首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ammonia accumulation is a major inhibitory substance causing anaerobic digestion upset and failure in CH4 production. At high ammonia levels, CH4 production through syntrophic acetate oxidization (SAO) pathways is more tolerant to ammonia toxicity than the acetoclastic methanogenesis pathway, but the low CH4 production rate through SAO constitutes the main reason for the low efficiency of energy recovery in anaerobic digesters treating ammonia‐rich substrates. In this study, we showed that acetate fermentation to CH4 and CO2 occurred through SAO pathway in the anaerobic reactors containing a high ammonia concentration (5.0 g l?1 NH4+–N), and the magnetite nanoparticles supplementation increased the CH4 production rates from acetate by 36–58%, compared with the anaerobic reactors without magnetite under the same ammonia level. The mechanism of facilitated methanogenesis was proposed to be the establishment of direct interspecies electron transfer (DIET) for SAO, in which magnetite facilitated DIET between syntrophic acetate oxidizing bacteria and methanogens. High‐throughput 16S rRNA gene sequencing analysis revealed that the bacterial Geobacteraceae and the archaeal Methanosarcinaceae and Methanobacteriaceae might be involved in magnetite‐mediated DIET for SAO and CH4 production. This study demonstrated that magnetite supplementation might provide an effective approach to accelerate CH4 production rates in the anaerobic reactors treating wastewater containing high ammonia.  相似文献   

2.
Direct interspecies electron transfer (DIET) via electrically conductive pili (e-pili) and c-type cytochrome between acetogens and methanogens has been proposed as an essential pathway for methane production. Supplements of conductive materials have been extensively found to promote methane production in microbial anaerobic treatment systems. This review comprehensively presents recent findings of DIET and the addition of conductive materials for methanogenesis and summarizes important results through aspects of electron flux, organic degradation, and microbial interaction. Conductive materials improve DIET and methanogenesis by acting as either substitute of e-pili or electron conduit between e-pili and electron acceptors. Other effects of conductive materials such as the change of redox potential may also be important factors for the stimulation. The type and organic loading rate of substrates affect the occurrence of DIET and stimulating effects of conductive materials. Geobacter, which can participate in DIET, were less enriched in anaerobic systems cultivated with non-ethanol substrates, suggesting the existence of other syntrophs with the capability of DIET. The coupling of communication systems such as quorum sensing may be a good strategy to achieve the formation of biofilm or granule enriched with syntrophic partners capable of DIET.  相似文献   

3.
互营氧化产甲烷微生物种间电子传递研究进展   总被引:4,自引:1,他引:3  
甲烷是重要的温室气体,也是典型的可再生性生物质能源。目前约70%的大气甲烷排放来源于产甲烷微生物过程。在产甲烷环境中,产甲烷菌与互营细菌形成互营关系,从而克服有机质厌氧分解反应的热力学能垒,实现短链脂肪酸和醇类物质的互营氧化产甲烷过程。该过程中,种间电子传递是关键步骤。本文首先概述了甲烷的研究意义及微生物互营降解有机质产甲烷的过程,然后分别综述了种间H2转移、种间甲酸转移和种间直接电子传递这3种种间电子传递机制的起源、发展、研究现状和未来所需要解决的研究问题。  相似文献   

4.
Glycerol-rich waste streams produced by the biodiesel, bioethanol and oleochemical industries can be treated and valorized by anaerobic microbial communities to produce methane. As current knowledge of the microorganisms involved in thermophilic glycerol conversion to methane is scarce, thermophilic glycerol-degrading methanogenic communities were enriched. A co-culture of Thermoanaerobacter and Methanothermobacter species was obtained, pointing to a non-obligately syntrophic glycerol degradation. This hypothesis was further studied by incubating Thermoanaerobacter brockii subsp. finnii and T. wiegelii with glycerol (10 mM) in pure culture and with different hydrogenotrophic methanogens. The presence of the methanogen accelerated glycerol fermentation by the two Thermoanaerobacter strains up to 3.3 mM day−1, corresponding to 12 times higher volumetric glycerol depletion rates in the methanogenic co-cultures than in the pure bacterial cultures. The catabolic pathways of glycerol conversion were identified by genome analysis of the two Thermoanaerobacter strains. NADH and reduced ferredoxin formed in the pathway are linked to proton reduction, which becomes thermodynamically favourable when the hydrogen partial pressure is kept low by the hydrogenotrophic methanogenic partner.  相似文献   

5.
To enrich syntrophic acetate‐oxidizing bacteria (SAOB), duplicate chemostats were inoculated with sludge from syntrophic acetate oxidation (SAO)‐dominated systems and continuously supplied with acetate (0.4 or 7.5 g l?1) at high‐ammonia levels. The chemostats were operated under mesophilic (37°C) or thermophilic (52°C) temperature for about six hydraulic retention times (HRT 28 days) and were sampled over time. Irrespective of temperature, a methane content of 64–69% and effluent acetate level of 0.4–1.0 g l?1 were recorded in chemostats fed high acetate. Low methane production in the low‐acetate chemostats indicated that the substrate supply was below the threshold for methanization of acetate via SAO. Novel representatives within the family Clostridiales and genus Syntrophaceticus (class Clostridia) were identified to represent putative SAOB candidates in mesophilic and thermophilic conditions respectively. Known SAOB persisted at low relative abundance in all chemostats. The hydrogenotrophic methanogens Methanoculleus bourgensis (mesophilic) and Methanothermobacter thermautotrophicus (thermophilic) dominated archaeal communities in the high‐acetate chemostats. In line with the restricted methane production in the low‐acetate chemostats, methanogens persisted at considerably lower abundance in these chemostats. These findings strongly indicate involvement in SAO and tolerance to high ammonia levels of the species identified here, and have implications for understanding community function in stressed anaerobic processes.  相似文献   

6.
We demonstrate that the coulombic efficiency (CE) of a microbial electrolytic cell (MEC) fueled with a fermentable substrate, ethanol, depended on the interactions among anode respiring bacteria (ARB) and other groups of micro‐organisms, particularly fermenters and methanogens. When we allowed methanogenesis, we obtained a CE of 60%, and 26% of the electrons were lost as methane. The only methanogenic genus detected by quantitative real‐time PCR was the hydrogenotrophic genus, Methanobacteriales, which presumably consumed all the hydrogen produced during ethanol fermentation (~30% of total electrons). We did not detect acetoclastic methanogenic genera, indicating that acetate‐oxidizing ARB out‐competed acetoclastic methanogens. Current production and methane formation increased in parallel, suggesting a syntrophic interaction between methanogens and acetate‐consuming ARB. When we inhibited methanogenesis with 50 mM 2‐bromoethane sulfonic acid (BES), the CE increased to 84%, and methane was not produced. With no methanogenesis, the electrons from hydrogen were converted to electrical current, either directly by the ARB or channeled to acetate through homo‐acetogenesis. This illustrates the key role of competition among the various H2 scavengers and that, when the hydrogen‐consuming methanogens were present, they out‐competed the other groups. These findings also demonstrate the importance of a three‐way syntrophic relationship among fermenters, acetate‐consuming ARB, and a H2 consumer during the utilization of a fermentable substrate. To obtain high coulombic efficiencies with fermentable substrates in a mixed population, methanogens must be suppressed to promote new interactions at the anode that ultimately channel the electrons from hydrogen to current. Biotechnol. Bioeng. 2009;103: 513–523. © 2009 Wiley Periodicals, Inc.  相似文献   

7.
内蒙古自治区二连盆地、海拉尔盆地是我国重要的煤层气产区,其中生物成因煤层气是煤层气的重要来源,但复杂物质转化产甲烷相关微生物群落结构及功能尚不清楚。【目的】研究煤层水中的微生物代谢挥发性脂肪酸产甲烷的生理特征及群落特征。【方法】以内蒙古自治区二连盆地和海拉尔盆地的四口煤层气井水作为接种物,分别添加乙酸钠、丙酸钠和丁酸钠厌氧培养;定期监测挥发性脂肪酸降解过程中甲烷和底物的变化趋势,应用高通量测序技术,分析原始煤层气井水及稳定期产甲烷菌液的微生物群落结构。【结果】除海拉尔盆地H303煤层气井微生物不能代谢丙酸外,其他样品均具备代谢乙酸、丙酸和丁酸产生甲烷的能力,其生理生态参数存在显著差异,产甲烷延滞期依次是乙酸丁酸丙酸;最大比产甲烷速率和底物转化效率依次是丙酸乙酸丁酸。富集培养后,古菌群落结构与煤层气井水的来源显著相关,二连盆地优势古菌为氢营养型产甲烷古菌Methanocalculus (相对丰度13.5%–63.4%)和复合营养型产甲烷古菌Methanosarcina (7.9%–51.3%),海拉尔盆地的优势古菌为氢营养型产甲烷古菌Methanobacterium(24.3%–57.4%)和复合营养型产甲烷古菌Methanosarcina(29.6%–66.5%);细菌群落则与底物类型显著相关,硫酸盐还原菌Desulfovibrio(12.0%–41.0%)、互营丙酸氧化菌Syntrophobacter(39.6%–75.5%)和互营丁酸菌Syntrophomonas(8.5%–21.9%)分别在乙酸钠、丙酸钠和丁酸钠处理组显著富集。【结论】煤层气井水微生物可降解挥发性脂肪酸(乙酸、丙酸和丁酸)并具有产甲烷潜力;乙酸可能被古菌直接代谢产甲烷,而丙酸和丁酸通过互营细菌和产甲烷古菌代谢产甲烷。Desulfovibrio、Syntrophobacter和Syntrophomonas分别在乙酸、丙酸和丁酸代谢过程中发挥了重要作用。这些结果为煤层气生物强化开采提供了一定的微生物资源基础。  相似文献   

8.
Direct interspecies electron transfer (DIET) is potentially an effective form of syntrophy in methanogenic communities, but little is known about the diversity of methanogens capable of DIET. The ability of Methanosarcina barkeri to participate in DIET was evaluated in coculture with Geobacter metallireducens. Cocultures formed aggregates that shared electrons via DIET during the stoichiometric conversion of ethanol to methane. Cocultures could not be initiated with a pilin-deficient G. metallireducens strain, suggesting that long-range electron transfer along pili was important for DIET. Amendments of granular activated carbon permitted the pilin-deficient G. metallireducens isolates to share electrons with M. barkeri, demonstrating that this conductive material could substitute for pili in promoting DIET. When M. barkeri was grown in coculture with the H2-producing Pelobacter carbinolicus, incapable of DIET, M. barkeri utilized H2 as an electron donor but metabolized little of the acetate that P. carbinolicus produced. This suggested that H2, but not electrons derived from DIET, inhibited acetate metabolism. P. carbinolicus-M. barkeri cocultures did not aggregate, demonstrating that, unlike DIET, close physical contact was not necessary for interspecies H2 transfer. M. barkeri is the second methanogen found to accept electrons via DIET and the first methanogen known to be capable of using either H2 or electrons derived from DIET for CO2 reduction. Furthermore, M. barkeri is genetically tractable, making it a model organism for elucidating mechanisms by which methanogens make biological electrical connections with other cells.  相似文献   

9.

Aims

The aim of the present study was to design and test a method allowing the detection and quantification of methanogenic consortia in organic‐rich rocks to determine the potential of methane biotransformation.

Methods and Results

Methanogen numbers in the rock are often below the detection levels of quantification methods. Biostimulation was tested as a means to specifically increase bacterial and archaeal numbers above the detection levels in microcosms. Biostimulation reveals the presence of active heterotrophic and syntrophic bacterial consortia, methane accumulation and methanogens in one of four rock samples. Syntrophs and heterotrophs were dominated by Firmicutes, whereas archaeal diversity was limited to methanogens. Methane‐producing microcosms were characterized by a higher Firmicutes diversity.

Conclusions

Biostimulation is a reliable tool for detection of methanogenic consortia in organic‐rich rocks. For routine and large scale experimentation, methane accumulation monitoring after biostimulation appears as the most time, work and cost efficient approach to detect the presence of active methanogenic consortia.

Significance and Impact of the Study

We report for the first time the presence of live methanogenic consortia in organic‐rich shales and their ability to mineralize the rock into methane. This approach will be instrumental to quantify the potential of these rocks to produce methane as a novel energy source.  相似文献   

10.
Microbial assemblage in an n-alkanes-dependent thermophilic methanogenic enrichment cultures derived from production waters of a high-temperature petroleum reservoir was investigated in this study. Substantially higher amounts of methane were generated from the enrichment cultures incubated at 55 °C for 528 days with a mixture of long-chain n-alkanes (C15–C20). Stoichiometric estimation showed that alkanes-dependent methanogenesis accounted for about 19.8% of the total amount of methane expected. Hydrogen was occasionally detected together with methane in the gas phase of the cultures. Chemical analysis of the liquid cultures resulted only in low concentrations of acetate and formate. Phylogenetic analysis of the enrichment revealed the presence of several bacterial taxa related to Firmicutes, Thermodesulfobiaceae, Thermotogaceae, Nitrospiraceae, Dictyoglomaceae, Candidate division OP8 and others without close cultured representatives, and Archaea predominantly related to uncultured members in the order Archaeoglobales and CO2-reducing methanogens. Screening of genomic DNA retrieved from the alkanes-amended enrichment cultures also suggested the presence of new alkylsuccinate synthase alpha-subunit (assA) homologues. These findings suggest the presence of poorly characterized (putative) anaerobic n-alkanes degraders in the thermophilic methanogenic enrichment cultures. Our results indicate that methanogenesis of alkanes under thermophilic condition is likely to proceed via syntrophic acetate and/or formate oxidation linked with hydrogenotrophic methanogenesis.  相似文献   

11.
Aims: To determine the in‐vitro effect and mode of action of tea saponin on the rumen microbial community and methane production. Methods and Results: Saponin extracted from tea seeds was added to (1) an in‐vitro fermentation inoculated with rumen fluid and (2) a pure culture of Methanobrevibacter ruminantium. Methane production and expression of the methyl coenzyme‐M reductase subunit A (mcrA) were monitored in both cultures. Abundance of methanogens, protozoa, rumen fungi and cellulolytic bacteria were quantified using real‐time PCR, and bacterial diversity was observed using denaturing gradient gel electrophoresis. Addition of tea saponin significantly reduced methane production and mcrA gene expression in the ruminal fermentation but not with the pure culture of M. ruminantium. The abundance of protozoa and fungi were significantly decreased 50% and 79% respectively but methanogen numbers were not affected, and Fibrobacter succinogenes increased by 41%. Bacterial diversity was similar in cultures with or without tea saponin. Conclusions: Tea saponin appeared to reduce methane production by inhibiting protozoa and presumably lowering methanogenic activity of protozoal‐associated methanogens. Significance and Impact of the Study: Tea saponin may be useful as a supplement to indirectly inhibit methane production in ruminants without a deleterious effect on rumen function.  相似文献   

12.
Hydrogen and methane were simultaneously produced in a two‐phase reactor, operated to separate the reactions of hydrogen and methanogen production. Each reactor was inoculated with a seed enriched with different microbial consortia. The first phase was operated with a hydraulic retention time of 7 days and at an organic loading rate of 7.7 g VS L?1 d?1 that produced a stable pH of 5.5. This suppressed the growth of methanogens and as a result, the off gas contained up to 27% hydrogen. The second phase was operated with a hydraulic retention time of 12 days and at an organic loading rate of 3.6 g VS L?1 d?1. This permitted the growth of hydrogenotrophs and methanogens to produce methane at a concentration of 60%. Examination of the microbial population of the two reactors both microscopically and using PCR, showed an effective separation of hydrogen‐ and methane‐producing microbial communities. The study revealed that the suppression of hydrogentrophs and methanogens can be achieved by adopting rapid method that leads the growth of hydrogen‐ and methane‐producing granules in phase‐separated anaerobic environment.  相似文献   

13.
Syntrophic interaction occurs during anaerobic fermentation of organic substances forming methane as the final product. H2 and formate are known to serve as the electron carriers in this process. Recently, it has been shown that direct interspecies electron transfer (DIET) occurs for syntrophic CH4 production from ethanol and acetate. Here, we constructed paddy soil enrichments to determine the involvement of DIET in syntrophic butyrate oxidation and CH4 production. The results showed that CH4 production was significantly accelerated in the presence of nanoFe3O4 in all continuous transfers. This acceleration increased with the increase of nanoFe3O4 concentration but was dismissed when Fe3O4 was coated with silica that insulated the mineral from electrical conduction. NanoFe3O4 particles were found closely attached to the cell surfaces of different morphology, thus bridging cell connections. Molecular approaches, including DNA‐based stable isotope probing, revealed that the bacterial Syntrophomonadaceae and Geobacteraceae, and the archaeal Methanosarcinaceae, Methanocellales and Methanobacteriales, were involved in the syntrophic butyrate oxidation and CH4 production. Among them, the growth of Geobacteraceae strictly relied on the presence of nanoFe3O4 and its electrical conductivity in particular. Other organisms, except Methanobacteriales, were present in enrichments regardless of nanoFe3O4 amendment. Collectively, our study demonstrated that the nanoFe3O4‐facilitated DIET occurred in syntrophic CH4 production from butyrate, and Geobacter species played the key role in this process in the paddy soil enrichments.  相似文献   

14.
When microorganisms eluted from upper Hudson River sediment were cultured without any substrate except polychlorobiphenyl (PCB)-free Hudson River sediment, methane formation was the terminal step of the anaerobic food chain. In sediments containing Aroclor 1242, addition of eubacterium-inhibiting antibiotics, which should have directly inhibited fermentative bacteria and thereby should have indirectly inhibited methanogens, resulted in no dechlorination activity or methane production. However, when substrates for methanogenic bacteria were provided along with the antibiotics (to free the methanogens from dependence on eubacteria), concomitant methane production and dechlorination of PCBs were observed. The dechlorination of Aroclor 1242 was from the para positions, a pattern distinctly different from, and more limited than, the pattern observed with untreated or pasteurized inocula. Both methane production and dechlorination in cultures amended with antibiotics plus methanogenic substrates were inhibited by 2-bromoethanesulfonic acid. These results suggest that the methanogenic bacteria are among the physiological groups capable of anaerobic dechlorination of PCBs, but that the dechlorination observed with methanogenic bacteria is less extensive than the dechlorination observed with more complex anaerobic consortia.  相似文献   

15.
Ammonia accumulation is one of the main causes of the loss of methane production observed during fermentation. We investigated the effect of addition of carbon fiber textiles (CFT) to thermophilic methanogenic bioreactors with respect to ammonia tolerance during the process of degradation of artificial garbage slurry, by comparing the performance of the reactors containing CFT with the performance of reactors without CFT. Under total ammonia-N concentrations of 3,000 mg L−1, the reactors containing CFT were found to mediate stable removal of organic compounds and methane production. Under these conditions, high levels of methanogenic archaea were retained at the CFT, as determined by 16S rRNA gene analysis for methanogenic archaea. In addition, Methanobacterium sp. was found to be dominant in the suspended fraction, and Methanosarcina sp. was dominant in the retained fraction of the reactors with CFT. However, the reactors without CFT had lower rates of removal of organic compounds and production of methane under total ammonia-N concentrations of 1,500 mg L−1. Under this ammonia concentration, a significant accumulation of acetate was observed in the reactors without CFT (130.0 mM), relative to the reactors with CFT (4.2 mM). Only Methanobacterium sp. was identified in the reactors without CFT. These results suggest that CFT enables stable proliferation of aceticlastic methanogens by preventing ammonia inhibition. This improves the process of stable garbage degradation and production of methane in thermophilic bioreactors that include high levels of ammonia.  相似文献   

16.
Monoxenic cultures of the anaerobic, endosymbiont-free ciliate Trimyema compressum were incubated with low numbers of Bacteroides sp. strain WoCb15 as food bacteria and two strains (DSM 3636 and 3637) of Methanobacterium formicicum, which originally had been isolated from the anaerobic protozoa Metopus striatus and Pelomyxapalustris. The ciliate which had lost its original endosymbiotic methanogens ingested both strains of M. formicicum. The methanogenic bacteria were found intact in large vacuoles in contrast to the food bacteria which were digested. Single methanogens were separated from the vacuoles and appeared surrounded by a membrane in the cytoplasm of the ciliate. After 2 months of incubation, the methanogenic bacteria still exhibited the typical bluish fluorescence and the new symbiotic association of M. formicicum and T. compressum excreted methane. Increasing the growth rate of the ciliates by large numbers of food bacteria resulted in a loss of the methanogenic bacteria, due to statistical outgrowth.  相似文献   

17.
From anaerobic freshwater enrichment cultures with 3-hydroxybenzoate as sole substrate, a slightly curved rod-shaped bacterium was isolated in coculture with Desulfovibrio vulgaris as hydrogen scavenger. The new isolate degraded only 3-hydroxybenzoate or benzoate, and depended on syntrophic cooperation with a hydrogenoxidizing methanogen or sulfate reducer. 3-Hydroxybenzoate was degraded via reductive dehydroxylation to benzoate. With 2-hydroxybenzoate (salicylate), short coccoid rods were enriched from anaerobic freshwater mud samples, and were isolated in defined coculture with D. vulgaris. This isolate also fermented 3-hydroxybenzoate or benzoate in obligate syntrophy with a hydrogen-oxidizing anaerobe. The new isolates were both Gram-negative, non-sporeforming strict anaerobes. They fermented hydroxybenzoate or benzoate to acetate, CO2, and, presumably, hydrogen which was oxidized by the syntrophic partner organism. With hydroxybenzoates, but not with benzoate, Acetobacterium woodii could also serve as syntrophic partner. Other substrates such as sugars, alcohols, fatty or amino acids were not fermented. External electron acceptors such as sulfate, sulfite, nitrate, or fumarate were not reduced. In enrichment cultures with 4-hydroxybenzoate, decarboxylation to phenol was the initial step in degradation which finally led to acetate, methane and CO2.  相似文献   

18.
The anaerobic pathway of chitin decomposition by chitinoclastic bacteria was examined with an emphasis on end product coupling to other salt marsh bacteria. Actively growing chitinoclastic bacterial isolates produced primarily acetate, H2, and CO2 in broth culture. No sulfate-reducing or methanogenic isolates grew on chitin as sole carbon source or produced any measurable degradation products. Mixed cultures of chitin degraders with sulfate reducers resulted in positive sulfide production. Mixed cultures of chitin-degrading isolates with methanogens resulted in the production of CH4 with reductions in headspace CO2 and H2. The combination of all three metabolic types resulted in the simultaneous production of methane and sulfide, with more methane being produced in mixed cultures containing CO2-reducing methanogens and acetoclastic sulfate reducers because of less interspecific H2 competition.  相似文献   

19.
The anaerobic degradation of 2-propanol in anoxic paddy soil was studied with soil cultures and a 2-propanol-utilizing methanogen. Acetone was the first and the major intermediate involved in the methanogenic degradation of 2-propanol. Analyses with a methanogenesis inhibitor, bacteria antibiotics, and the addition of H2 to the gas phase revealed that 2-propanol oxidation to acetone directly occurred using 2-propanol-utilizing methanogens, but not with H2-producing syntrophic bacteria, for which the removal of acetone is required for complete 2-propanol oxidation. The 2-propanol-utilizing strain IIE1, which is phylogenetically closely related to Methanoculleus palmolei, was isolated from paddy soil, and the potential role of the strain in 2-propanol degradation was investigated. 2-Propanol is one of the representative fermentation intermediates in anaerobic environments. This is the first report on the anaerobic 2-propanol degradation process.  相似文献   

20.
The number of microorganisms of major metabolic groups and the rates of sulfate-reducing and methanogenic processes in the formation waters of the high-temperature horizons of Dagang oilfield have been determined. Using cultural methods, it was shown that the microbial community contained aerobic bacteria oxidizing crude oil, anaerobic fermentative bacteria, sulfate-reducing bacteria, and methanogenic bacteria. Using cultural methods, the possibility of methane production from a mixture of hydrogen and carbon dioxide (H2 + CO2) and from acetate was established, and this result was confirmed by radioassays involving NaH14CO3 and 14CH3COONa. Analysis of 16S rDNA of enrichment cultures of methanogens demonstrated that these microorganisms belong to Methanothermobacter sp. (M. thermoautotrophicus), which consumes hydrogen and carbon dioxide as basic substrates. The genes of acetate-utilizing bacteria were not identified. Phylotypes of the representatives of Thermococcus spp. were found among 16S rDNAs of archaea. 16S rRNA genes of bacterial clones belong to the orders Thermoanaerobacteriales (Thermoanaerobacter, Thermovenabulum, Thermacetogenium, and Coprothermobacter spp.), Thermotogales, Nitrospirales (Thermodesulfovibrio sp.) and Planctomycetales. 16S rDNA of a bacterium capable of oxidizing acetate in the course of syntrophic growth with H2-utilizing methanogens was found at high-temperature petroleum reservoirs for the first time. These results provide further insight into the composition of microbial communities of high-temperature petroleum reservoirs, indicating that syntrophic processes play an important part in acetate degradation accompanied by methane production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号