首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spatiotemporal distribution of chlorophyll pigments (chloropigments) in the water column of a meromictic lake, Lake Suigetsu (Fukui, Japan), was investigated. Water samples were collected from the central basin of Lake Suigetsu bimonthly between May 2008 and March 2010 at appropriate depths, including the oxic surface, oxic–anoxic interface, and anoxic bottom layers. Chlorophyll a, related to cyanobacteria and eukaryotic phytoplankton, was detected throughout the water column during the years of the study, whereas bacteriochlorophyll e, related to brown-colored green sulfur bacteria, was detected in the anoxic layers below the chemocline at a maximum concentration of 825 μg L?1. The concentration of bacteriochlorophyll e was generally maximal at or just below the chemocline of the lake. The cellular content of bacteriochlorophyll e was estimated to be low in the upper part of the chemocline and tended to increase with increasing water depth. Bacteriochlorophyll a, which was presumably related to purple sulfur bacteria, was only detected at the chemocline during summer and autumn at concentrations of 5.4–16.3 μg L?1. Our analysis of the chloropigment distribution for the two years of the study suggested that brown-colored green sulfur bacteria are the predominant phototroph in the anoxic layers of Lake Suigetsu, and that these play a significant role in the carbon and sulfur cycling of the lake, especially from spring to summer.  相似文献   

2.
The nitrogen cycling of Lake Cadagno was investigated by using a combination of biogeochemical and molecular ecological techniques. In the upper oxic freshwater zone inorganic nitrogen concentrations were low (up to ~3.4 μM nitrate at the base of the oxic zone), while in the lower anoxic zone there were high concentrations of ammonium (up to 40 μM). Between these zones, a narrow zone was characterized by no measurable inorganic nitrogen, but high microbial biomass (up to 4 × 107 cells ml?1). Incubation experiments with 15N‐nitrite revealed nitrogen loss occurring in the chemocline through denitrification (~3 nM N h?1). At the same depth, incubations experiments with 15N2‐ and 13CDIC‐labelled bicarbonate, indicated substantial N2 fixation (31.7–42.1 pM h?1) and inorganic carbon assimilation (40–85 nM h?1). Catalysed reporter deposition fluorescence in situ hybridization (CARD‐FISH) and sequencing of 16S rRNA genes showed that the microbial community at the chemocline was dominated by the phototrophic green sulfur bacterium Chlorobium clathratiforme. Phylogenetic analyses of the nifH genes expressed as mRNA revealed a high diversity of N2 fixers, with the highest expression levels right at the chemocline. The majority of N2 fixers were related to Chlorobium tepidum/C. phaeobacteroides. By using Halogen In Situ Hybridization‐Secondary Ion Mass Spectroscopy (HISH‐SIMS), we could for the first time directly link Chlorobium to N2 fixation in the environment. Moreover, our results show that N2 fixation could partly compensate for the N loss and that both processes occur at the same locale at the same time as suggested for the ancient Ocean.  相似文献   

3.
The vertical and seasonal distributions of the phytoflagellate Cryptomonas spp., and its most common, the planktonic ciliate predators (Oligotrichida, Scuticociliatida, Hypotrichida and Prostomatida) were investigated in chemocline region of small saline, meromictic lake Shunet (Siberia, Russia) during 2003 and 2005. The lake has a pronounced chemocline, with abundance of purple and green sulphur bacteria. Vertical distribution of the Cryptomonas populations near the oxic/anoxic boundary layer was studied at close intervals in water sampled using a hydraulically operated thin-layer sampler. In both summer and winter, Cryptomonas peaked in water stratum 5–10 cm above anoxic zone or in the anoxic zone water column in the chemocline (about 5 m). Ciliate densities and biomass were also much higher in chemocline than in mixolimnion. The range of diurnal migration of Cryptomonas population was not very wide, and it was restricted to layers with high light intensity. The ciliates were sometimes detected above the upper border of the anoxic zone but also several centimetres below this zone.  相似文献   

4.
This study evaluates rates and pathways of methane (CH4) oxidation and uptake using 14C‐based tracer experiments throughout the oxic and anoxic waters of ferruginous Lake Matano. Methane oxidation rates in Lake Matano are moderate (0.36 nmol L?1 day?1 to 117 μmol L?1 day?1) compared to other lakes, but are sufficiently high to preclude strong CH4 fluxes to the atmosphere. In addition to aerobic CH4 oxidation, which takes place in Lake Matano's oxic mixolimnion, we also detected CH4 oxidation in Lake Matano's anoxic ferruginous waters. Here, CH4 oxidation proceeds in the apparent absence of oxygen (O2) and instead appears to be coupled to some as yet uncertain combination of nitrate (), nitrite (), iron (Fe) or manganese (Mn), or sulfate () reduction. Throughout the lake, the fraction of CH4 carbon that is assimilated vs. oxidized to carbon dioxide (CO2) is high (up to 93%), indicating extensive CH4 conversion to biomass and underscoring the importance of CH4 as a carbon and energy source in Lake Matano and potentially other ferruginous or low productivity environments.  相似文献   

5.
Microbiological, biogeochemical, and isotopic geochemical investigation of Lake Kislo-Sladkoe (Polusolenoe in early publications) at the Kandalaksha Bay shore (White Sea) was carried out in September 2010. Lake Kislo-Sladkoe was formed in the mid-1900s out of a sea gulf due to a coastal heave. At the time of investigation, the surface layer was saturated with oxygen, while near-bottom water contained sulfide (up to 32 mg/L). Total number of microorganisms was high (12.3 × 106 cells/mL on average). Light CO2 fixation exhibited two pronounced peaks. In the oxic zone, the highest rates of photosynthesis were detected at 1.0 and 2.0 m. The second, more pronounced peak of light CO2 fixation was associated with activity of anoxygenic phototrophic bacteria in the anoxic layer at the depth of 2.9 m (413 μg C L?1 day?1). Green-colored green sulfur bacteria (GSB) predominated in the upper anoxic layer (2.7–2.9 m), their numbers being as high as 1.12 × 104 cells/mL, while brown-colored GSB predominated in the lower horizons. The rates of both sulfate reduction and methanogenesis peaked in the 2.9 m horizon (1690 μg S L?1 day?1 and 2.9 μL CH4 L?1 day-1). The isotopic composition of dissolved methane from the near-bottom water layer (δ13C (CH4) = ?87.76‰) was significantly lighter than in the upper horizons (δ13C (CH4) = ?77.95‰). The most isotopically heavy methane (δ13C (CH4) = ?72.61‰) was retrieved from the depth of 2.9 m. The rate of methane oxidation peaked in the same horizon. As a result of these reactions, organic matter (OM) carbon of the 2.9 m horizon became lighter (?36.36‰), while carbonate carbon became heavier (?7.56‰). Thus, our results demonstrated that Lake Kislo-Sladkoe is a stratified meromictic lake with active microbial cycles of carbon and sulfur. Suspended matter in the water column was mostly of autochthonous origin. Anoxygenic photo-synthesis coupled to utilization of reduced sulfur compounds contributed significantly to OM production.  相似文献   

6.
A survey of the spatial distribution of benthic macroalgae in a fluvial lake of the St. Lawrence River (Lake Saint‐Pierre, Quebec, Canada) revealed a shift in composition from chlorophytes to cyanobacteria along the flow path of nutrient‐rich waters originating from tributaries draining farmlands. The link between this shift and changes in water quality characteristics was investigated by sampling at 10 sites along a 15 km transect. Conductivity, current, light extinction, total phosphorus (TP; >25 μg P · L?1), and ammonium (8–21 μg N · L?1) remained fairly constant along the transect in contrast to nitrate concentrations, which fell sharply. Filamentous and colonial chlorophytes [Cladophora sp. and Hydrodictyon reticulatum (L.) Bory] dominated in the first 5 km where nitrate concentrations were >240 μg N · L?1. A mixed assemblage of chlorophytes and cyanobacteria characterized a 1 km transition zone where nitrate decreased to 40–80 μg N · L?1. In the last section of the transect, nitrate concentrations dropped below 10 μg N · L?1, and cyanobacteria (benthic filamentous mats of Lyngbya wollei Farl. ex Gomont and epiphytic colonies of Gloeotrichia) dominated the benthic community. The predominance of nitrogen‐fixing, potentially toxic cyanobacteria likely resulted from excessive nutrient loads and may affect nutrient and trophic dynamics in the river.  相似文献   

7.
The value of ecosystems functions performed by forests in the climate change era has prompted increasing attention towards assessment of carbon stocks and fluxes in tropical forests. The aim of this study was to understand how forest management approaches and environmental controls impacted on soil CO2 efflux in a tropical Eastern Mau forest which is one of the blocks of the greater Mau complex in Kenya. Nested experimental design approach was employed where 32 plots were nested into four blocks (disturbed natural, undisturbed natural, plantation and glades). In 10 m2 plots, data were collected on soil CO2 efflux, soil temperature and soil moisture using soda lime methods, direct measurement and proxy techniques, respectively. There was significant forest management type effect (F3,127 = 3.01, p = 0.033) and seasonality effect (t test = 3.31, df = 1, p < 0.05) on mean soil CO2 efflux. The recorded mean soil CO2 efflux levels were as follows: plantation forest (9.219 ± 3.067 g C M?2 day?1), undisturbed natural forest (8.665 ± 4.818 g C M?2 day?1), glades (8.592 ± 3.253 g C M?2 day?1) and disturbed natural forest (7.198 ± 3.457 g C M?2 day?1). The study concludes that managing a forest in plantation form is primarily responsible for forest soil CO2 efflux levels due to aspects such as increased microbial activity and root respiration. However, further studies are required to understand the role and impact of soil CO2 efflux on the greater forest carbon budget.  相似文献   

8.
Denitrification activity and oxygen dynamics in Arctic sea ice   总被引:1,自引:0,他引:1  
Denitrification and oxygen dynamics were investigated in the sea ice of Franklin Bay (70°N), Canada. These investigations were complemented with measurements of denitrification rates in sea ice from different parts of the Arctic (69°N–85°N). Potential for bacterial denitrification activity (5–194 μmol N m−2 day−1) and anammox activity (3–5 μmol N m−2 day−1) in melt water from both first-year and multi-year sea ice was found. These values correspond to 27 and 7%, respectively, of the benthic denitrification and anammox activities in Arctic sediments. Although we report only potential denitrification and anammox rates, we present several indications that active denitrification in sea ice may occur in Franklin Bay (and elsewhere): (1) despite sea ice-algal primary production in the lower sea ice layers, heterotrophic activity resulted in net oxygen consumption in the sea ice of 1–3 μmol l−1 sea ice per day at in situ light conditions, suggesting that O2 depletion may occur prior to the spring bloom. (2) The ample organic carbon (DOC) and NO3 present in sea ice may support an active denitrification population. (3) Measurements of O2 conditions in melted sea ice cores showed very low bulk concentrations, and in some cases anoxic conditions prevailed. (4) Laboratory studies using planar optodes for measuring the high-resolution two-dimensional O2 distributions in sea ice confirmed the very dynamic and heterogeneous O2 distribution in sea ice, displaying a mosaic of microsites of high and low O2 concentrations. Brine enclosures and channels were strongly O2 depleted in actively melting sea ice, and anoxic conditions in parts of the brine system would favour anaerobic processes.  相似文献   

9.
We investigated the composition of benthic microbial mats in permanently ice-covered Lake Hoare, Antarctica, and their irradiance vs. photosynthetic oxygen exchange relationships. Mats could be subdivided into three distinct depth zones: a seasonally ice-free “moat” zone and two under-ice zones. The upper under-ice zone extended from below the 3.5 m thick ice to approximately 13 m and the lower from below 13 m to 22 m. Moat mats were acclimated to the high irradiance they experienced during summer. They contained photoprotective pigments, predominantly those characteristic of cyanobacteria, and had high compensation and saturating irradiances (Ec and Ek) of 75 and 130 μmol photons·m−2·s−1, respectively. The moat mats used light inefficiently. The upper under-ice community contained both cyanobacteria and diatoms. Within this zone, biomass (as pigments) increased with increasing depth, reaching a maximum at 10 m. Phycoerythrin was abundant in this zone, with shade acclimation and efficiency of utilization of incident light increasing with depth to a maximum of 0.06 mol C fixed·mol−1 incident photons under light-limiting conditions. Precipitation of inorganic carbon as calcite was associated with this community, representing up to 50% of the carbon sequestered into the sediment. The lower under-ice zone was characterized by a decline in pigment concentrations with depth and an increasing prevalence of diatoms. Photosynthesis in this community was highly shade acclimated and efficient, with Ec and Ek below 0.5 μmol·m−2·s−1 and 2 μmol·m−2·s−1, respectively, and maximum yields of 0.04 mol C fixed·mol−1 incident quanta. Carbon uptake in situ by both under-ice and moat mats was estimated at up to 100 and 140 mg·m−2·day−1, based on the photosynthesis–irradiance curves, incident irradiance, and light attenuation by ice and the water column.  相似文献   

10.
The Black Sea chemocline represents the largest extant habitat of anoxygenic phototrophic bacteria and harbours a monospecific population of Chlorobium phylotype BS‐1. High‐sensitivity measurements of underwater irradiance and sulfide revealed that the optical properties of the overlying water column were similar across the Black Sea basin, whereas the vertical profiles of sulfide varied strongly between sampling sites and caused a dome‐shaped three‐dimensional distribution of the green sulfur bacteria. In the centres of the western and eastern basins the population of BS‐1 reached upward to depths of 80 and 95 m, respectively, but were detected only at 145 m depth close to the shelf. Using highly concentrated chemocline samples from the centres of the western and eastern basins, the cells were found to be capable of anoxygenic photosynthesis under in situ light conditions and exhibited a photosynthesis–irradiance curve similar to low‐light‐adapted laboratory cultures of Chlorobium BS‐1. Application of a highly specific RT‐qPCR method which targets the internal transcribed spacer (ITS) region of the rrn operon of BS‐1 demonstrated that only cells at the central station are physiologically active in contrast to those at the Black Sea periphery. Based on the detection of ITS‐DNA sequences in the flocculent surface layer of deep‐sea sediments across the Black Sea, the population of BS‐1 has occupied the major part of the basin for the last decade. The continued presence of intact but non‐growing BS‐1 cells at the periphery of the Black Sea indicates that the cells can survive long‐distant transport and exhibit unusually low maintenance energy requirements. According to laboratory measurements, Chlorobium BS‐1 has a maintenance energy requirement of ~1.6–4.9·10?15 kJ cell?1 day?1 which is the lowest value determined for any bacterial culture so far. Chlorobium BS‐1 thus is particularly well adapted to survival under the extreme low‐light conditions of the Black Sea, and can be used as a laboratory model to elucidate general cellular mechanisms of long‐term starvation survival. Because of its adaptation to extreme low‐light marine environments, Chlorobium BS‐1 also represents a suitable indicator for palaeoceanography studies of deep photic zone anoxia in ancient oceans.  相似文献   

11.
By applying planar optodes and imaging techniques to a benthic photosynthetic mat, we demonstrated an extensive vertical and horizontal variation in O2 concentrations, O2 consumption, and O2 production. In light, the oxic zone could be divided into three horizons: 1) an upper zone dominated by diatoms that had a moderate net O2 production, 2) another zone dominated by Microcoleus-like cyanobacteria with a high net O2 production, and 3) a lower zone with disintegrating microalgae and cyanobacteria with a high O2 consumption rate. From the O2 images, the net O2 production/consumption was calculated at a spatial resolution of 130 μM. This allowed us to identify microsites with high rates of O2 turnover within the photic zone. Sites with high net O2 consumption (>1.5 nmol·cm?3·s?1) were typically situated next to sites with a relatively high net production (>2 nmol·cm?3·s?1), revealing a mosaic in which the highest O2 consumption sites were surrounded by the highest O2 production sites. This suggested a tight spatial coupling between production and consumption of O2 within the photic zone. Light stimulated the O2 consumption within the photic zone. At irradiances above 400 μmol photons·m?2·s?1, the stimulated O2 production was almost completely balanced by enhanced O2 consumption at microsites exhibiting net consumption of O2 even at maximum irradiance (578 μmol photons·m?2·s?1). Our observations strongly supported the idea that light-stimulated respiration was caused by stimulated heterotrophic activity fueled by organic carbon leakage from the phototrophs. Despite microsites with high net O2 consumption, anoxic microniches were not encountered in the investigated mat. Images of gross photosynthetic rates also revealed an extensive horizontal variation in gross rates, with microsites of low or no photosynthesis within the otherwise photic zone. Calculations based on the obtained images revealed that at maximum light (578 μmol photons·m?2·s?1), 90% of the O2 produced was consumed within the photic zone. The presented data demonstrate the great potential offered by planar optode for studies of benthic photosynthetic communities.  相似文献   

12.
Experimental ecology methods and chlorophyll fluorescence technology were used to study the effects of different concentrations of manganese (10−12– 10−4 mol L−1) on the growth, photosystem II and superoxide dismutase (SOD) activity of Amphidinium sp. MACC/D31. The results showed that manganese had a significant effect on the growth rate, fluorescence parameters (maximal photochemical efficiency of PSII (F v /F m ), photochemical quenching (qP) and non-photochemical quenching (NPQ)) in the exponential stage (days 1–3) and SOD activity of Amphidinium sp. (P < 0.05). F v/F m in the exponential stage in 10−12 mol L−1 manganese concentration was significantly lower whilst qP and NPQ significantly higher than those in the other concentrations. F v /F m (days 6–9) in 10−4 mol L−1 manganese was significantly higher than those in the other concentrations. F v /F m (days 3–6) increased with increased concentration of manganese from 10−12 to 10−4 mol L−1. The values of qP and NPQ decreased with decreased concentrations of manganese, except for those in days 4–6. F v /F m under each concentration increased earlier and decreased later with culture stage whilst NPQ decreased earlier and increased later. The SOD activity increased with increased concentration of manganese from 10−12 to 10−8 mol L−1. The SOD activity in 10−4 mol L−1 manganese was significantly higher than those in the other concentrations and in 10−12 mol L−1 manganese, it was significantly lower than those in the other concentrations.  相似文献   

13.
Antibiotics regulate various physiological functions in cyanobacteria and may interfere with the control of cyanobacterial blooms during the application of algaecides. In this study, Microcystis aeruginosa was exposed to H2O2 and glyphosate for 7 d in the presence of coexisting mixed antibiotics (amoxicillin, spiramycin, tetracycline, ciprofloxacin, and sulfamethoxazole) at an environmentally relevant concentration of 100 ng · L?1. The mixed antibiotics significantly (P < 0.05) alleviated the growth inhibition effect of 15–45 μM H2O2 and 40–60 mg · L?1 glyphosate. According to the increased contents of chlorophyll a and protein, decreased content of malondialdehyde, and decreased activities of superoxide dismutase and glutathione S‐transferase, antibiotics may reduce the toxicity of the two algaecides through the stimulation of photosynthesis and the reduction in oxidative stress. The presence of coexisting antibiotics stimulated the production and release of microcystins in the M. aeruginosa exposed to low concentrations of algaecides and posed an increased threat to aquatic environments. To eliminate the secondary pollution caused by microcystins, high algaecide doses that are ≥45 μM for H2O2 and ≥60 mg · L?1 for glyphosate are recommended. This study provides insights into the ecological hazards of antibiotic contaminants and the best management practices for cyanobacterial removal under combined antibiotic pollution conditions.  相似文献   

14.
Light source can affect the stomata opening, photosynthesis process, and pigment content in microalgae cells. In this study, growth rate, chlorophyll a (chl a) content, and electrogenic capability of Desmodesmus sp. A8 were investigated under incandescent and fluorescent lamps. Growth rate, productivity, and chl a content of strain A8 exposed to incandescent light were recorded as 0.092 ± 0.010 day?1, 0.019 ± 0.008 g L?1 day?1, and 15.10 ± 1.40 mg L?1, which decreased to 0.086 ± 0.006 day?1, 0.012 ± 0.004 g L?1 day?1, and 10.06 ± 1.59 mg L?1, respectively, under fluorescent light. The stable current density of bioelectrochemical systems inculcated with strain A8 under incandescent and fluorescent lamps were 249.76 and 158.41 mA m?2 at ?0.4 V vs. Ag/AgCl, coupling with dissolved oxygen within biofilm decreasing from 15.91 to 10.80 mg L?1. This work demonstrated that illuminating microalgae under an incandescent lamp can improve biomass production and electrogenic capabilities.  相似文献   

15.
Physical, biogeochemical and photosynthetic parameters were measured in sea ice brine and ice core bottom samples in the north-western Weddell Sea during early spring 2006. Sea ice brines collected from sackholes were characterised by cold temperatures (range −7.4 to −3.8°C), high salinities (range 61.4–118.0), and partly elevated dissolved oxygen concentrations (range 159–413 μmol kg−1) when compared to surface seawater. Nitrate (range 0.5–76.3 μmol kg−1), dissolved inorganic phosphate (range 0.2–7.0 μmol kg−1) and silicic acid (range 74–285 μmol kg−1) concentrations in sea ice brines were depleted when compared to surface seawater. In contrast, NH4 + (range 0.3–23.0 μmol kg−1) and dissolved organic carbon (range 140–707 μmol kg−1) were enriched in the sea ice brines. Ice core bottom samples exhibited moderate temperatures and brine salinities, but high algal biomass (4.9–435.5 μg Chl a l−1 brine) and silicic acid depletion. Pulse amplitude modulated fluorometry was used for the determination of the photosynthetic parameters F v/F m, α, rETRmax and E k. The maximum quantum yield of photosystem II, F v/F m, ranged from 0.101 to 0.500 (average 0.284 ± 0.132) and 0.235 to 0.595 (average 0.368 ± 0.127) in the sea ice internal and bottom communities, respectively. The fluorometric measurements indicated medium ice algal photosynthetic activity both in the internal and bottom communities of the sea ice. An observed lack of correlation between biogeochemical and photosynthetic parameters was most likely due to temporally and spatially decoupled physical and biological processes in the sea ice brine channel system, and was also influenced by the temporal and spatial resolution of applied sampling techniques.  相似文献   

16.
Landfast ice algal communities were studied in the strongly riverine-influenced northernmost part of the Baltic Sea, the Bothnian Bay, during the winter-spring transition of 2004. The under-ice river plume, detected by its low salinity and elevated nutrient concentrations, was observed only at the station closest to the river mouth. The bottommost ice layer at this station was formed from the plume water (brine volume 0.71%). This was reflected by the low flagellate-dominated (93%) algal biomass in the bottom layer, which was one-fifth of the diatom-dominated (74%) surface-layer biomass of 88 μg C l−1. Our results indicate that habitable space plays a controlling role for ice algae in the Bothnian Bay fast ice. Similarly to the water column in the Bothnian Bay, average dissolved inorganic N:P-ratios in the ice were high, varying between 12 and 265. The integrated chlorophyll a (0.1–2.2 mg m−2) and algal biomass in the ice (1–31 mg C m−2) correlated significantly (Spearman ρ = 0.79), with the highest values being measured close to the river mouth in March and during the melt season in April. Flagellates <20 μm generally dominated in both the ice and water columns in February–March. In April the main ice-algal biomass was composed of Melosira arctica and unidentified pennate diatoms, while in the water column Achnanthes taeniata, Scrippsiella hangoei and flagellates dominated. The photosynthetic efficiency (0.003–0.013 (μg C [μg chl a −1] h−1)(μE m−2s−1)−1) and maximum capacity (0.18–1.11 μg C [μg chl a −1] h−1) could not always be linked to the algal composition, but in the case of a clear diatom dominance, pennate species showed to be more dark-adapted than centric diatoms.  相似文献   

17.
The effects of supplementing the culture medium with Mg2+ on the growth, lipid production, and fatty acid composition of Monoraphidium sp. FXY-10 were studied under photoautotrophic, heterotrophic, and mixotrophic conditions. Under the photoautotrophic condition, microalgae supplemented with 100 μM Mg2+ grew significantly better than the control group and exhibited a secondary growth state. The final cell density was 1.25-fold higher than that of the control group (2.98 g L?1), and the peak lipid content reached 59.8 % (control group 52.3 %). Culture under the heterotrophic condition did not significantly increase the growth rate, but the experimental group (100 μM Mg2+ supplementation) achieved a 37.03 % lipid content compared to 28.47 % by the control group. The lipid productivity of the experimental group (100 μM Mg2+ supplementation) was higher, reaching 65.93 mg L?1 day?1 compared with 56.10 mg L?1 day?1 for the group without additional Mg2+. Under the mixotrophic condition, the experimental group achieved a final density of 3.10 g L?1, which was higher than that of the control group (2.98 g L?1). There was also no variation in fatty acid composition between the experimental group and the control group. Under the heterotrophic and mixotrophic conditions, the experimental group produced more than 50% saturated fatty and mono-unsaturated fatty acids, and the degree of unsaturation was <137. This result was relatively lower than that of the control.  相似文献   

18.
In vitro physiology and carbon metabolism can be affected by the sink–source relationship. The effect of different sucrose concentrations (10, 30, and 50 g L−1), light intensities (80 and 150 μmol m−2 s−1), and CO2 levels (375 and 1,200 μmol mol−1) were tested during plantain micropropagation in temporary immersion bioreactors. Activities of pyruvate kinase, phosphoenol pyruvate carboxylase, and the photosynthesis rate were recorded. From the morphological and practical point of view, the best results were obtained when plants were cultured with 30 g L−1 sucrose, 80 μmol m−2 s−1 light intensity, and 1,200 μmol mol−1 CO2 concentration. This treatment improved leaf and root development, reduced respiration during in vitro culture, and increased starch level at the end of the hardening phase. In addition to that, the number of competent plants was increased from 80.0% to 91.0% at the end of the in vitro phase and the survival percentage from 95.71% to 99.80% during ex vitro hardening.  相似文献   

19.
In winter of 2009/2010, Aphanizomenon flos-aquae bloomed in the ice and snow covered oligo-mesotrophic Lake Stechlin, Germany. The photosynthesis of the natural population was measured at eight temperatures in the range of 2–35°C, at nine different irradiance levels in the range of 0–1,320 μmol m−2 s−1 PAR at each applied temperature. The photoadaptation parameter (I k) and the maximum photosynthetic rate (P max) correlated positively with the temperature between 2 and 30°C, and there was a remarkable drop in both parameters at 35°C. The low I k at low temperatures enabled the active photosynthesis of overwintering populations at low irradiance levels under ice and snow cover. The optimum of the photosynthesis was above 20°C at irradiances above 150 μmol m−2 s−1. At lower irradiance levels (7.5–30 μmol m−2 s−1), the photosynthesis was the most intensive in the temperature range of 2–5°C. The interaction between light and temperature allowed the proliferation of A. flos-aquae in Lake Stechlin resulting in winter water bloom in this oligo-mesotrophic lake. The applied 2°C is the lowest experimental temperature ever in the photosynthesis/growth studies of A. flos-aquae, and the results of the P–I and P–T measurements provide novel information about the tolerance and physiological plasticity of this species.  相似文献   

20.
The zooxanthellate octocoral Sinularia flexibilis is a producer of potential pharmaceutically important metabolites such as antimicrobial and cytotoxic substances. Controlled rearing of the coral, as an alternative for commercial exploitation of these compounds, requires the study of species-specific growth requirements. In this study, phototrophic vs. heterotrophic daily energy demands of S. flexibilis was investigated through light and Artemia feeding trials in the laboratory. Rate of photosynthetic oxygen by zooxanthellae in light (≈200 μmol quanta m−2 s−1) was measured for the coral colonies with and without feeding on Artemia nauplii. Respiratory oxygen was measured in the dark, again with and without Artemia nauplii. Photosynthesis–irradiance curve at light intensities of 0, 50, 100, 200, and 400 μmol quanta m−2 s−1 showed an increase in photosynthetic oxygen production up to a light intensity between 100 and 200 μmol quanta m−2 s−1. The photosynthesis to respiration ratio (P/R > 1) confirmed phototrophy of S. flexibilis. Both fed and non-fed colonies in the light showed high carbon contribution by zooxanthellae to animal (host) respiration values of 111–127%. Carbon energy equivalents allocated to the coral growth averaged 6–12% of total photosynthesis energy (mg C g 1 buoyant weight day 1) and about 0.02% of the total daily radiant energy. “Light utilization efficiency (ε)” estimated an average ε value of 75% 12 h 1 for coral practical energetics. This study shows that besides a fundamental role of phototrophy vs. heterotrophy in daily energy budget of S. flexibilis, an efficient fraction of irradiance is converted to useable energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号