首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radiation-induced early transient incapacitation (ETI) is often accompanied by severe systemic hypotension. However, postradiation hypotension does not occur with equal frequency in all species and is not reported with consistency in the canine. In an attempt to clarify the differences in reported canine postradiation blood pressures, canine systemic blood pressures were determined both before and after exposure to gamma radiation of either 80 Gy or 100 Gy. Data obtained from six sham-radiated beagles and 12 radiated beagles indicated that 100 Gy, whole-body, gamma radiation produced a decrease in systemic mean blood pressure while 80 Gy, whole-body, gamma radiation did not. Analysis of this data could be consistent with a quantal response to a gamma radiation dose between 80 Gy and 100 Gy.  相似文献   

2.
To investigate the effects of ionizing radiation on an isolated neuronal network without complicating systemic factors, slices of hippocampus from the guinea pig were isolated and studied in vitro. Slices were irradiated with a 60Co source and compared to paired, sham-irradiated controls. Electrophysiological activity in the CA 1 population of pyramidal cells was evoked by stimulation of the stratum radiatum. Analysis of the somatic and dendritic responses suggested sites of radiation damage. Orthodromically evoked activity was significantly decreased in slices receiving greater than 75 Gy gamma radiation. The effects were dose and dose-rate dependent. At 20 Gy/min, doses of 50 Gy and greater produced synaptic impairment while doses of 75 Gy and greater also produced postsynaptic damage (i.e., the ability of the synaptic response to generate an action potential). A lower dose rate, 5 Gy/min, reduced the sensitivity of synaptic damage to radiation exposure; synaptic impairment required a dose of 100 Gy or greater at the lower dose rate. In contrast, postsynaptic damage was not sensitive to dose rate. This study demonstrates that ionizing radiation can directly affect the integrated functional activity of neurons.  相似文献   

3.
For 24 h after total gamma-radiation of mature Wistar male rats (180-210 g) in the dose of 150 Gy, ultrastructural rearrangements of the cerebral sensomotor cortex are presented as small destructive changes in neurons, neuroglia and vascular endothelium. Total combination of the changes in ultrastructure of the blood capillaries and perivascular astrocytes makes it possible to suppose that permeability of the microvascular bed wall is increased. At this period, together with the destructive changes there are evidently certain compensatory-restorative processes, developing in the cerebral tissue. It is possible to suppose that already during the first hours after the radiation the ultrastructural changes of neurons are resulted not only from the direct effect of radiation, but from certain influences of the radiation damage of neuroglia and microvessels.  相似文献   

4.
The fluorescence of tryptophan residues of gramicidin A (gA), bound to phosphatidylcholine liposomes contains valuable information about local changes in the environment of the molecule induced by gamma radiation. With this work, we aim to demonstrate that the gamma radiation effect on the peptide involves the action of free radicals, derived from water radiolysis and the process of lipid peroxidation. Basically, the methodology consists of the analysis of UV and fluorescence emission spectra of the peptide liposome complexes under control conditions and upon gamma irradiation. Free radical production was impaired by the removal of molecular oxygen or the presence of ethanol in the liposome suspension. The intensity of the tryptophan fluorescence was recorded as a function of the gamma radiation dose in the range of 0-250 Gy and the data were fitted with a single decay exponential function containing an additional constant term (named residual fluorescence). The correlation between the decrease in tryptophan fluorescence emission (D(c) = 80 +/- 10 Gy) and increase in gamma radiation dose indicates the partial damage of the tryptophan side chains of gA. O(2) removal or ethanol addition partially reduced the decay of the tryptophan fluorescence emission involving an indirect action of gamma radiation via a water radiolysis mechanism. The residual fluorescence emission (A(0)) increases in O(2)-free buffer (98 +/- 13) and in 10% ethanol-containing buffer (74 +/- 34) compared to control conditions (23 +/- 5). Varying the dose rate between 1-10 Gy/min at a constant dose of 50 Gy, an inverse dose-rate effect was observed. Thus, our study provides evidence for the lipid peroxidation effect on the tryptophan fluorescence. In conclusion, this article sustains the hypothesis of the connection between the lipid peroxidation and structural changes of membrane proteins induced by gamma radiation. Copyright (c) 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
Mammary tumour development was followed in two experiments involving a total of 2229 female Sprague-Dawley rats exposed to various doses of X or gamma rays at different dose rates. The data for another 462 rats exposed to tritiated water in one of these experiments were also analyzed. The incidence of adenocarcinomas and fibroadenomas at a given time after exposure increased linearly in proportion to total radiation dose for most groups. However, no significant increase in adenocarcinomas was observed with chronic gamma exposures up to 1.1 Gy, and the increase in fibroadenomas observed with chronic gamma exposures at a dose rate of 0.0076 Gy h-1 up to an accumulated dose of 3.3 Gy was small compared to that observed after acute exposures. The incidence of all mammary tumors increased almost linearly with the log of dose rate in the range 0.0076 to 26.3 Gy h-1 for 3 Gy total dose of gamma rays. The effects of X rays appeared to be less influenced by dose rate than were the effects of gamma rays.  相似文献   

6.
目的观察低剂量伽玛刀照射癫痫大鼠颞叶神经元超微结构的变化,探讨线粒体形态改变程度及性质。方法建立大鼠青霉素局灶性癫痫动物模型,将48只SD大鼠分为对照组(A组)、实验组(癫痫模型组,简称B组)和癫痫后伽玛刀照射组(C组)。照射周边剂量12Gy,等剂量曲线为50%。分别于0.5h~60d后取靶区颞叶皮质区制备电镜样本,透射电镜观察,通过计算机图像分析系统对线粒体形态计量分析。结果A组细胞结构基本正常;B组可见神经元细胞质细胞器明显减少空化,线粒体体密度、数密度、比表面和嵴膜密度较对照组明显减少(P〈0.05),线粒体平均体积和平均截面积较对照组明显增大(P〈0.05)。C组早期与B组基本一致,细胞质内有少量脂褐素,中期和晚期线粒体的各项参数与A组相差不显著,低剂量伽玛刀照射后早期线粒体的平均体积、平均截面积数密度、比表面与A组相差显著(P〈0.05),圆球度各组间无明显差异。结论大鼠癫痫发作后其线粒体的形态结构发生明显变化,低剂量伽玛刀照射对神经元的修复有重要作用,本研究认为线粒体参与了癫痫的病理过程。  相似文献   

7.
B Smajda 《Radiobiologiia》1991,31(2):278-281
Three groups of adult male Wistar rats were exposed to neutrons (a single dose of 2 Gy) and gamma radiation (a continuous dose of 6 Gy delivered within 10.5 days) and a combination of both types of radiation. The physical fitness of irradiated and control rats was measured using a forced swimming test in the course and after the termination of the irradiation. A marked decrease in the physical fitness of all irradiated animals was followed by its normalization 3 weeks after irradiation.  相似文献   

8.
The influence of antibiotic decontamination of Pseudomonas contamination of the GI tract prior to whole-body neutron or gamma irradiation was studied. It was observed that for fission neutron doses greater than 5.5 Gy, cyclotron-produced neutron doses greater than 6.7 Gy, and 137Cs gamma-ray doses greater than 14.4 Gy, the median survival time of untreated rats was relatively constant at 4.2 to 4.5 days, indicating death was due to intestinal injury. Within the dose range of 3.5 to 5.5 Gy of fission neutrons, 4.9 to 6.7 Gy of cyclotron-produced neutrons, and 9.6 to 14.4 Gy of gamma rays, median survival time of these animals was inversely related to dose and varied from 12 to 4.6 days. This change in survival time with dose reflects a transition in the mechanisms of acute radiation death from pure hematopoietic, to a combination of intestinal and hematopoietic, to pure intestinal death. Decontamination of the GI tract with antibiotics prior to irradiation increased median survival time 1 to 5 days in this transitional dose range. Contamination of the intestinal flora with Pseudomonas aeruginosa prior to irradiation reduced median survival time 1 to 5 days in the same radiation dose range. Pseudomonas-contaminated animals irradiated within this transitional dose range had maximum concentrations of total bacteria and Pseudomonas in their livers at the time of death. However, liver bacteria concentration was usually higher in gamma-irradiated animals, due to a smaller contribution of hematopoietic injury in neutron-irradiated animals. The effects of both decontamination of the GI tract and Pseudomonas contamination of the GI tract were negligible in the range of doses in which median survival time was dose independent, i.e., in the pure "intestinal death" dose range. Finally, despite the marked changes in survival time produced by decontamination or Pseudomonas contamination in the "transitional dose range," these treatments had little effect on ultimate survival after irradiation as measured by the LD50/5 day and the LD50/30 day end points. The implications of these results with respect to treatment of acute radiation injury after whole-body irradiation are discussed.  相似文献   

9.
This experiment assessed the biochemical changes in fenugreek plants exposed to gamma radiation. Two pot experiments were carried out during two growing seasons of 2015 and 2016. Seeds were subjected to five doses of gamma irradiation (25, 50, 100, 200 and 400?Gy) and were immediately planted into soil pots in a greenhouse. The experimental analysis was performed in M1 and M2 generations. Significant differences between irradiated and control plants were detected for most studied characters in M1 and M2 generations. It was demonstrated that low doses of gamma irradiation led to gradually increases in growth, yield characters, leaf soluble protein concomitantly with increases in the contents of phenolic and flavonoids compounds particularly at 100?Gy. These changes were accompanied by a substantial increase in ascorbic acid, α-tocopherol and retinol contents. Proline content was increased under all doses of gamma rays in M1 generation and the highest amount of proline was obtained at 200?Gy with visible decrease in M2 generation under the same dose. Meanwhile, the highest dose of gamma radiation (400?Gy) decreased all the studied parameters in both mutagenic generations as compared with control plants. In addition, gamma irradiation doses induced changes in DNA profile on using five primers and caused the appearance and disappearance of DNA polymorphic bands with variation in their intensity. These findings confirm the effectiveness of relatively low doses of gamma rays on improving the physiological and biochemical criteria of fenugreek plants.  相似文献   

10.
Acute low-dose irradiation (0.1-1 Gy, 1.33 Gy/min) of cells of a human glioblastoma cell line, A-172, induced a dose-dependent monophasic accumulation of TP53 (formerly known as p53) and CDKN1A (formerly known as WAF1). In contrast, chronic gamma irradiation (0.001 Gy/min) produced a clear biphasic response of accumulation TP53 with the first peak at 1.5 h (0.09 Gy) and the second peak at 10 h (0.54 Gy). Significantly, when the cells were preirradiated with a chronic dose of gamma irradiation for 24 h (1.44 Gy) or 50 h (3 Gy), they no longer responded to an acute challenging dose to produce a dose-dependent response of the TP53 pathway. These findings suggest that chronic irradiation at low dose rate alters the TP53-dependent signal transduction pathway. Wearing away of the TP53 pathway by chronic exposure to radiation may have important implications for radiation protection.  相似文献   

11.
Both hypochlorite and ionizing radiation induce oxidation processes of biomolecules. The effects are dependent to a large degree on the dose of the oxidizing agent. Previously we observed that split doses of gamma radiation caused lower hemolysis than the same but single doses. The critical factors influencing the occurrence of this effect were: the value of the first dose and the time between the doses. In this work we examined the effect of gamma radiation (40-400 Gy) on hemolysis of human erythrocytes induced by hypochlorite. Erythrocytes in PBS, hematocrit 2 %, were irradiated with doses of 40, 200 or 400 Gy. The dose-rate was 23.8 Gy/min. Cell suspensions were stirred during irradiation. After irradiation the erythrocytes were incubated for 1, 3 or 4 hours at room temperature and then hypochlorite was added to a 250 microM concentration. Control samples were erythrocytes treated only with NaOCl. The level of hemolysis was determined after NaOCl addition. Hemolysis of erythrocytes preirradiated with the dose of 400 Gy was lower than hemolysis of erythrocytes treated only with NaOCl. The effect was dependent on the time between the end of irradiation and the addition of NaOCl. In contrast, slightly higher hemolysis was observed for erythrocytes preirradiated with lower (40 or 200 Gy) doses of radiation. The observed effect is similar to that obtained for radiation-induced hemolysis. It suggests that ionizing radiation may induce structural and/or functional changes in erythrocytes, which make the cell more resistant to further oxidative damage.  相似文献   

12.
The study of early neurological disturbances (END) in rats after fractionated gamma irradiation with doses of 37.5-225 Gy at dose rate of 30.11 Gy/min has demonstrated that the initial response of animals to pulse ionizing radiation is a function of the electric charge induced by ionizing radiation. A change in the probability of occurrence of each of the END symptoms, with the increased intervals between exposures, is merely an indirect indication of the eliminating mechanisms and is intricately connected with the irritating charge value. The period of dose half-elimination in 16 min. The threshold effective dose rate leading to END is of the order of 2.12 Gy/min. The proposed empiric relationships permit to correlate the probability of END symptom occurrence with the continuous quantitative parameter of fractionated irradiation, that is, with an effective dose as an analogue of the irritating effect.  相似文献   

13.
Incidence of cerebrovascular diseases (CVD) has been studied in a cohort of 12210 workers first employed at one of the main plants (reactors, radiochemical or plutonium) of the Mayak nuclear facility during 1948-1958 and followed up to the end of 2000. Information on external gamma doses is available for virtually all (99.9%) of these workers; the mean (+/- one standard deviation) total gamma dose was 0.91 +/- 0.95 Gy (99% percentile 3.9 Gy) for men and 0.65 +/- 0.75 Gy (99% percentile 2.99 Gy) for women. Plutonium body burden was measured only for 30.0% of workers. Amongst those monitored, the mean (+/- standard deviation) cumulative liver dose from plutonium alpha exposure was 0.40 +/- 1.15 Gy (99% percentile 5.88 Gy) for men and 0.81 +/- 4.60 Gy (99% percentile 15.95 Gy) for women 4418 cases (first diagnosis) of CVD were identified in the studied cohort. A statistically significant increasing trend in CVD incidence with total external gamma dose was revealed after adjustment for non-radiation factors and internal exposure from incorporated plutonium-239. Excess relative risk per Gy was 0.464 (95% confidence interval 0.360-0.567). Incidence of CVD was statistically significantly higher for the workers chronically exposed to external gamma rays at a dose above 1.0 Gy A statistically significant increasing trend in CVD incidence with internal liver dose from plutonium alpha exposure was observed after adjustment for non-radiation factors and external exposure. ERR per Gy was 0.155 (95% confidence interval 0.075-0.235). CVD incidence was statistically significantly higher among workers with a plutonium liver dose above 0.1 Gy, although the trend estimates differed between workers at different plants. The incidence risk estimates for external radiation are generally compatible with estimates from the study of Chernobyl clean-up workers, although the incidence data point to higher risk estimates compared to those from the Japanese A-bomb survivors.  相似文献   

14.
The Comet assay (microgel electrophoresis) was used to study DNA damage in Raji cells, a B-lymphoblastoid cell line, after treatment with different doses of neutrons (0.5 to 16 Gy) or gamma rays (1.4 to 44.8 Gy). A better growth recovery was observed in cells after gamma-ray treatments compared with neutron treatments. The relative biological effectiveness (RBE) of neutron in cell killing was determined to be 2.5. Initially, the number of damaged cells per unit dose was approximately the same after neutron and gamma-ray irradiation. One hour after treatment, however, the number of normal cells per unit dose was much lower for neutrons than for gamma rays, suggesting a more efficient initial repair for gamma rays. Twenty-four hours after treatment, the numbers of damaged cells per unit dose of neutrons or gamma rays were again at comparable level. Cell cycle kinetic studies showed a strong G2/M arrest at equivalent unit dose (neutrons up to 8 Gy; gamma rays up to 5.6 Gy), suggesting a period in cell cycle for DNA repair. However, only cells treated with low doses (up to 2 Gy) seemed to be capable of returning into normal cell cycle within 4 days. For the highest dose of neutrons, decline in the number of normal cells seen at already 3 days after treatment was deeper compared with equivalent unit doses of gamma rays. Our present results support different mechanisms of action by these two irradiations and suggest the generation of locally multiply damaged sites (LMDS) for high linear energy transfer (LET) radiation which are known to be repaired at lower efficiency.  相似文献   

15.
The effects of a continuous exposure to cobalt gamma rays administered to rats at a daily dose of 0, 0.07, 0.12, 0.20 or 0.30 Gy for a period of up to 90 or 135 days, have been observed on their B lymphocyte populations and on their immunoglobulin serum levels. The effects increase with the daily dose and the duration of irradiation. At a daily dose of 0.07 Gy, no clear effect was observed. The depletion was almost negligible after 30 days at a daily dose of 0.12 Gy, but visible after all other doses and durations. However, a clear difference in susceptibility was observed between the marginal zone B compartment and the follicular one, the former being much more affected by the radiation than the second.  相似文献   

16.
Yu H  Su MY  Wang Z  Nalcioglu O 《Radiation research》2002,158(2):152-158
Dynamic contrast-enhanced MRI with two different-sized contrast agents, Gd-DTPA and Gadomer-17, was used to study the effects of radiation on the pharmacokinetics of the paramagnetic enhancement of water relaxation in the rat R3230 AC adenocarcinoma tumor model. The kinetics of enhancement was analyzed by a two-compartment pharmacokinetic model to derive parameters related to vascular volume (V(b)) and permeability (K(2)). Rats implanted with tumors were divided into two groups; one received 5 Gy and the other received 20 Gy (137)Cs gamma rays. Sequential dynamic contrast-enhanced MRI studies were performed, one before irradiation, one at day 1 after irradiation, and another at day 3 after irradiation, to investigate the effect of the radiation dose and the changes that occurred over time. The analysis was performed on a pixel-by-pixel basis to study the heterogeneity within the tumor. The pixel distribution profiles of V(b) and K(2) from each tumor were obtained to assess the regional radiation-induced effects on vascular volume and permeability. No significant change in vascular volume was detected with either Gd-DTPA or Gadomer-17 after irradiation of the tumor; however, a small dependence of K(2) on the radiation dose was observed. After low-dose (5 Gy) irradiation, the mean value of K(2) decreased by 46% at day 1 compared to the baseline, presumably due to cell swelling, and decreased further by 67% from the baseline on day 3. When the dose was increased to 20 Gy, the mean value of K(2) measured with Gadomer-17 did not show any significant changes at either day 1 or day 3 after irradiation. The value of K(2) measured with Gd-DTPA did not show any significant changes after either the low or the high radiation dose.  相似文献   

17.
These experiments measured the effect of gamma radiation on the nuclear envelope using doxyl-fatty acid spin-label probes. Nuclei were isolated from cultured MOLT-4 cells, a radiation-sensitive human T-cell lymphocyte. Membrane fluidity was measured from the electron paramagnetic resonance spectra of the probes. MOLT-4 cells were grown under standard conditions, and suspensions were exposed to 60Co gamma radiation at room temperature. The spectra of 5-doxylstearic acid in the nuclei were those of a strongly immobilized label. A difference in the membrane fluidity was detected in a series of experiments comparing labeled irradiated and nonirradiated nuclei. The change in fluidity was measured by comparing the changes in the order parameter, S, of the spin label in irradiated nuclei with those in control nuclei. The change in the S ratio is dependent on radiation dose, increasing with doses up to 15 Gy. The maximum change of the order parameter with time after irradiation occurs 16-20 h after radiation exposure. These observations are correlated with changes in cell viabilities.  相似文献   

18.
BACKGROUND: Although there are some reports on neutron teratology, there is little information on the adaptive response of gamma radiation for protection against neutron‐induced teratogenesis. This study examined whether or not a low dose of gamma radiation can induce an adaptive response in mouse fetuses exposed to a subsequent dose of neutrons in vivo. METHODS: Pregnant ICR mice were exposed to a priming dose of 0.3 Gy (0.9 Gy/min) of gamma rays on day 10.5 of gestation and challenged with 0.8 Gy (0.94 Gy/minute) of neutrons 24 hlater. The mice were sacrificed on day 18.5 of gestation. The fetuses were examined for mortality, growth retardation, and other morphologic abnormalities. RESULTS: The tail length in the 0.3 Gy of gamma rays + 0.8 Gy of neutrons group was significantly shorter than in the 0.8 Gy of neutrons group. Although there was no significant difference compared with the 0.8 Gy of neutrons group, the number of live fetuses in the 0.3 Gy of gamma rays +0.8 Gy of neutrons group was lower. There was no evidence of primed exposure‐related reductions in the malformed fetuses. Although there was no significant difference compared with the unprimed group, the number of malformed offspring in the primed group was higher. Furthermore, the incidence of kinked tail and adactyly was significantly higher in the primed mice than in the unprimed mice. CONCLUSIONS: Overall, this study shows that exposure to 0.3 Gy of gamma rays failed to induce an adaptive response of fetogenesis to a neutron challenge dose. Birth Defects Res (Part B) 83:502‐506, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

19.
A single injection of tritium oxide in a dose of 1.1 MBq/g (0.5 Gy for 30 days) was shown to impair the nucleic acid metabolism in the rat spleen. The changes in the indices under study (e.g. mass, nucleic acid content and biosynthesis) increased with the dose, and the recovery started later and was incomplete. Qualitative differences were found in the effects of tritium oxide and gamma radiation with regard to the rate of DNA biosynthesis: 24 h following the injection of the radionuclide specific activity of DNA increased with dose, whereas this function was inverse in the case of gamma irradiation as it was reported in the literature.  相似文献   

20.
Ionizing radiation is increasingly used as an alternative to post‐harvest crop fumigation by methyl bromide. We studied the effects of gamma irradiation on Helicoverpa assulta (Lepidoptera: Noctuidae) at different stages of development to determine the minimal dose for the prevention of normal emergence of adults. We selected five doses of gamma rays (100, 200, 300, 400 and 500 Gy) based on preliminary experiments and irradiated eggs, larvae, pupae and adults. A dose of 100 Gy to eggs allowed 21.83% of larvae to pupate, but these all died during the pupal stage. A dose of 100 Gy to last‐instar larvae caused larval or pupal death, or the emergence of abnormal adults; no normal adults developed. Irradiation of pupae with doses of 300 Gy and above resulted either in their death or emergence of abnormal adults; however, after 100 or 200 Gy, normal adults emerged and F1 eggs were produced, but no eggs hatched. Following irradiation of adults, eggs were produced at all doses, although the numbers were significantly decreased compared to untreated controls (P < 0.05; 69.45–125.50 vs. 475.05 eggs per female); however, none of the eggs hatched. As prevention of normal emergence is a key outcome for measuring the effectiveness of radiation, then the 100 Gy dose was effective for irradiation of eggs and larvae, and 300 Gy for pupae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号