首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Plants increase their freezing tolerance upon exposure to low, non-freezing temperatures, which is known as cold acclimation. Cold acclimation results in a decrease in the proportion of sphingolipids in the plasma membrane in many plants including Arabidopsis thaliana. The decrease in sphingolipids has been considered to contribute to the increase in the cryostability of the plasma membrane through regulating membrane fluidity. Recently we have proposed a possibility of another important sphingolipid function associated with cold acclimation.1 In animal cells, it has been known that the plasma membrane contains microdomains due to the characteristics of sphingolipids and sterols, and the sphingolipid- and sterol-enriched microdomains are thought to function as platforms for cell signaling, membrane trafficking and pathogen response. In our research on characterization of microdomain-associated lipids and proteins in Arabidopsis, a cold-acclimation-induced decrease in sphingolipids resulted in a decrease of microdomains in the plasma membrane and there were considerable changes in membrane transport-, cytoskeleton- and endocytosis-related proteins in the microdomains during cold acclimation. Based on these results, we discuss a functional relationship between the changes in microdomain components and plant cold acclimation.Key words: Arabidopsis, cold acclimation, detergent-resistant plasma membrane, plasma membrane lipid, plasma membrane protein, microdomain, proteome analysisIn fall or early winter, plants recognize the decrease in temperature and change cellular metabolism to survive against freezing stress. This phenomenon is termed as cold acclimation.2 Because the plasma membrane is the critical site in cell survival during freezing, diverse cold-acclimation-induced changes are believed to ultimately protect the plasma membrane from the irreversible damage under freezing stress.3 One of the notable changes during cold acclimation is a decrease in sphingolipids, a characteristic plasma membrane lipid.4 Sphingolipids have melting temperatures higher than do phosphsolipids, major plasma membrane lipids. Thus, quantitative decreases in sphonglipids are considered to increase in membrane fluidity at low temperatures.4 Some 20 years ago, however, experimental results that sphinglipids form lipid microdomains in the plasma membrane were reported in mammalian and yeast cells.57 Sphingolipids are heterogeneously distributed and self-associated with sterols and specific proteins in the plasma membrane. The sphingolipid/sterol-enriched microdomains in the plasma membrane are sometime called “membrane (lipid) raft” or “caveolae” in mammalian cells, and similar domains have been proposed later in plant cells.811 The microdomains are biochemically isolated as low-density detergent-resistant plasma membrane (DRM) fractions and contain specific proteins associated with membrane trafficking, signal transduction, membrane transport, cytoskeleton interaction and pathogen infection.12 Consequently, the microdomains are suspected to function as platform for assembly of these functional protein complexes and temporal interaction between protein-protein or protein-lipid.7 The microdomains change not only in domain size by coalescence of individual domains but also in protein and lipid compositions by physiological stimulus.1215We hypothesized that a decrease of sphingolipids in the plant plasma membrane during cold acclimation might not only increase membrane fluidity but also change microdomain formation and/or function. Our recent paper characterized cold-responsiveness of lipid and protein components in plant DRMs.1 Arabidopsis thaliana is able to increase in freezing tolerance after few days of cold treatment [the temperature of 50% survival is −7°C before cold treatment at 2°C and decreases to −15°C after 7-d-treatment]. We first isolated plasma membrane-enriched fractions using aqueous two-phase partition system from Arabidopsis seedlings before and after cold acclimation. Next, plasma membrane fractions were subjected to 1% (w/v) Triton X-100 on ice for 30 min and then sucrose density gradient centrifugation. DRM fractions appeared as two white bands at about 40% (w/w) sucrose. DRMs in plants are generally recovered as heavier fractions than those in animals.1618 This is probably because the ratio of protein to lipid is greater in plants than in animals. Arabidopsis DRM fractions were enriched in sphingolipids (glucocerebrosides) and sterols (free sterols, acylated sterylglucosides and sterylglucosides).1 Figure 1 shows the protein and lipid amounts in DRM during cold acclimation. DRM protein recovery rate from the plasma membrane was less than 10% and cold treatment resulted in a gradual decrease of the recovery: the recovery rate of DRM lipids from the plasma membrane rapidly decreased by half only after 2 days of cold acclimation. These data suggest a decrease in the proportion of microdomains in the plasma membrane and temporal changes in proteins and lipids in DRM during cold acclimation.Open in a separate windowFigure 1Changes in the protein and lipid amount in DRM recovered from plasma membrane fractions during cold acclimation. NA, non-acclimated; CA 2, CA 4 and CA 7, cold-acclimated for 2, 4 and 7 days, respectively. (Modified from Minami et al.)We found that there were significant differences in lipid alterations in plasma membrane and DRM fractions in cold acclimation (Fig. 2). The amount of total lipids (per mg of protein) in the plasma membrane fraction greatly increased after cold acclimation but not in the DRM fraction. In the plasma membrane fraction, cold acclimation for 2 days resulted in an increase in the proportions of phospholipids and free sterols and a decrease in the proportion of sphingolipids. In contrast, in the DRM fractions, free sterols increased after 2 days of cold acclimation but the proportion of phospholipids and sphingolipids did not change significantly. These results suggest that the changes in lipid classes in DRM differ from the changes in the whole plasma membrane. Our lipid analysis suggests that the decrease in sphingolipids in the plasma membrane affects the quantitative decrease of microdomains in the plasma membrane during cold acclimation (see Fig. 1). However, the lipid changes in the whole plasma membrane are unlikely to affect proportional changes in DRM-localized lipids except for free sterols.Open in a separate windowFigure 2Lipid changes in DRM and plasma membrane fractions during cold acclimation. NA, non-acclimated; CA 2, CA 4 and CA 7, cold-acclimated for 2, 4 and 7 days, respectively. FS, free sterols; ASG, acylated sterylglucosides; SG, sterylglucosides; GlcCer, glucocerebrosides; PL, phospholipids. (Modified from Minami et al.1)We demonstrated quantitative changes of DRM-localized proteins during cold acclimation using two-dimensional differential gel electrophoresis (2D-DIGE) and western blot analyses.1 2D-DIGE analysis showed that one-third of the DRM-localized proteins quantitatively changed during cold acclimation. Subsequent mass spectrometric analysis of DRM proteins revealed significant changes in various proteins including increases in aquaporin, P-type H+-ATPase and endocytosis-related proteins and decreases in cytoskeletal proteins (tubulins and actins) and V-type H+-ATPase subunits during cold acclimation. The changes were first detected after 2 days of cold acclimation. Based on these results of protein analyses, Figure 3 illustrates changes in distribution patterns of DRM-localized proteins in the plasma membrane during cold acclimation. Cold acclimation induces the decrease in the amount of DRM proteins and lipids in the plasma membrane (Fig. 1), suggesting that component in microdomains decreases in the plasma membrane during cold acclimation. Furthermore, the proportion of some functional proteins changes in DRM during cold acclimation. Qualitative and quantitative changes of DRM proteins during cold acclimation are possibly associated with the plasma membrane functions. Plant cells at low temperature suffer from changes in membrane fluidity and cytoplasmic pH.1921 Upon freezing occurs, plant cells are subjected to severe dehydration and deformation stresses induced by extracellular ice formation.22 To avoid the occurrence of damages from these stresses, plants change plasma membrane components during cold acclimation.23 H+-ATPase or aquaporins are thought to function in regulation of cytoplasmic pH or water transfer across the plasma membrane, respectively.24,25 Cytoskeleton regulates cell structure and intracellular vesicle-trafficking processes reconstruct plasma membrane itself. Thus, the quantitative changes of these proteins in microdomains are likely associated with protective functions against freezing stress in cold acclimation.Open in a separate windowFigure 3Our hypothesis on changes in microdomains during plant cold acclimation. Cold acclimation results in a decrease in microdomains in the plasma membrane (see Fig. 1) and differential changes in various protein compositions in microdomains. We categorized DRM proteins as (1) membrane transport, (2) vesicle trafficking, (3) cytoskeleton, (4) microdomain-associated proteins and (5) others (e.g., plasma membrane and cell-wall reconstruction). Aquaporin, P-type H+-ATPase (1) and endocytosis-related proteins (2) increased and cytoskeletal proteins (3) and V-type H+-ATPase subunits (1) decreased in DRM during cold acclimation.We clearly demonstrated that cold acclimation decreased the amount of DRM and changed both lipid and protein compositions in plant DRM. Our study represents a first step towards elucidation of functions of plant microdomains in cold acclimation, strongly suggesting that microdomains, which function as a platform of membrane transport, membrane trafficking and cytoskeleton interaction, are associated with plant cold acclimation. Changes in microdomain lipids may also affect the protein activities during cold acclimation because sterols or sphingolipids are known to regulate activities of membrane transport or endocytosis. Thus, we suspect that the quantitative changes in microdomain lipids and proteins may correlate with development of freezing tolerance during cold acclimation. The hypothesis that the changes in microdomain components are functionally associated with plant cold acclimation should be reinforced by various approaches such as genetics, biochemistry or physical chemistry.  相似文献   

2.
Sialyltransferase activity has been determined in membrane preparations containing the Golgi apparatus that were isolated from atherosclerotic and normal human aortic intima as well as in plasma of patients with documented atherosclerosis and healthy donors by measuring the transfer of N-acetylneuraminic acid (NeuAc) from CMP-NeuAc to asialofetuin. The asialofetuin sialyltransferase activity was found to be 2 times higher in the atherosclerotic intima as compared to the normal intima and 2-fold higher in patients' plasma than in that from healthy donors. The mean values of the apparent Michaelis constant (K(m)) for the sialylating enzyme for both tissues did not differ and were close for the intima and plasma. In contrast, the maximal velocity (V(max)) was 2 times higher for the atherosclerotic intima than for the normal intima and 3 times higher for patients' plasma than for that of the donors. These results suggest that the activity of asialofetuin sialyltransferases of aortal intima is enhanced in atherosclerosis as is the secretion of their soluble forms into patients' plasma.  相似文献   

3.
Laurdan is a fluorescent probe that detects changes in membrane phase properties through its sensitivity to the polarity of its environment in the bilayer. Variations in membrane water content cause shifts in the laurdan emission spectrum, which are quantified by calculating the generalized polarization (GP). We tested whether laurdan fluorescence could be used to distinguish differences in phospholipid order from changes in membrane fluidity by examining the temperature dependence of laurdan GP and fluorescence anisotropy in dipalmitoylphosphatidylcholine (DPPC) vesicles. The phase transition from the solid ordered phase to the liquid disordered phase was observed as a decrease in laurdan GP values from 0.7 to −0.14 and a reduction in anisotropy from 0.25 to 0.12. Inclusion of various amounts of cholesterol in the membranes to generate a liquid ordered phase caused an increase in the apparent melting temperature detected by laurdan GP. In contrast, cholesterol decreased the apparent melting temperature estimated from anisotropy measurements. Based on these results, it appeared that laurdan anisotropy detected changes in membrane fluidity while laurdan GP sensed changes in phospholipid order. Thus, the same fluorescent probe can be used to distinguish effects of perturbations on membrane order and fluidity by comparing the results of fluorescence emission and anisotropy measurements.  相似文献   

4.
The probe, 1,6-diphenyl-1,3,5-hexatriene (DPH) was used to determine if tumor promoting agents alter cell membranes. The active tumor promoters TPA (12-0-tetra-decanoyl-phorbol-13-acetate), PDD (phorbol-12,13-didecanoate) and PDB (phorbol-12,13-dibenzoate) were found to decrease fluorescence polarization of DPH in rat embryo cells, whereas the inactive tumor promoting compounds phorbol and 4α-PDD failed to induce this change.  相似文献   

5.
Reprogramming metabolism, in addition to modifying the structure and function of the photosynthetic machinery, is crucial for plant acclimation to changing light conditions. One of the key acclimatory responses involves reorganization of the photosynthetic membrane system including changes in thylakoid stacking. Glycerolipids are the main structural component of thylakoids and their synthesis involves two main pathways localized in the plastid and the endoplasmic reticulum (ER); however, the role of lipid metabolism in light acclimation remains poorly understood. We found that fatty acid synthesis, membrane lipid content, the plastid lipid biosynthetic pathway activity, and the degree of thylakoid stacking were significantly higher in plants grown under low light compared with plants grown under normal light. Plants grown under high light, on the other hand, showed a lower rate of fatty acid synthesis, a higher fatty acid flux through the ER pathway, higher triacylglycerol content, and thylakoid membrane unstacking. We additionally demonstrated that changes in rates of fatty acid synthesis under different growth light conditions are due to post-translational regulation of the plastidic acetyl-CoA carboxylase activity. Furthermore, Arabidopsis mutants defective in one of the two glycerolipid biosynthetic pathways displayed altered growth patterns and a severely reduced ability to remodel thylakoid architecture, particularly under high light. Overall, this study reveals how plants fine-tune fatty acid and glycerolipid biosynthesis to cellular metabolic needs in response to long-term changes in light conditions, highlighting the importance of lipid metabolism in light acclimation.

Lipid metabolism is fine-tuned to cellular metabolic demands during thylakoid membrane remodeling in response to long-term changes in light intensity.  相似文献   

6.
Summary The fluorescence polarization method was applied to measure the intracellular fluidity of fractionated guinea pig keratinocytes. Guinea pig epidermal cell suspension was obtained by treatment with EDTA and trypsin, and was separated into high, intermediate, and low density fractions using Percoll density gradient centrifugation. Morphological observation and cytofluorometric analysis of DNA content in the fractionated epidermal cells showed that the high, intermediate, and low density fractions were basal, spinous, and granular cell-rich fractions, respectively. Intracellular fluorescence polarization of each fraction was determined by a polarization spectrofluorometer (Hitachi MPF-4, prototype) with fluorescein diacetate. The P-values were calculated for high, intermediate, and low density fractions as 0.192 ± 0.021, 0.172 ± 0.019, and 0.147 ± 0.012, respectively. Since low P-values indicate a high degree of fluidity, the results indicate that intracellular fluidity of keratinocytes is lower in basal cells and higher in granular cells. Dye-binding experiments showed that fluorescein-binding proteins were not detected in the soluble fraction of the epidermal cells. The present findings suggest that intracellular fluidity of the guinea pig keratinocyte increases during the process of its differentiation.  相似文献   

7.
Measurements of the fluorescent properties of 8-hydroxy-1,3,6-pyrenetrisulfonate (pyranine) enclosed within the internal space of Escherichia coli membrane vesicles enable recordings and quantitative analysis of: (i) changes in intravesicular pH taking place during oxidation of electron donors by the membrane respiratory chain; (ii) transient alkalization of the internal aqueous space resulting from the creation of outwardly directed acetate diffusion gradients across the vesicular membrane. Quantitation of the fluorescence variations recorded during the creation of transmembrane acetate gradients shows a close correspondence between the measured shifts in internal pH value and those expected from the amplitude of the imposed acetate gradients.  相似文献   

8.
The fluorescent compound, 4',5'-bis[N,N-bis(carboxymethyl)aminomethyl] fluorescein (calcein) has been characterized for use in lipid vesicle studies. Particularly useful is its reaction with Co2+, which results in fluorescence quenching. This is accompanied by about a 10-nm blue shift in the uv absorbance bands and a small reduction in the visible absorbance band. For vesicle studies, Co2+ may be combined with citrate, which does not significantly hinder calcein quenching by Co2+. It does augment the absorbance of the metal ion. No significant interaction of citrate X Co2+ with phosphatidylserine vesicles was observed. Zn2+ is capable of displacing Co2+ and restoring calcein fluorescence. Fluorescence quenching due to formation of the calcein X Co2+ complex can also be reversed with EDTA. Thus, calcein is the basis of some simple reactions which can be used to assay changes in the aqueous volume of lipid vesicles.  相似文献   

9.
Steady-state fluorescence polarization measurements of 1,6-diphenyl-1,3,5-hexatriene in microsomal lipids from Tetrahymena pyriformis cells grown at 39 or 15°C revealed discrete slope discontinuities in plots of polarization vs. temperature. Two well-defined ‘break points’ were present in the 0–40°C temperature range examined and their precise location was dependent upon the growth temperature of the cells. By mixing phospholipids from cells grown at different temperatures, the break points at 17.5 and 32°C in 39°C-lipid multilayer preparations were shown to correlate with the breaks at 12 and 27°C, respectively, in similar preparations from 15°C-grown cells. The discrete break points were also present, but at slightly different characteristic temperatures, in a phosphatidylcholine fraction and a phosphatidylethanolamine plus 2-aminoethylphosphonolipid fraction purified from the phospholipids and in total microsomal lipids (phospholipids plus the sterol-like triterpenoid, tetrahymanol). However, catalytic hydrogenation of the phospholipid fatty acids or mixing the non-hydrogenated phospholipids with increasing proportions of synthetic dipalmitoyl phosphatidylcholine eliminated the break points. We interpret this discontinuous thermotropic response in microsomal lipids as signalling a lipid phase separation of importance in regulating physiological events.  相似文献   

10.
11.
Adult rainbow trout were acclimated to three different temperature and photoperiod regimes: 17°C, 14 h light: 10 h dark (summer); 7° C, 14 h light: 10 h dark; and 5° C, 8 h light: 16 h dark (winter). Blood was collected from these fish after 40 days acclimation, and the response of red blood cells to in vitro adrenergic stimulation was assessed. To examine potential seasonal variations in endogenous levels of circulating catecholamines, plasma levels of adrenaline (Ad) and noradrenaline (NAd) were measured at rest and after exercise. At rest, there were no differences between groups in plasma levels of either Ad or NAd, but, after exercise, the pattern of catecholamine elevation differed. In fish acclimated to 17 and 7° C in summer, Ad and NAd increased by about the same amount (10–15 times). In fish acclimated to 5° C in winter, NAd increased about three-fold, compared to the near 50-fold increase in Ad levels. Whether this difference between groups can be attributed to seasonal influences is unclear. At both low (0·5%) and high (2%) PCO 2, adrenergic stimulation (2 × 10-7 M Ad) of trout red cells in vitro led to a significant reduction in MCHC (mean cell [haemoglobin]), compared to non-stimulated cells. However, only at the high PCO 2 were pHe and red cell pHi significantly different from those in the non-stimulated cells: the latter was higher and the former lower in the stimulated cells. There were no differences in the response of red cells to adrenergic stimulation between groups of fish. Under the conditions of the present study no influence of season and/or temperature on the in vitro response of trout red cells to adrenergic stimulation was shown.  相似文献   

12.
The correlation between the fluidity of phospholipids and their fatty acid composition was studied by spin label technique and gas-liquid chromatography for three major phospholipid species in Tetrahymena pyriformis during temperature acclimation. The fluidity of 2-aminoethylphosphonolipid increased within the first 10 h of the cold-acclimation when the content of gamma-linolenic acid in 2-aminoethylphosphonolipid was highest, and it then decreased up to 24 h. On the other hand, the fluidities of phosphatidylethanolamine and phosphatidylcholine showed a gradual decrease up to 24 h after the temperature shift, although gamma-linolenic acid contents were highest at 10 h after the temperature shift. Thus the fluidity changes of these two phospholipids were interpreted as resulting from the altered content of other fatty acids in addition to gamma-linolenic acid, since the gamma-linolenic acid content was smaller than that of 2-aminoethylphosphonolipid. The results suggest that the content of gamma-linolenic acid in 2-aminoethylphosphonolipid plays a role in regulating the thermal adaptation process.  相似文献   

13.
We compared temperature acclimation of the cyanobacterium Synechococcus sp. strain PCC 7942 and two psbA inactivation mutants, R2K1 and R2S2C3, following shifts from 37 to 25°C. Wild-type cultures incubated in the dark at 25°C showed no chill-induction of lipid desaturation, probably because the lipid acclimation is dependent on photosynthesis. Incubation in the light at 25°C, however, induced considerable increases in membrane lipid desaturation, and within 24 h the monoenoic fatty acids increased from about 46 to about 57%. In parallel with this desaturation the ratio of monogalactosyldiacylglycerol to digalactosyldiacylglycerol (MGDG/DGDG) increased. Both of these lipid changes increase the repulsive forces of the hydrophobic chains of the membrane lipids and thereby alter the physical properties of the membrane. As expected, under irradiation this temperature shift also induced a reversible replacement of the constitutive photosystem II protein, D1:1, with an alternative stress form, D1:2. Photosynthesis decreased to 42% of the control level within the initial 2 h of cold incubation, but later recovered. The D1:2 protein accumulated to high levels between 2 and 4 h after the temperature shift, when desaturation of membrane lipids and MGDG/DGDG ratio had not yet increased significantly. Much of this accumulated D1:2 protein was in a higher molecular mass form, termed D1:2*, which is probably an unprocessed precursor form of the protein. In contrast to the wild-type cells the psbA inactivation mutants, R2K1 and R2S2C3 did not accumulate any precursor form of D1 protein either at the optimal or low growth temperature. The R2S2C3 mutant strain expresses only the constitutive D1:1 protein and suffered severe photoinhibition following the temperature shift. Nevertheless, R2S2C3 eventually recovered some photosynthetic activity, induced lipid desaturation and slowly resumed growth at 25°C, thus demonstrating acclimation to the lower growth temperature. The R2K1 mutant synthesizes only the D1:2 stress form of D1 protein and maintained oxygen evolution at a high level (ca 70% of a control rate) after the low temperature shift. Chill-induced lipid desaturation and increase in MGDG/DGDG ratio did proceed but, for unknown reasons the strain did not resume growth at the lower temperature. The physical properties of the membrane lipids were not the limiting factor for growth resumption. Our results demonstrate that in the wild-type the chill-induced desaturation of membrane lipids follows after the exchange of the two forms of the D1 proteins, but the D1 exchange results in accumulation of unprocessed D1:2* polypeptides until the lipid composition later acclimates. We also show that the lipid desaturation process in Synechococcus sp. strain PCC 7942 is dependent upon photosynthetic activity.  相似文献   

14.
15.
Fluorescence resonance energy transfer (FRET) was used to monitor interactions between Cy3-labeled plasmid DNA and NBD-labeled cationic liposomes. FRET data show that binding of cationic liposomes to DNA occurs immediately upon mixing (within 1 min), but FRET efficiencies do not stabilize for 1-5 h. The time allowed for complex formation has effects on in vitro luciferase transfection efficiencies of DOPE-based lipoplexes; i.e., lipoplexes prepared with a 1-h incubation have much higher transfection efficiencies than samples with 1-min or 5-h incubations. The molar charge ratio of DOTAP to negatively charged phosphates in the DNA (DOTAP+/DNA-) also affected the interaction between liposomes and plasmid DNA, and interactions stabilized more rapidly at higher charge ratios. Lipoplexes formulated with DOPE were more resistant to high ionic strength than complexes formulated with cholesterol. Taken together, our data demonstrate that lipid-DNA interactions and in vitro transfection efficiencies are strongly affected by the time allowed for complex formation. This effect is especially evident in DOPE-based lipoplexes, and suggests that the time allowed for lipoplex formation is a parameter that should be carefully controlled in future studies.  相似文献   

16.
Fluorescence resonance energy transfer (FRET) was used to monitor interactions between Cy3-labeled plasmid DNA and NBD-labeled cationic liposomes. FRET data show that binding of cationic liposomes to DNA occurs immediately upon mixing (within 1 min), but FRET efficiencies do not stabilize for 1-5 h. The time allowed for complex formation has effects on in vitro luciferase transfection efficiencies of DOPE-based lipoplexes; i.e., lipoplexes prepared with a 1-h incubation have much higher transfection efficiencies than samples with 1-min or 5-h incubations. The molar charge ratio of DOTAP to negatively charged phosphates in the DNA (DOTAP+/DNA) also affected the interaction between liposomes and plasmid DNA, and interactions stabilized more rapidly at higher charge ratios. Lipoplexes formulated with DOPE were more resistant to high ionic strength than complexes formulated with cholesterol. Taken together, our data demonstrate that lipid-DNA interactions and in vitro transfection efficiencies are strongly affected by the time allowed for complex formation. This effect is especially evident in DOPE-based lipoplexes, and suggests that the time allowed for lipoplex formation is a parameter that should be carefully controlled in future studies.  相似文献   

17.
Testosterone (a strongly hydrophobic steroid) and testosterone hemisuccinate (a negatively charged derivative) were used as probes to investigate alterations in the outer membrane of Pseudomonas aeruginosa. Diffusion rates of the steroids across the lipid bilayer were measured by coupling the influx of these compounds to their subsequent oxidation by an intracellular delta1-dehydrogenase enzyme. Wild-type cells of P. aeruginosa (strain PAO1) were found to be 25 times more permeable to testosterone than to testosterone hemisuccinate. The uptake of the latter compound appeared to be partially dependent on the external pH, thus suggesting a preferential diffusion of the uncharged protonated form across the cell envelope. Using various PAO mutants, we showed that the permeation of steroids was not affected by overexpression of active efflux systems but was increased up to 5.5-fold when the outer membrane contained defective lipopolysaccharides or lacked the major porin OprF. Such alterations in the hydrophobic uptake pathway were not, however, associated with an enhanced permeability of the mutants to the small hydrophilic molecule N,N,N',N'-tetramethyl-p-phenylene diamine. Thirty-six agents were also assayed for their ability to damage the cell surface of strain PAO1, using testosterone as a probe. Polymyxins, rBPI23, chlorhexidine, and dibromopropamidine demonstrated the strongest permeabilizing activities on a molar basis in the presence of 1 mM MgCl2. These amphiphilic polycations increased the transmembrane diffusion of testosterone up to 50-fold and sensitized the PAO1 cells to hydrophobic antibiotics. All together, these data indicated that the steroid uptake assay provides a direct and accurate measurement of the hydrophobic uptake pathway in P. aeruginosa.  相似文献   

18.
The spectral properties of the fluorescent probe laurdan (6-dodecanoyl-2-dimethylaminonaphthalene) were exploited to learn about the physical state of the lipids in the nicotinic acetylcholine receptor (AChR)-rich membrane and compare them with those in reconstituted liposomes prepared from lipids extracted from the native membrane and those formed with synthetic phosphatidylcholines. In all cases redshifts of 50 to 60 nm were observed as a function of temperature in the spectral emission maximum of laurdan embedded in these membranes. The so-called generalized polarization of laurdan exhibited high values (0.6 at 5 degrees C) in AChR-rich membranes, diminishing by approximately 85% as temperature increased, but no phase transitions with a clear Tm were observed. A still unexploited property of laurdan, namely its ability to act as a fluorescence energy transfer acceptor from tryptophan emission, has been used to measure properties of the protein-vicinal lipid. Energy transfer from the protein in the AChR-rich membrane to laurdan molecules could be observed upon excitation at 290 nm. The efficiency of this process was approximately 55% for 1 microM laurdan. A minimum donor-acceptor distance r of 14 +/- 1 A could be calculated considering a distance 0 < H < 10 A for the separation of the planes containing donor and acceptor molecules, respectively. This value of r corresponds closely to the diameter of the first-shell protein-associated lipid. A value of approximately 1 was calculated for Kr, the apparent dissociation constant of laurdan, indicating no preferential affinity for the protein-associated probe, i.e., random distribution in the membrane. From the spectral characteristics of laurdan in the native AChR-rich membrane, differences in the structural and dynamic properties of water penetration in the protein-vicinal and bulk bilayer lipid regions can be deduced. We conclude that 1) the physical state of the bulk lipid in the native AChR-rich membrane is similar to that of the total lipids reconstituted in liposomes, exhibiting a decreasing polarity and an increased solvent dipolar relaxation at the hydrophilic/hydrophobic interface upon increasing the temperature; 2) the wavelength dependence of laurdan generalized polarization spectra indicates the presence of a single, ordered (from the point of view of molecular axis rotation)-liquid (from the point of view of lateral diffusion) lipid phase in the native AChR membrane; 3) laurdan molecules within energy transfer distance of the protein sense protein-associated lipid, which differs structurally and dynamically from the bulk bilayer lipid in terms of polarity and molecular motion and is associated with a lower degree of water penetration.  相似文献   

19.
In view of the demonstrated cholesterol-binding capabilities of certain cyclodextrins, we have examined whether these agents can also catalyze efficient transfer of cholesterol between lipid vesicles. We here demonstrate that beta- and gamma-cyclodextrins can dramatically accelerate the rate of cholesterol transfer between lipid vesicles under conditions where a negligible fraction of the sterol is bound to cyclodextrin in steady state. beta- and gamma-cyclodextrin enhance the rate of transfer of cholesterol between vesicles by a larger factor than they accelerate the transfer of phospholipid, whereas, for alpha- and methyl-beta-cyclodextrin, the opposite is true. Analysis of the kinetics of cyclodextrin-mediated cholesterol transfer between large unilamellar vesicles composed mainly of 1-stearoyl-2-oleoyl phosphatidylcholine (SOPC) or SOPC/cholesterol indicates that transbilayer flip-flop of cholesterol is very rapid (halftime < 1-2 min at 37 degrees C). Using beta-cyclodextrin to accelerate cholesterol transfer, we have measured the relative affinities of cholesterol for a variety of different lipid species. Our results show strong variations in cholesterol affinity for phospholipids bearing different degrees of chain unsaturation and lesser, albeit significant, effects of phospholipid headgroup structure on cholesterol-binding affinity. Our findings also confirm previous suggestions that cholesterol interacts with markedly higher affinity with sphingolipids than with common membrane phospholipids.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号