首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of clonal integration on land plants have been extensively studied, but little is known about the role in amphibious plants that expand from terrestrial to aquatic conditions. We simulated expansion from terrestrial to aquatic habitats in the amphibious stoloniferous alien invasive alligator weed ( Alternanthera philoxeroides ) by growing basal ramets of clonal fragments in soils connected (allowing integration) or disconnected (preventing integration) to the apical ramets of the same fragments submerged in water to a depth of 0, 5, 10 or 15 cm. Clonal integration significantly increased growth and clonal reproduction of the apical ramets, but decreased both of these characteristics in basal ramets. Consequently, integration did not affect the performance of whole clonal fragments. We propose that alligator weed possesses a double-edged mechanism during population expansion: apical ramets in aquatic habitats can increase growth through connected basal parts in terrestrial habitats; however, once stolon connections with apical ramets are lost by external disturbance, the basal ramets in terrestrial habitats increase stolon and ramet production for rapid spreading. This may contribute greatly to the invasiveness of alligator weed and also make it very adaptable to habitats with heavy disturbance and/or highly heterogeneous resource supply.  相似文献   

2.
研究了3种来自中国北方林下、草地和碱化草甸匍匐茎型克隆草本植物绢毛匍匐委陵菜 (Potentilla reptans L. var. sericophylla Franch.)、鹅绒委陵菜 (P. anserina L.) 和金戴戴 (Halerpestes ruthenica (Jacq.) Qvcz.) 对由高光照低养分斑块和低光照高养分斑块组成的资源交互斑块性生境的适应性对策.当生长于高光照低养分条件下分株 (HL分株) 与生长于低光照高养分条件下分株 (LH分株) 之间的匍匐茎连接时, 3种克隆植物HL分株、LH分株以及整个分株对系统 (HL分株 + LH分株) 的生物量均得到显著提高.同时, LH分株根冠比显著增加, 而HL分株根冠比显著下降.这表明, 当互连分株置于由低光照高养分斑块和高光照低养分斑块组成的异质性环境中时, 3种植物克隆分株均发生了环境诱导的功能特化.克隆内资源共享以及克隆内不同分株的功能特化有利于整个分株系统对局部丰富资源的获取, 从而能够缓解资源交互斑块性生境对克隆植物的不利影响.  相似文献   

3.
研究了 3种来自中国北方林下、草地和碱化草甸匍匐茎型克隆草本植物绢毛匍匐委陵菜 (PotentillareptansL .var.sericophyllaFranch .)、鹅绒委陵菜 (P .anserinaL .)和金戴戴 (Halerpestesruthenica (Jacq .)Qvcz .)对由高光照低养分斑块和低光照高养分斑块组成的资源交互斑块性生境的适应性对策。当生长于高光照低养分条件下分株(HL分株 )与生长于低光照高养分条件下分株 (LH分株 )之间的匍匐茎连接时 ,3种克隆植物HL分株、LH分株以及整个分株对系统 (HL分株 LH分株 )的生物量均得到显著提高。同时 ,LH分株根冠比显著增加 ,而HL分株根冠比显著下降。这表明 ,当互连分株置于由低光照高养分斑块和高光照低养分斑块组成的异质性环境中时 ,3种植物克隆分株均发生了环境诱导的功能特化。克隆内资源共享以及克隆内不同分株的功能特化有利于整个分株系统对局部丰富资源的获取 ,从而能够缓解资源交互斑块性生境对克隆植物的不利影响  相似文献   

4.
Disturbance is common in nature and disturbance-caused fragmentation of clones happens frequently in stoloniferous plants. After fragmentation storage in stolon internodes and leaves may enhance survival and growth of stoloniferous plants. We hypothesize that (1) increasing length of the internode attached to the ramet and (2) presence of leaves will increase ramet survival and growth, and that (3) internode positions (before or after the ramet or both) will also play a role. We tested these hypotheses with the stoloniferous, invasive herb Alternanthera philoxeroides. In one experiment, we measured survival and growth of the ramets either without stolon internode (0 cm in length) or attached with internodes of 2, 4, 6 and 8 cm and either with or without leaves. In the other experiment, we measured survival and growth of the ramets attached with a proximal internode (before the ramet), a distal internode (after the ramet) or both. Increasing internode length and presence of leaves significantly increased the survival rate and growth (biomass, leaf area, number of ramets, stolon length and number of leaves) of the A. philoxeroides plants. All growth measures of A. philoxeroides at harvest were larger when the ramets were attached with a distal internode than when they were attached with a proximal internode, but the survival rate was lower. These results support the hypotheses and suggest that storage in stolons and leaves may be of great significance for clonal plants in frequently disturbed habitats and may contribute greatly to the invasiveness of A. philoxeroides.  相似文献   

5.
Clonal fragments of the stoloniferous herb Glechoma longituba were subjected to a complementary patchiness of light and soil nutrients including two spatially homogeneous treatments (SR–SR and IP–IP) and two spatially heterogeneous treatments (IP–SR and SR–IP). SR and IP indicate patches (shaded, rich) with low light intensity (shaded, S), high nutrient availability (rich, R) and patches (illuminated, poor) with high light intensity (illuminated, I) and low nutrient availability (poor, P), respectively. Plasticity of the species in root–shoot ratio, fitness-related traits (biomass, number of ramets and dry weight per ramet) and clonal morphological traits (length and specific length of stolon internodes, area and specific area of laminae, length and specific length of petioles) were experimentally examined. The aim is to understand adaptation of G. longituba to the environment with reciprocal patches of light and soil nutrients by plasticities both in root–shoot ratio and in (clonal) morphology. Our experiment revealed performance of the clonal fragments growing from patches with high light intensity and low soil nutrient availability into the adjacent opposite patches was increased in terms of the fitness-related characters. R/S ratio and clonal morphology were plastic. Meanwhile, the capture of light resource from the light-rich patches was enhanced while the capture of soil nutrients from either the nutrient-rich or the nutrient-poor patches was not. Analysis of cost and benefit disclosed positive effects of clonal integration on biomass production of ramets in the patches with low light intensity and high soil nutrient availability. These results suggest an existence of reciprocal translocation of assimilates and nutrients between the interconnected ramets. The reinforced performance of the clonal fragments seems to be related with specialization of clonal morphology in the species.  相似文献   

6.
Piqueras  Jesús  Klimeš  Leoš 《Plant Ecology》1998,136(2):213-227
The clonal growth pattern and demography of clonal fragments (aggregation of ramets derived from a common parent ramet) in the pseudoannual plant Trientalis europaea were studied in field conditions from 1991 to 1993. During this period the population of clonal fragments declined, with a half-life of 7.4 years. Number and size of the clonal progeny and stolon length were positively related to the size of the mother ramet. Survival rates of ramets and tubers increased with size. The rate of clonal growth was low: after three years, about 70% of the clonal fragments had only one ramet. This suggests that the pseudoannual growth habit in T. europaea is more important as mechanism of perennation than of ramet multiplication.Field data were used in a simulation model of architecture and population dynamics of clonal fragments. About 10% of the clonal fragments survived to the end of the simulation (15 years) and the mean survival was 4.7 years. The model predicted a positive correlation between persistence of the clonal fragment and number of ramets produced. Sensitivity analysis showed that the production of a daughter ramet of at least the same size as the parent ramet was the most important pathway for the survival and the number of ramets of the clonal fragment, whereas the production of secondary ramets had a very small effect. This confirms the interpretation of the pseudoannual life-cycle as a mechanism of ramet replacement in this species. Sensitivity analysis also revealed that changes in survival probabilities of the smallest ramets had the largest impact on clonal fragment dynamics. This reflects the important role of the smallest size class of ramets as a source of new vegetative propagules, maintaining a hierarchy in the size structure of the population.  相似文献   

7.
  • One benefit of clonal integration is that resource translocation between connected ramets enhances the growth of the ramets grown under stressful conditions, but whether such resource translocation reduces the performance of the ramets grown under favourable conditions has not produced consistent results. In this study, we tested the hypothesis that resource translocation to recipient ramets may reduce the performance of donor ramets when resources are limiting but not when resources are abundant.
  • We grew Mikania micrantha stolon fragments (each consisting of two ramets, either connected or not connected) under spatially heterogeneous competition conditions such that the developmentally younger, distal ramets were grown in competition with a plant community and the developmentally older, proximal ramets were grown without competition. For half of the stolon fragments, slow‐release fertiliser pellets were applied to both the distal and proximal ramets.
  • Under both the low and increased soil nutrient conditions, the biomass, leaf number and stolon length of the distal ramets were higher, and those of the proximal ramets were lower when the stolon internode was intact than when it was severed. For the whole clone, the biomass, leaf number and stolon length did not differ between the two connection treatments. Connection did not change the biomass of the plant communities competing with distal ramets of M. micrantha.
  • Although clonal integration may promote the invasion of M. micrantha into plant communities, resource translocation to recipient ramets of M. micrantha will induce a cost to the donor ramets, even when resources are relatively abundant.
  相似文献   

8.
克隆整合对异质性盐分胁迫下积雪草生长的影响   总被引:1,自引:0,他引:1  
以匍匐茎草本克隆植物积雪草(Centella asiatica)为材料进行盆栽试验,研究了克隆整合特性对异质性盐分胁迫条件下植物生长的影响。试验中将远端分株(较幼分株)分别处于盐分胁迫或正常土壤条件下,切断或保持其与近端分株(较老分株)间的匍匐茎连接。结果表明:盐分胁迫下,克隆整合提高了受胁迫远端分株和整个克隆片断的叶面积和生物量等生长指标;与未遭受盐分胁迫处理相比,匍匐茎连接处理导致远端分株的根冠比显著降低。克隆整合还减轻了盐分胁迫对分株的叶绿素含量和光化学效率的影响,但盐分胁迫下,匍匐茎连接处理远端分株的净光合速率与匍匐茎切断处理远端分株并无显著差异,连接受胁迫的远端分株并没有引起近端分株生物量的明显损耗以及光合速率的补偿性提高。总之,克隆整合促进了积雪草遭受盐分胁迫的分株和整个克隆片段的生长,这对于丰富和发展异质性环境胁迫下克隆植物的生态适应对策具有重要意义。  相似文献   

9.
Few studies have examined the effects of clonal integration (translocation of resources between interconnected ramets) during the expansion of amphibious clonal plants from terrestrial to aquatic habitats. We conducted a greenhouse experiment to simulate the expansion of plants from terrestrial to contaminated aquatic habitats in the amphibious stoloniferous herb Alternanthera philoxeroides (alligator weed). The proximal ramets (i.e. relatively old) of clonal fragments grown in uncontaminated soils were connected to (allowing clonal integration) or disconnected from (preventing clonal integration) distal ramets (i.e. relatively young) grown either in uncontaminated water (control, no CuSO4) or in four copper‐contaminated water treatments containing 31.25, 62.5, 125 and 250 mg/L CuSO4, respectively. When a stolon connection was severed, all distal ramets grown in the contaminated water died. When the stolon connection was intact, however, the survival rate of the distal ramets was 85–100% when they were grown at the three lower levels of contamination and 43.75% at the highest level. Moreover, the survival rate and growth of the distal ramets grown in the three lower levels of contamination treatments did not differ from those in the control (uncontaminated water). These results suggest that clonal integration could greatly improve the survival and growth of alligator weed subjected to moderate levels of copper stress. Although clonal integration could also increase the survival rate of the connected distal ramets subjected to the highest level of copper stress (250 mg/L CuSO4) compared with that of disconnected distal ramets, the survival rate and growth measures were still significantly lower than those in the control. This suggests that clonal integration plays a limited role in the survival and growth of alligator weed when it is subjected to severe stress by high levels of copper contamination.  相似文献   

10.
王宁  高艳 《生态科学》2011,30(2):97-101
研究了两种践踏胁迫下克隆整合对入侵植物空心莲子草生长的影响.结果表明:(1)切断分株间的匍匐茎连接,会降低先端分株的生物量、分株数、总匍匐茎长度和总叶片数,但会显著增强基端分株的生物量.(2)对先端分株的践踏胁迫会显著降低先端分株叶片的叶绿素相对含量,对基端分株的践踏胁迫会显著降低基端分株的生物量和总匍匐茎长度.(3)对于基端分株的分株数、总匍匐茎长度和总叶片数来说,当进行基端分株践踏胁迫时,匍匐茎连接对其影响不大,而当进行先端分株践踏胁迫时,则明显对其不利.(4)对于整个克隆片段,践踏胁迫的差异和匍匐茎是否切断对其生长没有显著影响.  相似文献   

11.
Physiologically integrated clonal plants cope better with spatial heterogeneity due to their ability to share resources among ramets. According to theoretical predictions and experimental evidence, such benefits of resource sharing should increase with higher patch quality of an exporting ramet and lower patch quality of an importing ramet. This study investigated the effect of spatial heterogeneity in nutrient availability on benefits of clonal integration under plausible scenarios of clonal spread, in which more developed ramets give rise to new ones. Pairs of mother and daughter ramets of a stoloniferous grass, Agrostis stolonifera, were grown in various nutrient conditions. Disconnected pairs of ramets were used as controls. Results showed considerable benefits of integration for developmentally younger daughters and no costs for older mothers in all treatments. Surprisingly, benefits of integration were more pronounced in nutrient-rich daughters, and allocation to integrated daughters decreased with increasing nutrient level of mothers. In addition, integration in general increased root-to-shoot ratio of daughters. One possible explanation of the observed patterns may be prevailing translocation of photosynthates rather than nutrients. Daughters also responded to nutrients by changes in clonal architecture. Number of stolons increased, and maximum stolon length decreased in high nutrient levels. Integration increased maximum stolon length in small daughters. The architectural responses are generally in accord with the foraging behaviour concept. Overall, our results suggest that resource translocation within a clonal fragment need not be easily predictable from a gradient of resource availability.  相似文献   

12.
Clonal integration may be adaptive and enhance the genet performance of clonal plants. Degree of clonal integration may differ between different environments . Here, a container experiment was used to determine how clonal integration affected the performance of the stoloniferous herb Duchesnea indica at two sites with different altitude along the transitional zone between the Qinghai-Tibet plateau and the Sichuan basin of Southwest China. In the experiment, the stolon between partially shaded two ramets experienced severing and intact treatments.We predicted that clonal integration would increase performance of whole clonal fragments and their shaded clonal parts at both sites. In both arctic and alpine environments, clonal plants may form highly integrated plant units (group of ramets).We predicted again that the reduction due to stolon severing in performance of whole clonal fragments and their shaded clonal parts would be greater at the site with high altitude than one with low altitude. The results indicated that the benefit for the shaded clonal parts and whole clonal fragments due to clonal integration was only observed at the site with high altitude. The results suggest that the performance of Duchesnea indica tends to be more responsive to the stolon severing at the site with high altitude than one with low altitude and support the second prediction. In addition, the effects of conditions of the sites and clonal integration on local morphological traits of ramets may be adaptive, five morphological traits of ramet-level (length of petiole, mean stolon internode length, specific petiole weight, specific stolon internode weight and specific leaf area) were investigated. Altogether, the results suggest that clonal integration might help D. indica plants to successfully inhabit the high-altitude habitat of the Qinghai-Tibet plateau of Southwest China, providing new evidences for the notion that clonal integration is an adaptive trait in stressful environments.  相似文献   

13.
To test whether sharing of resources occurs among connected ramets of the tall goldenrod, Solidago altissima, we examined the extent of clonal integration for nutrients. In a greenhouse experiment, two-ramet clones were grown in a triad of connected pots so that nutrients could be supplied to either sister ramet or to their old rhizome (mother rhizome). Mother rhizomes and their associated roots shared nutrients with daughter ramets; however, any nutrient sharing that occurred between sister ramets was too little to significantly affect their growth. In addition, sister ramets not only competed for nutrients through parental connections, but larger ramets inhibited the growth of smaller ramets. We suggest that, for tall goldenrod, a clonal growth strategy in which nutrients are not shared among sister ramets may increase genet fitness by reducing the rhizome production of ramets in poor-nutrient microsites. Consequently, the genet would produce relatively fewer ramets in unfertile areas and make better use of heterogeneous nutrient resources.  相似文献   

14.
克隆整合有助于狗牙根抵御水淹   总被引:8,自引:1,他引:7       下载免费PDF全文
尽管国内外开展了大量的克隆整合对克隆植物抵御逆境能力影响的研究, 但整合对植物抵御水淹能力的影响研究仍比较缺乏。该文从克隆整合的角度探讨多年生草本植物狗牙根(Cynodon dactylon)对水淹胁迫的响应。试验模拟了先端分株(相对年幼的分株)分别处于0、5和15 cm三种水淹胁迫环境, 并在每个水淹梯度下实施先端分株与基端分株(相对年长的分株)之间匍匐茎连接或切断处理, 调查水淹一个月后基端分株和先端分株以及整个克隆片段在形态和生理上的表现。研究发现: 切断匍匐茎连接显著降低了狗牙根先端分株的生长, 表现在生物量下降、匍匐茎长度减短和分株数减少等方面; 水淹显著抑制了先端分株的生长, 但对基端分株的生长并未造成显著影响; 在5 cm水淹处理下, 匍匐茎保持连接时, 先端分株和整个克隆片段的生长显著增加; 连接或切断处理在不同水淹梯度下对匍匐茎平均节间长没有显著影响, 对先端分株或基端分株在光化学转化效率上也未表现显著性差异。结果表明: 克隆整合效应促进了狗牙根在水淹胁迫下分株的生长, 并有助于整个克隆片段抵御水淹胁迫。  相似文献   

15.

Background and Aims

Submergence and de-submergence are common phenomena encountered by riparian plants due to water level fluctuations, but little is known about the role of physiological integration in clonal plants (resource sharing between interconnected ramets) in their adaptation to such events. Using Alternanthera philoxeroides (alligator weed) as an example, this study tested the hypotheses that physiological integration will improve growth and photosynthetic capacity of submerged ramets during submergence and will promote their recovery following de-submergence.

Methods

Connected clones of A. philoxeroides, each consisting of two ramet systems and a stolon internode connecting them, were grown under control (both ramet systems untreated), half-submerged (one ramet system submerged and the other not submerged), fully submerged (both ramet systems submerged), half-shaded (one ramet system shaded and the other not shaded) and full-shaded (both ramet systems shaded) conditions for 30 d and then de-submerged/de-shaded for 20 d. The submerged plants were also shaded to very low light intensities, mimicking typical conditions in turbid floodwater.

Key Results

After 30 d of submergence, connections between submerged and non-submerged ramets significantly increased growth and carbohydrate accumulation of the submerged ramets, but decreased the growth of the non-submerged ramets. After 20 d of de-submergence, connections did not significantly affect the growth of either de-submerged or non-submerged ramets, but de-submerged ramets had high soluble sugar concentrations, suggesting high metabolic activities. The shift from significant effects of integration on both submerged and non-submerged ramets during the submergence period to little effect during the de-submergence period was due to the quick recovery of growth and photosynthesis. The effects of physiological integration were not found to be any stronger under submergence/de-submergence than under shading/de-shading.

Conclusions

The results indicate that it is not just the beneficial effects of physiological integration that are crucial to the survival of riparian clonal plants during periods of submergence, but also the ability to recover growth and photosynthesis rapidly after de-submergence, which thus allows them to spread.  相似文献   

16.
很多外来入侵植物都具有克隆生长习性,探究克隆整合特性与外来克隆植物入侵性间的关系对阐明其生态适应性及入侵机制具有重要的意义。本研究以入侵植物空心莲子草及其本地同属种莲子草为研究对象,比较在生防昆虫莲草直胸跳甲的取食下,克隆整合对两种植物先端分株、基端分株及整个克隆片段生长和生物量分配的影响。结果表明: 在莲草直胸跳甲取食下,有克隆整合的空心莲子草先端分株的叶片数、茎长、分株数及整个克隆片段的地径均显著高于无克隆整合植株,其基端分株及整个克隆片段的地下生物量和总生物量相较于无克隆整合植株分别降低了78.2%、60.9%和48.7%、37.2%;有克隆整合的莲子草先端分株的地径及整个克隆片段的叶片数与无克隆整合植株相比显著增加,其基端分株数显著降低了21.7%,而其先端分株、基端分株及整个克隆片段的生物量均无显著差异。耗益分析表明,在莲草直胸跳甲取食下,空心莲子草先端分株的分株数与生物量及莲子草先端分株的分株数均能通过克隆整合显著受益,而两种植物基端的分株数、生物量的耗益则不受克隆整合处理的影响。这些结果表明,克隆整合虽能在一定程度缓解莲草直胸跳甲对于两种植物先端分株的取食压力,且空心莲子草的克隆整合作用要强于莲子草,但在整个克隆片段水平上,两种植物并不能通过克隆整合显著获益。  相似文献   

17.
Many clonal plants live in symbiosis with ubiquitous arbuscular mycorrhizal (AM) fungi, however, little is known about their interaction with respect to clonal reproduction and resource acquisition. The effects of arbuscular mycorrhiza on the growth and intraclonal integration between ramets of two stoloniferous species were studied experimentally in a nutritionally homogenous soil environment. Two species coexisting at the same field site, Potentilla reptans and Fragaria moschata, were selected as model plants for the study. Pairs of their ramets were grown in neighbouring pots with each ramet rooted separately. Four inoculation treatments were established: (1) both mother and daughter ramets remained non-inoculated, (2) both ramets were inoculated with a mixture of three native AM fungi from the site of plant origin, (3) only mother or (4) daughter ramet was inoculated. The stolons connecting the ramets were either left intact or were disrupted. Despite the consistent increase in phosphorus concentrations in inoculated plants, a negative growth response of both plant species to inoculation with AM fungi was observed and inoculated ramets produced fewer stolons and fewer offspring ramets and had lower total shoot dry weights as compared to non-inoculated ones. A difference in the extent of the negative mycorrhizal growth response was recorded between mother and daughter ramets of P. reptans, with daughter ramets being more susceptible. Due to AM effect on ramet performance, and thereby on the source-sink relationship, inoculation also significantly influenced biomass allocation within clonal fragments. Physiological integration between mother and daughter ramets was observed when their root systems were heterogeneous in terms of AM colonization. These results hence indicate the potential of mycorrhizal fungi to impact clonal growth traits of stoloniferous plant species, with possible consequences for their population dynamics.  相似文献   

18.
Most work on clonal growth in plants has focused on the advantages of clonality in heterogeneous habitats. We hypothesized (1) that physiological integration of connected ramets within a clone can also increase plant performance in homogeneous environments, (2) that this effect depends on whether ramets differ in ability to take up resources, and (3) that only ramets with relatively low uptake ability benefit. We tested these hypotheses using the perennial amphibious herb Alternanthera philoxeroides. We grew clonal fragments and varied numbers of rooted versus unrooted ramets, connection between the apical and basal parts of fragments, and availability of nitrogen. Patterns of final size and mass of fragments did not support these hypotheses. By some measures, severance did reduce the growth of more apical ramets and increase the growth of less apical ones, consistent with net apical transfer of resources. Rooting of individual ramets strongly influenced their growth: second and third most apical ramets each grew most when they were the most apical rooted ramet, and this pattern was more pronounced under higher nitrogen levels. This adds to the evidence that signalling between ramets is an important aspect of clonal integration. Overall, the results indicate that physiological integration between ramets within clones in homogeneous environments can alter the allocation of resources between connected ramets even when it does not affect the total growth of clonal fragments.  相似文献   

19.
Physical connection between ramets usually allows clonal plants to perform better but can have the opposite effects in some cases. Clonal integration and the effects of climate warming have been extensively studied, but to date little is known about how climate warming affects the benefits of clonal integration. We conducted a field experiment in which Alternanthera philoxeroides segments with connected and severed stolons were subject to four climate regimes (ambient, day warming, night warming and daily warming), and measured final biomass, number of ramets and total length of stolons. Across the three warming treatments, temperature rise suppressed growth of clonal fragments with connected stolons but increased growth of fragments with severed stolons; temperature rise affected the biomass of distal ramets but not proximal ramets, and had similar effects on the numbers of proximal and distal ramets. When the three warming treatments were considered separately, they had contrasting consequences for the benefits of clonal integration. Specifically, when fragments were exposed to day and night warming, physical connection evened out the advantages of clonal integration that occur under ambient conditions; when fragments were exposed to daily warming, physical connection led to smaller clonal plants. These findings suggest that physical connection between ramets may be disadvantageous to overall performance of A. philoxeroides fragments under climate warming, and also indicate that the net consequences of daily warming outweigh those of day or night warming.  相似文献   

20.
Background and Aims Enhanced availability of photosynthates increases nitrogen (N) mineralization and nitrification in the rhizosphere via rhizodeposition from plant roots. Under heterogeneous light conditions, photosynthates supplied by exposed ramets may promote N assimilation in the rhizosphere of shaded, connected ramets. This study was conducted to test this hypothesis.Methods Clonal fragments of the stoloniferous herb Glechoma longituba with two successive ramets were selected. Mother ramets were subjected to full sunlight and offspring ramets were subjected to 80 % shading, and the stolon between the two successive ramets was either severed or left intact. Measurements were taken of photosynthetic and growth parameters. The turnover of available soil N was determined together with the compostion of the rhizosphere microbial community.Key Results The microbial community composition in the rhizosphere of shaded offspring ramets was significantly altered by clonal integration. Positive effects of clonal integration were observed on NAGase activity, net soil N mineralization rate and net soil N nitrification rate. Increased leaf N and chlorophyll content as well as leaf N allocation to the photosynthetic machinery improved the photosynthetic capability of shaded offspring ramets when the stolon was left intact. Clonal integration improved the growth performance of shaded, connected offspring ramets and whole clonal fragments without any cost to the exposed mother ramets.Conclusions Considerable differences in microbial community composition caused by clonal integration may facilitate N assimilation in the rhizosphere of shaded offspring ramets. Increased N content in the photosynthetic machinery may allow pre-acclimation to high light conditions for shaded offspring ramets, thus promoting opportunistic light capture. In accordance with the theory of the division of labour, it is suggested that clonal integration may ameliorate the carbon assimilation capacity of clonal plants, thus improving their fitness in temporally and spatially heterogeneous habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号