetic information did not, in general, increase the explanatory power of BCC. In contrast to our hypothesis, the importance of BCC for BPC was not related to the anticipated dispersal rates in and out of communities. Functional traits, most notably the ability to use cyclic and aromatic compounds, as well as local environmental conditions, i.e. stoichiometric relationships of nutrients, explained some variation in all six data sets. In general there were weak associations between variation in BCC and variation in the functional traits contributing to productivity. This indicates that additional traits may be important for productivity as well. By comparing several data sets obtained in a similar way we conclude that no single measure of BCC was obviously better than another in explaining BPC. We identified some key functional traits for productivity, but although there was a coupling between BCC, functional traits and productivity, the strength of the coupling seems context dependent. However, the exact context is still unresolved.  相似文献   

15.
This paper is the second in a pair investigating potential mechanisms for ecological regime change in salinising wetlands. The first paper in this series focused on the responses of the salt-tolerant submerged macrophyte community to salinity. In this second paper, we investigated some of the environmental conditions required for initiation and dominance of benthic microbial communities using a combination of experimental and observational data. Two experiments were carried out. One investigated the importance of prior establishment of benthic microbial communities on their ability to maintain prevalence over macrophyte colonisation (‘persistence’ experiment), while the other investigated hydrology and its effect on sediment perturbation, potential nutrient release and subsequent benthic microbial community establishment (‘flooding’ experiment). The ‘persistence’ experiment measured the biomass of benthic microbial communities and emergence of macrophytes from sediments kept either wet or dry for 4 weeks then flooded at a range of salinities. Benthic microbial biomass was similar across all of the salinities tested (15, 45 and 70 ppt), with a slight increase at higher salinities, suggesting that none of these limited benthic microbial community development. Pre-wetting of sediments usually increased benthic microbial community biomass and reduced macrophyte germination, but the latter was attributed to the presence of anoxic sediments rather than the increased benthic microbial community biomass. Germinating macrophytes emerged through benthic microbial communities or dense heterotrophic bacterial blooms, demonstrating that they could become dominant even when another community was already established. Field data supported these results, suggesting that the development of benthic microbial communities is not limited by salinity alone, but includes other factors, such as the water regime. In the ‘flooding’ experiment, the largest differences in nutrient concentrations ultimately lay between the pre-wet and pre-dry treatments (due to the greater release of nutrients and development of anoxia in the latter) rather than those subjected to fast versus slow flooding. In response to this, highest benthic microbial community biomass was in treatments with pre-wet sediment, corresponding with lower phytoplankton biomass.  相似文献   

16.
In lake ecosystems, changes in eukaryotic and prokaryotic microbes and the concentration and availability of dissolved organic matter (DOM) produced within or supplied to the system by allochthonous sources are components that characterize complex processes in the microbial loop. We address seasonal changes of microbial communities and DOM in the largest Croatian lake, Vrana. This shallow lake is connected to the Adriatic Sea and is impacted by agricultural activity. Microbial community and DOM structure were driven by several environmental stressors, including drought, seawater intrusion and heavy precipitation events. Bacterial composition of different lifestyles (free-living and particle-associated) differed and only a part of the particle-associated bacteria correlated with microbial eukaryotes. Oscillations of cyanobacterial relative abundance along with chlorophyll a revealed a high primary production season characterized by increased levels of autochthonous DOM that promoted bacterial processes of organic matter degradation. From our results, we infer that in coastal freshwater lakes dependent on precipitation-evaporation balance, prolonged dry season coupled with heavy irrigation impact microbial communities at different trophic levels even if salinity increases only slightly and allochthonous DOM inputs decrease. These pressures, if applied more frequently or at higher concentrations, could have the potential to overturn the trophic state of the lake.  相似文献   

17.
Abstract The response of a sediment microbial assemblage to a pulse of diatoms was studied over 36 days by measuring bacterial activity and biomass, ATP concentration, and overall community respiration in laboratory microcosms. Also, the contribution of macrofaunal chironomids to the decomposition of settling diatoms in benthic communities, and the relative importance of benthic meiofauna in community metabolism, were determined. The addition of diatoms resulted in an immediate response by sediment bacteria, with higher bacterial production recorded after only 2 h, and a more than tenfold increase within one day. The rapid response by sediment bacteria was accompanied by relatively high initial concentrations of dissolved organic carbon. In treatments receiving diatoms, higher bacterial production was sustained throughout the experiment. Surprisingly, neither these elevated production estimates, nor the starvation of controls affected bacterial abundance. Mean bacterial cell volume, however, was markedly affected by the addition of diatoms. Combining community respiration measurements and bacterial production estimates showed that growth efficiencies for sediment bacteria ranged from 14.6 to 34.5%. The contribution of ambient meiozoobenthos to carbon metabolism was less than 1%. Carbon budgets showed that 1.3 mg C was cooxidized along with 4.3 mg added diatom C. Sediment reworking by Chironomus larvae initially enhanced bacterial production, but the presence of Chironomus resulted in lower bacterial production estimates after 16 and 36 days. This was interpreted as a result of faster decomposition of diatoms in treatments with chironomids, which was validated by a faster decline of ATP and chlorophyll a in the sediment. Our results indicate that Chironomus larvae compete with sediment bacteria for available organic substrates. Received: 11 June 1996; Accepted: 13 August 1996  相似文献   

18.
Seed germination of Melaleuca ericifolia (swamp paperbark) is delayed by submergence in water but the final percentage germination after removing seeds from water is unaffected; some seeds will germinate and the cotyledons emerge whilst submerged. Germination is totally inhibited at salinities of 14% and a population which naturally occurs adjacent to coastal saltmarsh was inhibited more by salinities of 6–12% than two other populations from freshwater habitats. Seedling growth may be increased by water-logging conditions and the degree of response differs for different seed sources. Inundation stimulates root growth and new roots are thick and aerenchymatous. Root systems in the field run horizontally and are shallow, apparently being restricted by clay at depth. All populations studied showed a similar seedling growth-response to salinity treatments; growth declined at salinities ≤ 13% and was severely restricted at 21%, although no seedlings died after 48 days’exposure to the latter treatment.  相似文献   

19.
The microorganisms inhabiting many petroleum reservoirs are multi-extremophiles capable of surviving in environments with high temperature, pressure and salinity. Their activity influences oil quality and they are an important reservoir of enzymes of industrial interest. To study these microbial assemblages and to assess any modifications that may be caused by industrial practices, the bacterial and archaeal communities in waters from four Algerian oilfields were described and compared. Three different types of samples were analyzed: production waters from flooded wells, production waters from non-flooded wells and injection waters used for flooding (water-bearing formations). Microbial communities of production and injection waters appeared to be significantly different. From a quantitative point of view, injection waters harbored roughly ten times more microbial cells than production waters. Bacteria dominated in injection waters, while Archaea dominated in production waters. Statistical analysis based on the relative abundance and bacterial community composition (BCC) revealed significant differences between production and injection waters at both OTUs0.03 and phylum level. However, no significant difference was found between production waters from flooded and non-flooded wells, suggesting that most of the microorganisms introduced by the injection waters were unable to survive in the production waters. Furthermore, a Venn diagram generated to compare the BCC of production and injection waters of one flooded well revealed only 4% of shared bacterial OTUs. Phylogenetic analysis of bacterial sequences indicated that Alpha-, Beta- and Gammaproteobacteria were the main classes in most of the water samples. Archaeal sequences were only obtained from production wells and each well had a unique archaeal community composition, mainly belonging to Methanobacteria, Methanomicrobia, Thermoprotei and Halobacteria classes. Many of the bacterial genera retrieved had already been reported as degraders of complex organic molecules and pollutants. Nevertheless, a large number of unclassified bacterial and archaeal sequences were found in the analyzed samples, indicating that subsurface waters in oilfields could harbor new and still-non-described microbial species.  相似文献   

20.
The influence of salinity and geographical distance on bacterial community composition (BCC) in five freshwater, oligosaline or polysaline lakes located at altitudes higher than 4400 m on the central and southern Tibetan Plateau were investigated using the 16S rRNA gene clone library approach together with multivariate analysis of environmental variables. A total of 10 clone libraries were constructed with two libraries in each lake, one in the epilimnion and the other in the hypolimnion. Geographical distance was not found to impact BCC significantly, but salinity, chl a and lake hydraulic retention time were significant factors influencing the BCC. Bacteria in lakes located on the central and southern Plateau owned the same community composition as that observed from the eastern Tibetan lakes. They were both predominated by Bacteroidetes and Cyanobacteria, had low taxon richness, and similar typical freshwater clusters and distributed characteristics. Supplemental materials are available for this article. Go to the publisher's online edition of Geomicrobiology Journal to view the supplemental file.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号