首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mononuclear phagocytes are critical components of the innate host defense of the lung to inhaled bacterial pathogens. The monocyte chemotactic protein CCL2 plays a pivotal role in inflammatory mononuclear phagocyte recruitment. In this study, we tested the hypothesis that increased CCL2-dependent mononuclear phagocyte recruitment would improve lung innate host defense to infection with Streptococcus pneumoniae. CCL2 transgenic mice that overexpress human CCL2 protein in type II alveolar epithelial cells and secrete it into the alveolar air space showed a similar proinflammatory mediator response and neutrophilic alveolitis to challenge with S. pneumoniae as wild-type mice. However, CCL2 overexpressing mice showed an improved pneumococcal clearance and survival compared with wild-type mice that was associated with substantially increased lung mononuclear phagocyte subset accumulations upon pneumococcal challenge. Surprisingly, CCL2 overexpressing mice developed bronchiolitis obliterans upon pneumococcal challenge. Application of anti-CCR2 Ab MC21 to block the CCL2-CCR2 axis in CCL2 overexpressing mice, though completely abrogating bronchiolitis obliterans, led to progressive pneumococcal pneumonia. Collectively, these findings demonstrate the importance of the CCL2-CCR2 axis in the regulation of both the resolution/repair and remodelling processes after bacterial challenge and suggest that overwhelming innate immune responses may trigger bronchiolitis obliterans formation in bacterial lung infections.  相似文献   

2.
Estrogen receptor (ER) ligands modulate hemopoiesis and immunity in the normal state, during autoimmunity, and after infection or trauma. Dendritic cells (DC) are critical for initiation of innate and adaptive immune responses. We demonstrate, using cytokine-driven culture models of DC differentiation, that 17-beta-estradiol exerts opposing effects on differentiation mediated by GM-CSF and Flt3 ligand, the two cytokines that regulate DC differentiation in vivo. We also show that estradiol acts on the same highly purified Flt3+ myeloid progenitors (MP) to differentially regulate the DC differentiation in each model. In GM-CSF-supplemented cultures initiated from MP, physiological amounts of estradiol promoted differentiation of Langerhans-like DC. Conversely, in Flt3 ligand-supplemented cultures initiated from the same MP, estradiol inhibited cell survival in a dose-dependent manner, thereby decreasing the yield of plasmacytoid and conventional myeloid and lymphoid DC. Experiments with bone marrow cells from ER-deficient mice and the ER antagonist ICI182,780 showed that estradiol acted primarily via ERalpha to regulate DC differentiation. Thus, depending on the cytokine environment, pathways of ER signaling and cytokine receptor signaling can differentially interact in the same Flt3+ MP to regulate DC development. Because the Flt3 ligand-mediated differentiation pathway is important during homeostasis, and GM-CSF-mediated pathways are increased by inflammation, our data suggest that endogenous or pharmacological ER ligands may differentially affect DC development during homeostasis and disease, with consequent effects on DC-mediated immunity.  相似文献   

3.
Bcl-3 is an atypical member of the IκB family that has the potential to positively or negatively modulate nuclear NF-κB activity in a context-dependent manner. Bcl-3's biologic impact is complex and includes roles in tumorigenesis and diverse immune responses, including innate immunity. Bcl-3 may mediate LPS tolerance, suppressing cytokine production, but it also seems to contribute to defense against select systemic bacterial challenges. However, the potential role of Bcl-3 in organ-specific host defense against bacteria has not been addressed. In this study, we investigated the relevance of Bcl-3 in a lung challenge with the Gram-negative pathogen Klebsiella pneumoniae. In contrast to wild-type mice, Bcl-3-deficient mice exhibited significantly increased susceptibility toward K. pneumoniae pneumonia. The mutant mice showed increased lung damage marked by neutrophilic alveolar consolidation, and they failed to clear bacteria in lungs, which correlated with increased bacteremic dissemination. Loss of Bcl-3 incurred a dramatic cytokine imbalance in the lungs, which was characterized by higher levels of IL-10 and a near total absence of IFN-γ. Moreover, Bcl-3-deficient mice displayed increased lung production of the neutrophil-attracting chemokines CXCL-1 and CXCL-2. Alveolar macrophages and neutrophils are important to antibacterial lung defense. In vitro stimulation of Bcl-3-deficient alveolar macrophages with LPS or heat-killed K. pneumoniae recapitulated the increase in IL-10 production, and Bcl-3-deficient neutrophils were impaired in intracellular bacterial killing. These findings suggest that Bcl-3 is critically involved in lung defense against Gram-negative bacteria, modulating functions of several cells to facilitate efficient clearance of bacteria.  相似文献   

4.
In this study, experiments were performed to determine the contribution of TLR9 to the generation of protective innate immunity against virulent bacterial pathogens of the lung. In initial studies, we found that the intratracheal administration of Klebsiella pneumoniae in wild-type (WT) BALB/c mice resulted in the rapid accumulation of dendritic cells (DC) expressing TLR9. As compared with WT mice, animals deficient in TLR9 (TLR9-/-) displayed significantly increased mortality that was associated with a >50-fold increase in lung CFU and a >400-fold increase in K. pneumoniae CFU in blood and spleen, respectively. Intrapulmonary bacterial challenge in TLR9-/- mice resulted in reduced lung DC accumulation and maturation as well as impaired activation of lung macrophages, NK cells, and alphabeta and gammadelta T cells. Mice deficient in TLR9 failed to generate an effective Th1 cytokine response following bacterial administration. The adoptive transfer of bone marrow-derived DC from syngeneic WT but not TLR9-/- mice administered intratracheally reconstituted antibacterial immunity in TLR9-/- mice. Collectively, our findings indicate that TLR9 is required for effective innate immune responses against Gram-negative bacterial pathogens and that approaches to maximize TLR9-mediated DC responses may serve as a means to augment antibacterial immunity in pneumonia.  相似文献   

5.
C-reactive protein (CRP) is an acute phase reactant with roles in innate host defense, clearance of damaged cells, and regulation of the inflammatory response. These activities of CRP depend on ligand recognition, complement activation, and binding to FcgammaR. CRP binds to phosphocholine in the Streptococcus pneumoniae cell wall and provides innate defense against pneumococcal infection. These studies examine the effect of this early innate defense molecule on the development of Abs and protective immunity to S. pneumoniae. Dendritic cells (DC) initiate and direct the adaptive immune response by integrating innate stimuli with cytokine synthesis and Ag presentation. We hypothesized that CRP would direct uptake of S. pneumoniae to FcgammaR on DC and enhance Ag presentation. CRP opsonization of the R36a strain of S. pneumoniae increased the uptake of bacteria by DC. DC pulsed with untreated or CRP-opsonized R36a were transferred into recipient mice, and Ab responses were measured. In mice challenged with free R36a, CRP opsonization resulted in higher secondary and memory IgG responses to both phosphocholine and pneumococcal surface protein A. Furthermore, mice immunized with DC that had been pulsed with CRP-opsonized R36a showed increased resistance to intranasal infection with virulent S. pneumoniae. The effects of CRP on Ag uptake, Ab responses, and protection from infection all required FcR gamma-chain expression on DC. The results indicate that innate recognition by CRP enhances effective uptake and presentation of bacterial Ags through FcgammaR on DC and stimulates protective adaptive immunity.  相似文献   

6.
7.
In the present study, we investigated the effects of in vivo Flt3L administration on the generation, phenotype, and function of lung dendritic cells (DCs) to evaluate whether Flt3L favors the expansion and maturation of a particular DC subset. Injection of Flt3L into mice resulted in an increased number of CD11c-expressing lung DCs, preferentially in the alveolar septa. FACS analysis allowed us to quantify a 19-fold increase in the absolute numbers of CD11c-positive, CD45R/B220 negative DCs in the lungs of Flt3L-treated mice over vehicle-treated mice. Further analysis revealed a 90-fold increase in the absolute number of myeloid DCs (CD11c positive, CD45R/B220 negative, and CD11b positive) and only a 3-fold increase of lymphoid DCs (CD11c positive, CD45R/B220 negative, and CD11b negative) from the lungs of Flt3L-treated mice over vehicle-treated mice. Flt3L-treated lung DCs were more mature than vehicle-treated lung DCs as demonstrated by a significantly higher percentage of cells expressing MHC class II, CD86, and CD40. Freshly isolated Flt3L lung DCs were not fully mature, because after an overnight culture they continued to increase accessory molecule expression. Functionally, Flt3L-treated lung DCs were more efficient than vehicle-treated DCs at stimulating naive T cell proliferation. Our data show that administration of Flt3L favors the expansion of myeloid lung DCs over lymphoid DCs and enhanced their ability to stimulate naive lymphocytes.  相似文献   

8.
Flt3 ligand (Flt3L) plays a critical role in the proliferation, differentiation and survival of haematopoietic progenitor cells. Its potential use in a clinical setting has been suggested. Here, we report that mice administered Flt3L displayed a nine-fold increase in size of their hepatic non-parenchymal cell population and an approximate 365-fold increase in number of mature dendritic cells within their livers. Such mice exhibited an elevated resistance to secondary infections with Listeria monocytogenes, an intracellular bacterial pathogen. More than 2.0 log(10)fewer listeriae were recovered in the livers of Flt3L-treated, than untreated, mice on day 2 following secondary challenge. Importantly, Flt3L-pretreated mice immunized with an avirulent (listeriolysin O-negative) strain of Listeria harbored significantly fewer ( approximately 1.5 log(10)) organisms in their spleens and livers than did control mice immunized with listeriolysin O-negative listeriae and challenged with a lethal dose of bacteria. The latter finding supports a potential role for Flt3L in strategies to develop vaccines to intracellular pathogens.  相似文献   

9.
Previously, we reported that IL-10-producing mononuclear phagocytes increase in lungs of aged mice, causing impaired innate cytokine expression. Since dendritic cells (DCs) contribute to innate NK cell and adaptive T cell immunity, we tested the hypothesis that age-related IL-10 might influence DC function with effects on NK and T cell activation. The results showed that DC recruitment to sites of lung inflammation was normal in aged mice (>20 mo). However, IFN-gamma-producing NK cells in LPS-challenged lungs were decreased in aged as compared with young mice, which was associated with increased IL-10(+)CD11b(+)Gr-1(low)CD11c(-) cells consistent with mononuclear phagocytes. In vivo or in vitro blockade of IL-10 signaling restored IFN-gamma-producing NK cells. This restoration was reversed by IL-12 neutralization, indicating that IL-10 suppressed sources of IL-12 in aged mice. To probe DC function in adaptive immunity, we transferred young naive OVA-specific TCR transgenic T cells to old mice. Following challenge with OVA plus LPS, Ag presentation in the context of MHC-I and MHC-II occurred with similar kinetics and intensity in draining lymph nodes of young and old recipients as measured by proliferation. Despite this, aged hosts displayed impaired induction of IFN-gamma(+)CD4(+), but not IFN-gamma(+)CD8(+), effector T cells. Blockade of IL-10 signaling reversed age-associated defects. These studies indicate that the innate IL-12/IFN-gamma axis is not intrinsically defective in lungs of aged mice, but is rather suppressed by enhanced production of mononuclear phagocyte-derived IL-10. Our data identify a novel mechanism of age-associated immune deficiency.  相似文献   

10.
Dendritic cells (DCs) reside in tissues, where they function as sentinels, providing an essential link between innate and adaptive immunity. Increasing the numbers of DCs in vivo augments T cell responses, and can cause dramatic CTL-dependent tumor regression. To determine whether greater DC numbers promoted T cell-mediated protection in the context of host defense against intracellular bacteria, we treated mice with Flt3 ligand (Flt3-L) to increase DCs in vivo and challenged them with Listeria monocytogenes. Unexpectedly, after primary challenge with Listeria, the overall control of Listeria infection was impaired in Flt3-L-treated mice, which had greater bacterial burden and mortality than controls. Similar results were obtained when DC numbers were increased by treatment with polyethylene glycol-conjugated GM-CSF rather than Flt3-L and in mice infected with Mycobacterium tuberculosis. Impaired protection was not due to dysfunctional T cell responses, as Flt3-L-treated mice had a greater frequency and absolute number of Ag-specific CD8+ T cells, which produced IFN-gamma, exhibited cytolytic activity, and transferred protection. The increased Listeria burden in Flt3-L-treated mice was preferentially associated with DCs, which were unable to kill Listeria and more resistant to CTL lysis compared with macrophages in vitro. Although we cannot exclude the possibility that other potential effects, in addition to increased numbers of DCs, are shared by Flt3-L and polyethylene glycol-conjugated GM-CSF and contributed to the increase in susceptibility observed in treated mice, these results support the notion that DC numbers must be properly controlled within physiological limits to optimize host defense to intracellular bacterial pathogens.  相似文献   

11.
Human Flt3 ligand can expand dendritic cells (DC) and enhance immunogenicity in mice. However, little is known about the effects of murine Flt3 ligand (mFlt3L) on mouse DC development and function. We constructed a vector to transiently overexpress mFlt3L in mice. After a single treatment, up to 44% of splenocytes became CD11c(+) and the total number of DC increased 100-fold. DC expansion effects lasted for >35 days. mFlt3L DC were both phenotypically and functionally distinct. They had increased expression of MHC and costimulatory molecules and expressed elevated levels of B220 and DEC205 but had minimal CD4 staining. mFlt3L DC also had a markedly altered cytokine profile, including lowered secretion of IL-6, IL-10, IFN-gamma, and TNF-alpha, but had a slightly increased capacity to stimulate T cells in vitro. However, in a variety of in vivo models, DC expanded by mFlt3L induced tolerogenic effects on T cells. Adoptive transfer of Ag-pulsed mFlt3L splenic DC to naive mice actually caused faster rates of tumor growth and induced minimal CTL compared with control DC. mFlt3L also failed to protect against tumors in which human Flt3 ligand was protective, but depletion of CD4(+) T cells restored tumor protection. Our findings 1) demonstrate that mFlt3L has distinct effects on DC development, 2) suggest an important role for mFlt3L in generating DC that have tolerogenic effects on T cells, and 3) may have application in immunotherapy in generating massive numbers of DC for an extended duration.  相似文献   

12.
In vivo steady-state type I natural IFN-producing and dendritic cell (DC) development is largely dependent on Flt3 signaling. Natural IFN-producing and DC progenitors and their respective downstream cell populations express the flt3 receptor, and Flt3 ligand (Flt3L)(-/-) mice have reduced while Flt3L-injected mice develop markedly increased numbers of both cell types. In the present study, we show that SU11657, a small multitargeted receptor tyrosine kinase inhibitor with Flt3 affinity, suppressed in vitro natural IFN-producing and DC development in Flt3L-supplemented mouse whole bone marrow cell cultures in a dose-dependant manner, while DC development in GM-CSF-supplemented cultures was not affected. In vivo SU11657 application led to a significant decrease of both natural IFN-producing and DCs, comparable to the reduction observed in Flt3L(-/-) mice. Conversely, Flt3L plasma levels increased massively in inhibitor-treated animals, likely via a regulatory feedback loop, without being able to compensate for pharmacological Flt3 inhibition. No obvious toxicity was observed, and hemopoietic progenitor cell and stem cell function remained intact as assessed by myeloid colony-forming unit activity and in vivo bone marrow repopulation assays. Furthermore, upon treatment discontinuation, IFN-producing and DCs recovered to normal levels, proving that treatment effects were transient. Given the importance of IFN-producing and DCs in regulation of immune responses, these findings might lead to new pharmacological strategies in prevention and treatment of autoimmune diseases and complications of organ or blood cell transplantation.  相似文献   

13.
Bacterial pneumonia is a leading cause of mortality in the United States. Innate immune responses, including type-1 cytokine production, are critical to the effective clearance of bacterial pathogens from the lung. Synthetic oligodeoxynucleotides (ODN) containing unmethylated CpG dinucleotide motifs (CpG ODN), which mimic the effects of bacterial DNA, have been shown to enhance type-1 cytokine responses during infection due to intracellular pathogens, resulting in enhanced microbial clearance. The role of CpG ODN in modulating protective innate immunity against extracellular pathogens is unknown. Using a murine model of Gram-negative pneumonia, we found that CpG ODN administration stimulated protective immunity against Klebsiella pneumoniae. Specifically, intratracheal (i.t.) administration of CpG ODN (30 microg) 48 h before i.t. K. pneumoniae challenge resulted in increased survival, compared with animals pretreated with control ODN or saline. Pretreatment with CpG ODN resulted in enhanced bacterial clearance in lung and blood, and higher numbers of pulmonary neutrophils, NKT cells, gammadelta-T cells, and activated NK1.1+ cells and gammadelta-T lymphocytes during infection. Furthermore, pretreatment with CpG ODN enhanced the production of TNF-alpha, and type-1 cytokines, including IL-12, IFN-gamma, and the IFN-gamma-dependent ELR- CXC chemokines IFN-gamma-inducible protein-10 and monokine induced by IFN-gamma in response to Klebsiella challenge, compared with control mice. These findings indicate that i.t. administration of CpG ODN can stimulate multiple components of innate immunity in the lung, and may form the basis for novel therapies directed at enhancing protective immune responses to severe bacterial infections of the lung.  相似文献   

14.

Background

Protective host responses to respiratory pathogens are typically characterized by inflammation. However, lung inflammation is not always protective and it may even become deleterious to the host. We have recently reported substantial protection against Streptococcus pneumoniae (pneumococcal) pneumonia by induction of a robust inflammatory innate immune response to an inhaled bacterial lysate. Conversely, the allergic inflammation associated with asthma has been proposed to promote susceptibility to pneumococcal disease. This study sought to determine whether preexisting allergic lung inflammation influences the progression of pneumococcal pneumonia or reduces the inducibilty of protective innate immunity against bacteria.

Methods

To compare the effect of different inflammatory and secretory stimuli on defense against pneumonia, intraperitoneally ovalbumin-sensitized mice were challenged with inhaled pneumococci following exposure to various inhaled combinations of ovalbumin, ATP, and/or a bacterial lysate. Thus, allergic inflammation, mucin degranulation and/or stimulated innate resistance were induced prior to the infectious challenge. Pathogen killing was evaluated by assessing bacterial CFUs of lung homogenates immediately after infection, the inflammatory response to the different conditions was evaluated by measurement of cell counts of bronchoalveolar lavage fluid 18 hours after challenge, and mouse survival was assessed after seven days.

Results

We found no differences in survival of mice with and without allergic inflammation, nor did the induction of mucin degranulation alter survival. As we have found previously, mice treated with the bacterial lysate demonstrated substantially increased survival at seven days, and this was not altered by the presence of allergic inflammation or mucin degranulation. Allergic inflammation was associated with predominantly eosinophilic infiltration, whereas the lysate-induced response was primarily neutrophilic. The presence of allergic inflammation did not significantly alter the neutrophilic response to the lysate, and did not affect the induced bacterial killing within the lungs.

Conclusion

These results suggest that allergic airway inflammation neither promotes nor inhibits progression of pneumococcal lung infection in mice, nor does it influence the successful induction of stimulated innate resistance to bacteria.  相似文献   

15.
Bacterial flagellin is critical to mediate NLRC4 inflammasome-dependent caspase-1 activation. However, Shigella flexneri, a nonflagellated bacterium, and a flagellin (fliC) knockout strain of Pseudomonas aeruginosa are known to activate NLRC4 in bone marrow-derived macrophages. Furthermore, the flagellin-deficient fliC strain of P. aeruginosa was used in a mouse model of peritonitis to show the requirement of NLRC4. In a model of pulmonary P. aeruginosa infection, flagellin was shown to be essential for the induction of NLRC4-dependent caspase-1 activation. Moreover, in all P. aeruginosa studies, IL-1β production was attenuated in NLRC4(-/-) mice; however, the role of IL-1β in NLRC4-mediated innate immunity in the lungs against a nonflagellated bacterium was not explored. In this article, we report that NLRC4 is important for host survival and bacterial clearance, as well as neutrophil-mediated inflammation in the lungs following Klebsiella pneumoniae infection. NLRC4 is essential for K. pneumoniae-induced production of IL-1β, IL-17A, and neutrophil chemoattractants (keratinocyte cell-derived chemokines, MIP-2, and LPS-induced CXC chemokines) in the lungs. NLRC4 signaling in hematopoietic cells contributes to K. pneumoniae-induced lung inflammation. Furthermore, exogenous IL-1β, but not IL-18 or IL-17A, partially rescued survival, neutrophil accumulation, and cytokine/chemokine expression in the lungs of NLRC4(-/-) mice following infectious challenge. Furthermore, IL-1R1(-/-) mice displayed a decrease in neutrophilic inflammation in the lungs postinfection. Taken together, these findings provide novel insights into the role of NLRC4 in host defense against K. pneumoniae infection.  相似文献   

16.
Our previous study showed that a combination of a plasmid-expressing Flt3 ligand (pFL) and CpG oligodeoxynucleotides (CpG ODN) as a combined nasal adjuvant elicited mucosal immune responses in aged (2-y-old) mice. In this study, we investigated whether a combination of pFL and CpG ODN as a nasal adjuvant for a pneumococcal surface protein A (PspA) would enhance PspA-specific secretory-IgA Ab responses, which could provide protective mucosal immunity against Streptococcus pneumoniae infection in aged mice. Nasal immunization with PspA plus a combination of pFL and CpG ODN elicited elevated levels of PspA-specific secretory-IgA Ab responses in external secretions and plasma in both young adult and aged mice. Significant levels of PspA-specific CD4(+) T cell proliferative and PspA-induced Th1- and Th2- type cytokine responses were noted in nasopharyngeal-associated lymphoreticular tissue, cervical lymph nodes, and spleen of aged mice, which were equivalent to those in young adult mice. Additionally, increased numbers of mature-type CD8, CD11b-expressing dendritic cells were detected in mucosal inductive and effector lymphoid tissues of aged mice. Importantly, aged mice given PspA plus a combination of pFL and CpG ODN showed protective immunity against nasal S. pneumoniae colonization. These results demonstrate that nasal delivery of a combined DNA adjuvant offers an attractive possibility for protection against S. pneumoniae in the elderly.  相似文献   

17.
Fms-like tyrosine kinase 3 ligand (Flt3L) administration leads to dramatic increases in dendritic cells (DC) in lymphoid and nonlymphoid tissues. Conversely, mice lacking Flt3L (Flt3L(-)/(-)) show severe reductions in both myeloid (CD11c(+)CD8alpha(-)) and lymphoid-related DC (CD11c(+)CD8alpha(+)) in the thymus and secondary lymphoid organs. In this study marked reductions in CD11c(+) interstitial cardiac DC and in dermal, but not epidermal, DC (Langerhans cells) were also observed. CD11c(+) cells that migrated from Flt3L(-/-) skin explants expressed lower surface MHC class II and costimulatory molecules and naive T cell allostimulatory activity than migratory wild-type (wt) C57BL/6 (B6) CD11c(+) cells. We examined the survival of Flt3L(-)/(-) heart or tail skin grafts (H2(b)) in allogeneic wt (BALB/c; H2(d)) recipients. The outcome of transplantation of BALB/c organs into Flt3L(-)/(-) recipients was also determined. Flt3L(-)/(-) mice rejected BALB/c heart or skin grafts with similar kinetics as B6 wt recipients. Trafficking of donor DC into host spleens or draining lymph nodes was markedly reduced after transplantation of Flt3L(-)/(-) heart, but not skin grafts, respectively. Compared with wt hearts, survival of Flt3L(-)/(-) hearts was markedly prolonged in BALB/c recipients (median survival time, 37 and 15 days, respectively; p < 0.001). Skin graft survival was unaffected. Rejection of Flt3L(-/-) hearts was precipitated by infusion of wt donor DC at the time of transplant. Thus, severe depletion of interstitial heart DC resulting from targeted gene disruption prolongs, but does not indefinitely extend, heart survival. Acute rejection of wt grafts in Flt3L(-/-) recipients reflects presumably an intact role of the direct pathway of allorecognition.  相似文献   

18.
Leptin-deficient mice exhibit impaired host defense in Gram-negative pneumonia   总被引:17,自引:0,他引:17  
Leptin is an adipocyte-derived hormone that is secreted in correlation with total body lipid stores. Serum leptin levels are lowered by the loss of body fat mass that would accompany starvation and malnutrition. Recently, leptin has been shown to modulate innate immune responses such as macrophage phagocytosis and cytokine synthesis in vitro. To determine whether leptin plays a role in the innate host response against Gram-negative pneumonia in vivo, we compared the responses of leptin-deficient and wild-type mice following an intratracheal challenge of Klebsiella pneumoniae. Following K. pneumoniae administration, we observed increased leptin levels in serum, bronchoalveolar lavage fluid, and whole lung homogenates. In a survival study, leptin-deficient mice, as compared with wild-type mice, exhibited increased mortality following K. pneumoniae administration. The increased susceptibility to K. pneumoniae in the leptin-deficient mice was associated with reduced bacterial clearance and defective alveolar macrophage phagocytosis in vitro. The exogenous addition of very high levels of leptin (500 ng/ml) restored the defect in alveolar macrophage phagocytosis of K. pneumoniae in vitro. While there were no differences between wild-type and leptin-deficient mice in lung homogenate cytokines TNF-alpha, IL-12, or macrophage-inflammatory protein-2 after K. pneumoniae administration, leukotriene synthesis in lung macrophages from leptin-deficient mice was reduced. Leukotriene production was restored by the addition of exogenous leptin (500 ng/ml) to macrophages in vitro. This study demonstrates for the first time that leptin-deficient mice display impaired host defense in bacterial pneumonia that may be due to a defect in alveolar macrophage phagocytosis and leukotriene synthesis.  相似文献   

19.
Fms-like tyrosine kinase-3 ligand (Flt3L) is a hemopoietic cytokine that stimulates the production of dendritic cells. This study evaluated the ability of Flt3L-enhanced dendritic cell production to increase the resistance of mice to a burn wound infection with Pseudomonas aeruginosa, a common source of infections in burn patients that have impaired immunity and are susceptible to opportunistic microorganisms. Treatment of mice with Flt3L for 5 days caused a significant increase in dendritic cell numbers in the spleen and significantly increased survival upon a subsequent burn wound infection. Improved survival in Flt3L-treated mice was associated with limited bacterial growth and spread within the burn wounds and a decrease in systemic dissemination of P. aeruginosa. Resistance to burn wound infection could also be conferred to recipient mice by the adoptive transfer of dendritic cells that had been isolated from spleens of Flt3L-treated mice. Adoptive transfer of the same number of splenic dendritic cells from nontreated mice did not confer resistance to burn wound infection. These data indicate that Flt3L can increase the resistance of mice to a P. aeruginosa burn wound infection through both stimulation of dendritic cell production and enhancement of dendritic cell function.  相似文献   

20.
Cytotoxic T lymphocytes and natural killer cells are essential effectors of anti-tumor immune responses in vivo. Dendritic cells (DC) 'prime' tumor antigen-specific cytotoxic T lymphocytes; thus, we investigated whether DC might also trigger the innate, NK cell-mediated anti-tumor immunity. In mice with MHC class I-negative tumors, adoptively transferred- or Flt3 ligand-expanded DC promoted NK cell-dependent anti-tumor effects. In vitro studies demonstrated a cell-to-cell contact between DC and resting NK cells that resulted in a substantial increase in both NK cell cytolytic activity and IFN-gamma production. Thus, DC are involved in the interaction between innate and adaptive immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号