首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of mercury contamination of lake sediments on the phenotypic and genotypic mercury resistance of the indigenous heterotrophic aerobic bacterial communities were investigated. Strong positive correlations between mercury sediment concentration and the frequency of the gene coding for mercury volatilization (mer) (r = 0.96) or the phenotypic mercury resistance (r = 0.86) of the studied communities suggested that the inheritance via selection or genetic exchange of the mer gene had promoted bacterial adaptation to mercury. Failure to detect the mer gene in one mercury-contaminated sediment where phenotypic expression was low suggested that other mechanisms of resistance may partially determine the presence of mercury-resistant organisms in mercury-contaminated sediment or that the mercury in this particular sediment was very chemically limited in its availability to the microorganisms.  相似文献   

2.
One/third of microregenerants derived from the clone of a single cell of the Pottia intermedia gametophyte survived and formed protonemal mats on a surface of the Knop agar with 0.5 μM HgCl2. A high survival rate (in percents) argues for the epigenetic character of adaptation. Epigenetic adaptation of the clone is accompanied by increasing of a cell number in leaves, by increasing of the peroxidase activity and by the intensification of the activity zone of the peroxidase isoform, a molecular weight of which was 66 kDa, and by the appearance of two isoforms of this enzyme on the electrophoregram. The significantly weak increasing of the peroxidase activity was manifested in the regenerants from the Pottia clone, which demonstrated an adaptation to 0.2 μM HgCl2 on a mass scale [8]; the epigenetically adapted regenerants grown in a metal free media were different from the physiologically adapted regenerants only by the intensification of the zone of activity of the isoform with a molecular weight of 66 kDa. This could be the reason to consider the epigenetic adaptation to the elevated mercury concentration as an intensified epigenecopy of the modification and to point out to the similarity of the mechanisms of both types of adaptation.  相似文献   

3.
4.
Eight closely related thermophilic strains were isolated from an aerobic and thermophilic treatment of swine wastes. The pleomorphic cells (short and long rods; cocci) showed peritrichous flagella, terminally swollen sporangium, and liberated spores exhibiting hairy appendages. The Gram reaction was negative for both young (4 h) and old (48 h) cultures. Several features, such as colonial morphology, growth between 35 degrees C and 65 degrees C, presence of catalase, presence of spores, and strictly aerobic metabolism (except for one strain), are similar to those found for the genus Bacillus. The inability of the strains to use sugars, except esculin, as source of carbon and energy and the whole cell fatty acid composition are similar to those found in Bacillus thermosphaericus DSM 10633. Sequence analysis of the 16S rRNA gene revealed 99.8%-99.9% identity for seven of the thermophilic strains with this species. A new genus, Ureibacillus, was recently proposed for type strain B. thermosphaericus DSM 10633 The last strain exhibits 97.8% and 97.3% identity with Ureibacillus terrenus DSM12654 and Bacillus sp. TP-84, respectively. Esterase activities were detected for all strains, and assays on p-nitrophenyl butyrate and p-nitrophenyl caprylate revealed that strains were more active on the shorter substrate.  相似文献   

5.
Three different biotopes, groundwater, surface water, and activated sludge, were examined and the total colony count on nutrient agar determined. The bacteria that could be isolated from the agar plates were identified and their in vitro activities investigated. Three principal approaches were used: (1) isolates were identified and the results used in a numerical analysis to determine their similarity; (2) the different physiological properties of isolates originating from a single biotope were compiled and used to characterize the community (collective total activity); and (3) the diversity of the physiological properties of the isolates of all populations was determined; on the basis of main characters a heterotrophic diversity index was calculated. The possibility of using a polyphasic ecological study to characterize aquatic bacterial communities is considered.  相似文献   

6.
The community structure in two different agricultural soils has been investigated. Phenotypic diversity was assessed by applying BIOLOG-profiles on a total of 208 bacterial isolates. Diversity indices were calculated from cluster analysis of the BIOLOG data. The bacterial isolates were also evaluated for resistance towards six different antibiotics, mercury resistance and the presence of plasmids. The presence of tetracycline-resistant determinants class A to E among Gram-negative bacteria was analysed with DNA probes. The distribution of tetracycline resistance markers among colonies growing on non-selective and tetracycline-selective plates were compared. The phenotypic approach demonstrated some difference in the diversity within the two soils. The frequency of antibiotic resistance isolates was high in both soils, whereas the frequency of mercury resistance differed significantly. We found no correlation between plasmid profiles and antibiotic resistance patterns. We found all the tetracycline resistance determinants except class B, indicating that the diversity of the tetracycline resistance determinants was complex in populations of resident soil bacteria under no apparent selective pressure for the genes in question.  相似文献   

7.
A comparative study of the bacterial flora of the water of Chesapeake Bay and Tokyo Bay was undertaken to assess similarities and differences between the autochthonous flora of the two geographical sites and to test the hypothesis that, given similarities in environmental parameters, similar bacterial populations will be found, despite extreme geographic distance between locations. A total of 195 aerobic, heterotrophic bacterial strains isolated from Chesapeake Bay and Tokyo Bay water were examined for 115 biochemical, cultural, morphological, nutritional, and physiological characters. The data were analyzed by the methods of numerical taxonomy. From sorted similarity matrices, 77% of the isolates could be grouped into 30 phena and presumptively identified as Acinetobacter-Moraxella, Caulobacter, coryneforms, Pseudomonas, and Vibrio spp. Vibrio and Acinetobacter species were found to be common in the estuarine waters of Chesapeake Bay, whereas Acinetobacter-Moraxella and Caulobacter predominated in Tokyo Bay waters, at the sites sampled in the study.  相似文献   

8.
A comparative study of the bacterial flora of the water of Chesapeake Bay and Tokyo Bay was undertaken to assess similarities and differences between the autochthonous flora of the two geographical sites and to test the hypothesis that, given similarities in environmental parameters, similar bacterial populations will be found, despite extreme geographic distance between locations. A total of 195 aerobic, heterotrophic bacterial strains isolated from Chesapeake Bay and Tokyo Bay water were examined for 115 biochemical, cultural, morphological, nutritional, and physiological characters. The data were analyzed by the methods of numerical taxonomy. From sorted similarity matrices, 77% of the isolates could be grouped into 30 phena and presumptively identified as Acinetobacter-Moraxella, Caulobacter, coryneforms, Pseudomonas, and Vibrio spp. Vibrio and Acinetobacter species were found to be common in the estuarine waters of Chesapeake Bay, whereas Acinetobacter-Moraxella and Caulobacter predominated in Tokyo Bay waters, at the sites sampled in the study.  相似文献   

9.
The capacity to utilize carbon substrates is fundamental to the functioning of heterotrophic microbial communities in aquatic environments. Carbon-source utilization within the water column, however, is not a bulk property because microbial communities are patchily distributed on suspended organic aggregates (i.e., marine snow, marine aggregates, river aggregates, organic detritus, and bioflocs). In this study, Biolog Ecoplates were used to evaluate the metabolic capacity of heterotrophic bacterial communities associated with aggregates compared to communities in the surrounding water. Overall, aggregate-associated microbial communities demonstrated higher levels of metabolism, metabolic versatility, and functional redundancy, and a more consistent pattern of carbon-source utilization compared with water-associated communities. In addition, aggregate-associated communities more effectively exploited available resources, including representatives from several biochemical guilds and nitrogen-containing carbon sources. Within the aggregate-associated microbial community, metabolic activity was significantly higher in the presence of polymers, amino acids, and carbohydrates relative to amines and carboxylic acids. In comparison, metabolic activity of water-associated communities exceeded a threshold value for only two of the five guilds (polymers and carbohydrates) evaluated. These results suggest that compared with their free-living counterparts, aggregate-associated communities have a greater capacity to respond to a wider array of carbon inputs. Results also underscore the importance of targeting organic aggregates to better understand the role of microbial processes in ecosystem functioning.  相似文献   

10.
In Eastern Harbour (EH) of Alexandria (Egypt), where an under-water museum is planned to be built, the distribution of some heterotrophic bacteria and their relationships to physical parameters and biochemical composition of the sedimentary organ ic matter were investigated. The Eastern Harbour is a relatively shallow semi-closed basin and is sheltered from the sea by an art ificial breakwater leaving two openings, El-Boughaz and El-Silsila. Seven stations covering the area of the EH were selected and surface sediments were collected seasonally from spring to winter 2002. The near bottom temperature varied seasonally with a minimum value in winter and a maximum in summer. In contrast to the temperature values, dissolved oxygen exhibited maximum values in cold seasons. The seasonal average of the total organic carbon ranged from 0.48 ± 0.16 to 4.42 ± 2.46%, while the total organic nitroge n ranged from 0.07±0.08 to 0.42±0.38%. The total carbohydrate had minimum and maximum values of 273 μg g?1 and 6539 μg g?1. The combined amino acids represented the dominant biochemical class of organic matter in the EH sediments with an average of 365 ± 1911 μg g?1. The total bacterial count ranged from 1.4 × 104 to 1.4 × 107 colony forming unit (CFU) g?1 sediment dry weight. Amylolytic bacterial group was recorded in almost all sites and seasons, while proteolytic bacteria were dominant in spring and au tumn. The variation in the abundance of amylolytic and proteolytic bacterial groups was found to be parallel to the variation in soluble carbohydrates and free amino acids. High percentage of H2S-producing bacteria was reported during summer at some stations confirming the low oxygen content of the sediment at these sites. Agar-degrading bacteria were found only in warm seasons. The count of co liform bacteria in the EH sediments was very low (<10 CFU g?1) during all monitored seasons indicating that the EH marine environment was almost free of domestic waste discharge during this period.  相似文献   

11.
12.
Mesocosm studies were conducted to evaluate the effect of dispersed oil on total and heterotrophic bacterial communities of under-ice seawater from the St. Lawrence Estuary. A regular survey of bacterial changes in the oil-contaminated seawater was performed during a two week period. The bacterial community structure was investigated by carrying out 27 morphological and biochemical tests on 168 isolated strains. The results show a detectable but transient response of the bacterial community to crude oil addition. While total bacterial counts were approximately constant during the experiment, dispersed oil induced an increase in heterotrophic bacterial microflora (from 104 to 105 bacteria ml-1 after two weeks of contamination). The dispersed oil appeared to have an inhibitory effect on some components of the bacterial community. A decrease of most probable number values was observed just after addition of crude oil in the most polluted tanks and one day later in the less polluted tank. However, except for the most polluted tank, this adverse effect disappeared rapidly. While the dispersed oil induced a total disappearance of some components of the bacterial community in the most polluted tank, the structure of the bacterial community in the less polluted tank appeared relatively unchanged after 14 days of contamination.Offprint requests to: Daniel Delille  相似文献   

13.
Ubiquitous microbial communities in river sediments actively govern organic matter decomposition, nutrient recycling, and remediation of toxic compounds. In this study, prokaryotic diversity in two major rivers in central Thailand, the Chao Phraya (CP) and the Tha Chin (TC) distributary was investigated. Significant differences in sediment physicochemical properties, particularly silt content, were noted between the two rivers. Tagged 16S rRNA sequencing on a 454 platform showed that the sediment microbiomes were dominated by Gammaproteobacteria and sulfur/sulfate reducing Deltaproteobacteria, represented by orders Desulfobacteriales and Desulfluromonadales together with organic degraders Betaproteobacteria (orders Burkholderiales and Rhodocyclales) together with the co-existence of Bacteroidetes predominated by Sphingobacteriales. Enrichment of specific bacterial orders was found in the clayey CP and silt-rich TC sediments, including various genera with known metabolic capability on decomposition of organic matter and xenobiotic compounds. The data represent one of the pioneered works revealing heterogeneity of bacteria in river sediments in the tropics.  相似文献   

14.
Flavobacterium psychrophilum is the causative agent of bacterial coldwater disease (BCWD) and rainbow trout fry syndrome. BCWD has a considerable economic impact on aquaculture operations in Ontario, Canada, and our limited understanding of the population structure and epidemiology of F. psychrophilum isolates is an impediment to the development of improved management strategies. Seventy-five 16S rRNA gene and gyr polymerase chain reaction positive isolates of F. psychrophilum that had been collected over a 16-year period from farmed salmonids with tail rot, necrotic myositis, and osteochondrosis were characterized morphologically, biochemically, and genotypically. Although the isolates were homogeneous by preliminary biochemical and phenotypic characterization, two distinct biovars were found by API ZYM testing. As well, four restriction pattern types were detected by 16S rRNA polymerase chain reaction - restriction fragment length polymorphism analysis and there was a significant (P < 0.001) correlation between biovar I and digestion with MaeIII and between biovar II and digestion with MnlI or no site (P < 0.05). Further heterogenity was detected by sequence analysis of a 194 bp stem loop 3 region of rRNA. Nine sequence types were identified; 40/46 biovar I isolates were sequence type "a", while 21/32 biovar II isolates belonged to either sequence type "c" or "d". More than one biovar and genotype was identified among the strains recovered from separate fish sampled from three groups of rainbow trout (Oncorhynchus mykiss) experiencing BCWD mortality events. No association was found between genotype or biovar and type of disease. Taken together, these data suggest that F. psychrophilum from Ontario can be grouped into two major lineages based on biovar and 16S rRNA polymorphisms, and although three major strain types were most frequently isolated in this study, it appears that the population of F. psychrophilum with pathogenic potential is quite heterogeneous.  相似文献   

15.
An integrated multi-trophic aquaculture (IMTA) system, with one fish cage model surrounded by an island and shellfish rafts, was used in the current study. Planktonic and sediment bacterial communities in the IMTA system were monitored over four seasons in 2019. In both plankton and sediment samples, the most dominant phyla were Proteobacteria and Bacteroidota. Sediment bacterial samples were more similar and had higher levels of biodiversity than planktonic bacterial samples. Obvious seasonal variations were found in plankton samples, but not in sediment samples. No obvious inter-site variations in planktonic and sediment bacteria (fish cages, shellfish rafts and control sites) were found and the results suggested that no obvious impact of feeding operations in fish culture cage model on bacterial communities in the IMTA system was observed in this study. Based on the sequence data, some faecal indicator bacteria and potentially pathogenic bacterial species were detected. According to the results, the bacterial water quality in the IMTA system was acceptable. PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) analysis revealed that the primary difference in potential functional roles of planktonic and sediment bacteria was amino acid transport and metabolism, which was active in different seasons.  相似文献   

16.
Biogeochemical changes in marine sediments during coastal water hypoxia are well described, but less is known about underlying changes in microbial communities. Bacterial and archaeal communities in Louisiana continental shelf (LCS) hypoxic zone sediments were characterized by pyrosequencing 16S rRNA V4‐region gene fragments obtained by PCR amplification of community genomic DNA with bacterial‐ or archaeal‐specific primers. Duplicate LCS sediment cores collected during hypoxia had higher concentrations of Fe(II), and dissolved inorganic carbon, phosphate, and ammonium than cores collected when overlying water oxygen concentrations were normal. Pyrosequencing yielded 158 686 bacterial and 225 591 archaeal sequences from 20 sediment samples, representing five 2‐cm depth intervals in the duplicate cores. Bacterial communities grouped by sampling date and sediment depth in a neighbor‐joining analysis using Chao–Jaccard shared species values. Redundancy analysis indicated that variance in bacterial communities was mainly associated with differences in sediment chemistry between oxic and hypoxic water column conditions. Gammaproteobacteria (26.5%) were most prominent among bacterial sequences, followed by Firmicutes (9.6%), and Alphaproteobacteria (5.6%). Crenarchaeotal, thaumarchaeotal, and euryarchaeotal lineages accounted for 57%, 27%, and 16% of archaeal sequences, respectively. In Thaumarchaeota Marine Group I, sequences were 96–99% identical to the Nitrosopumilus maritimus SCM1 sequence, were highest in surficial sediments, and accounted for 31% of archaeal sequences when waters were normoxic vs. 13% of archaeal sequences when waters were hypoxic. Redundancy analysis showed Nitrosopumilus‐related sequence abundance was correlated with high solid‐phase Fe(III) concentrations, whereas most of the remaining archaeal clusters were not. In contrast, crenarchaeotal sequences were from phylogenetically diverse lineages, differed little in relative abundance between sampling times, and increased to high relative abundance with sediment depth. These results provide further evidence that marine sediment microbial community composition can be structured according to sediment chemistry and suggest the expansion of hypoxia in coastal waters may alter sediment microbial communities involved in carbon and nitrogen cycling.  相似文献   

17.
The biodiversity of heterotrophic viable bacteria (209 isolates) in the hypersaline Bardawil Lagoon, Egypt, was studied. Composition and extracellular activities of viable culturable heterotrophic bacteria (VCHB) in the water and in non-colonised and seagrass-colonised sediments of Bardawil Lagoon were determined bimonthly during 1997 and 1998. The average ± SD total Kjeldhal nitrogen was 1.69 ± 0.44 mg l?1 in water, 335.95 ± 19.22 mg kg?1 in colonised sediments, and 215.5 ± 16.0 mg kg?1 in non-colonised sediments. Exoenzymatic bacterial activity (glycosidase) presented a seasonal trend with average values of 1.02 ±0.16 μM cm?3 min?1 in colonised sediment samples and was 0.36 ± 0.27 μM cm?3 min?1 in non-colonised sediments. Mean of VCHB was 4 017 ± 565 cfu g?1 and 1 195 ± 242 cfu g?1 for colonised and non-colonised sediments, respectively. Bacterial isolates from Bardawil Lagoon water and sediments yielded a wide diversity of VCHB: a total of 209 different species, belonging to 13 genera from the water and 12 genera from the sediments.  相似文献   

18.
Both Bacteria and Archaea might be involved in various biogeochemical processes in lacustrine sediment ecosystems. However, the factors governing the intra-lake distribution of sediment bacterial and archaeal communities in various freshwater lakes remain unclear. The present study investigated the sediment bacterial and archaeal communities in 13 freshwater lakes on the Yunnan Plateau. Quantitative PCR assay showed a large variation in bacterial and archaeal abundances. Illumina MiSeq sequencing illustrated high bacterial and archaeal diversities. Bacterial abundance was regulated by sediment total organic carbon and total nitrogen, and water depth, while nitrate nitrogen was an important determinant of bacterial diversity. Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, Chlorobi, Chloroflexi, Cyanobacteria, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, and Verrucomicrobia were the major components of sediment bacterial communities. Proteobacteria was the largest phylum, but its major classes and their proportions varied greatly among different lakes, affected by sediment nitrate nitrogen. In addition, both Euryarchaeota and Crenarchaeota were important members in sediment archaeal communities, while unclassified Archaea usually showed the dominance.  相似文献   

19.
Aims: The aim of the present work was to characterize the heterotrophic bacterial community of a marine recirculating aquaculture system (RAS). Methods and Results: An experimental RAS was sampled for the rearing water (RW) and inside the biofilter. Samples were analysed for bacterial abundances, community structure and composition by using a combination of culture‐dependent and ‐independent techniques. The most represented species detected among biofilter clones was Pseudomonas stutzeri, while Ruegeria spp. and Roseobacter spp. were more abundant among isolates. In comparison, the genera Roseobacter and Ruegeria were well represented in both the biofilter and the RW samples. A variety of possible bacterial pathogens (e.g. Vibrio spp., Erwinia spp. and Coxiella spp.) were also identified in this study. Conclusions: Results revealed that the bacterial community in the RW was quite different to that associated with the biofilter. Moreover, data obtained suggest that the whole bacterial community can be involved in maintaining an effective and a stable rearing environment (shelter effect). Significance and Impact of the Study: Improving the reliability and the sustainability of RAS depends on the correct management of the bacterial populations inside it. This study furnishes more accurate information on the bacterial populations and better clarifies the existing relationships between the bacterial flora in the RW and that associated with the biofilter.  相似文献   

20.
A detailed understanding of the influence of temperature on soil microbial activity is critical to predict future atmospheric CO2 concentrations and feedbacks to anthropogenic warming. We investigated soils exposed to 3–4 years of continuous 5 °C‐warming in a field experiment in a temperate forest. We found that an index for the temperature adaptation of the microbial community, Tmin for bacterial growth, increased by 0.19 °C per 1 °C rise in temperature, showing a community shift towards one adapted to higher temperature with a higher temperature sensitivity (Q10(5–15 °C) increased by 0.08 units per 1 °C). Using continuously measured temperature data from the field experiment we modelled in situ bacterial growth. Assuming that warming did not affect resource availability, bacterial growth was modelled to become 60% higher in warmed compared to the control plots, with the effect of temperature adaptation of the community only having a small effect on overall bacterial growth (<5%). However, 3 years of warming decreased bacterial growth, most likely due to substrate depletion because of the initially higher growth in warmed plots. When this was factored in, the result was similar rates of modelled in situ bacterial growth in warmed and control plots after 3 years, despite the temperature difference. We conclude that although temperature adaptation for bacterial growth to higher temperatures was detectable, its influence on annual bacterial growth was minor, and overshadowed by the direct temperature effect on growth rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号