首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Genome-wide association studies have identified that multiple single nucleiotide polymorphisms on chromosome 9p21 are tightly associated with coronary artery disease (CAD). However, the mechanism linking this risk locus to CAD remains unclear.

Methodology/Principal Findings

The methylation status of six candidate genes (BAX, BCL-2, TIMP3, p14ARF, p15INK4b and p16INK4a) in 205 patients and controls who underwent coronary angiography were analyzed by quantitative MethyLight assay. Rs10757274 was genotyped and expression of INK4/ARF and antisense non-coding RNA in the INK4 locus (ANRIL) was determined by real-time RT-PCR. Compared with controls, DNA methylation levels at p15INK4b significantly increased in CAD patients (p = 0.006). To validate and dissect the methylation percentage of each target CpG site at p15INK4b, pyrosequencing was performed, finding CpG +314 and +332 remarkably hypermethylated in CAD patients. Further investigation determined that p15INK4b hypermethylation prevalently emerged in lymphocytes of CAD patients (p = 0.013). The rs10757274 genotype was significantly associated with CAD (p = 0.003) and GG genotype carriers had a higher level of ANRIL exon 1–5 expression compared among three genotypes (p = 0.009). There was a stepwise increase in p15INK4b and p16INK4a methylation as ANRIL exon 1–5 expression elevated (r = 0.23, p = 0.001 and r = 0.24, p = 0.001, respectively), although neither of two loci methylation was directly linked to rs10757274 genotype.

Conclusions/Significance

p15INK4b methylation is associated with CAD and ANRIL expression. The epigenetic changes in p15INK4b methylation and ANRIL expression may involve in the mechanisms of chromosome 9p21 on CAD development.  相似文献   

2.
3.

Background

p16INK4a and p21WAF1 are two independent cyclin-dependent kinase inhibitors encoded by the CDKN2A and CDKN1A genes, respectively. p16INK4a and p21WAF1 are similarly involved in various anti-cancer processes, including the regulation of the critical G1 to S phase transition of the cell cycle, senescence and apoptosis. Therefore, we sought to elucidate the molecular mechanisms underlying the link between these two important tumor suppressor proteins.

Methodology/Principal Findings

We have shown here that the p16INK4a protein positively controls the expression of p21WAF1 in both human and mouse cells. p16INK4a stabilizes the CDKN1A mRNA through negative regulation of the mRNA decay-promoting AUF1 protein. Immunoprecipitation of AUF1-associated RNAs followed by quantitative RT-PCR indicated that endogenous AUF1 binds to the CDKN1A mRNA in a p16INK4A-dependent manner. Furthermore, while AUF1 down-regulation increased the expression level of the CDKN1A mRNA, the concurrent knockdown of AUF1 and CDKN2A, using specific silencing RNAs, restored the normal expression of the gene. Moreover, we used EGFP reporter fused to the CDKN2A AU-rich element (ARE) to demonstrate that p16INK4A regulation of the CDKN1A mRNA is AUF1- and ARE-dependent. Furthermore, ectopic expression of p16INK4A in p16INK4A-deficient breast epithelial MCF-10A cells significantly increased the level of p21WAF1, with no effect on cell proliferation. In addition, we have shown direct correlation between p16INK4a and p21WAF1 levels in various cancer cell lines.

Conclusion/Significance

These findings show that p16INK4a stabilizes the CDKN1A mRNA in an AUF1-dependent manner, and further confirm the presence of a direct link between the 2 important cancer-related pathways, pRB/p16INK4A and p14ARF/p53/p21WAF1.  相似文献   

4.
The INK4b-ARF-INK4a locus encodes for two cyclin-dependent kinase inhibitors, p15INK4b and p16INK4a, and a regulator of the p53 pathway, ARF. In addition ANRIL , a non-coding RNA, is also transcribed from the locus. ARF, p15INK4b and p16INK4a are well-established tumor suppressors which function is frequently disabled in human cancers. Recent studies showed that single nucleotide polymorphisms mapping in the vicinity of ANRIL are linked to a wide spectrum of conditions, including cardiovascular disease, ischemic stroke, type 2 diabetes, frailty and Alzheimer disease. The INK4b-ARF-INK4a locus is regulated by Polycomb repressive complexes (PRCs) and its expression can be invoked by activating signals. Other epigenetic modifiers such as the histone demethylases JMJD3 and JHDM1B, the SWI/SNF chromatin remodeling complex and DNA methyltransferases regulate the locus interplaying with PRCs. In view of the intimate involvement of the INK4b-ARF-INK4a locus on disease, to understand its regulation is the first step for manipulate it to therapeutic benefit.Key words: senescence, p16INK4a, ARF, p15INK4b, ANRIL, polycomb, histone demethylases, DNA methylation  相似文献   

5.

Objective

A genomic region near the CDKN2A locus, encoding p16INK4a, has been associated to type 2 diabetes and atherosclerotic vascular disease, conditions in which inflammation plays an important role. Recently, we found that deficiency of p16INK4a results in decreased inflammatory signaling in murine macrophages and that p16INK4a influences the phenotype of human adipose tissue macrophages. Therefore, we investigated the influence of immune cell p16INK4a on glucose tolerance and atherosclerosis in mice.

Methods and Results

Bone marrow p16INK4a-deficiency in C57Bl6 mice did not influence high fat diet-induced obesity nor plasma glucose and lipid levels. Glucose tolerance tests showed no alterations in high fat diet-induced glucose intolerance. While bone marrow p16INK4a-deficiency did not affect the gene expression profile of adipose tissue, hepatic expression of the alternative markers Chi3l3, Mgl2 and IL10 was increased and the induction of pro-inflammatory Nos2 was restrained on the high fat diet. Bone marrow p16INK4a-deficiency in low density lipoprotein receptor-deficient mice did not affect western diet-induced atherosclerotic plaque size or morphology. In line, plasma lipid levels remained unaffected and p16INK4a-deficient macrophages displayed equal cholesterol uptake and efflux compared to wild type macrophages.

Conclusion

Bone marrow p16INK4a-deficiency does not affect plasma lipids, obesity, glucose tolerance or atherosclerosis in mice.  相似文献   

6.
Loss of CDKN2A/p16INK4A in hematopoietic stem cells is associated with enhanced self-renewal capacity and might facilitate progression of damaged stem cells into pre-cancerous cells that give rise to leukemia. This is also reflected by the frequent loss of the INK4A locus in acute lymphoblastic T-cell leukemia. T-cell acute lymphoblastic leukemia cells designed to conditionally express p16INK4A arrest in the G0/G1 phase of the cell cycle and show increased sensitivity to glucocorticoid- and tumor necrosis factor receptor superfamily 6-induced apoptosis. To investigate the underlying molecular mechanism for increased death sensitivity, we interfered with specific steps of apoptosis signaling by expression of anti-apoptotic proteins. We found that alterations in cell death susceptibility resulted from changes in the composition of pro- and anti-apoptotic BCL2 proteins, i.e. repression of MCL1, BCL2, and PMAIP1/Noxa and the induction of pro-apoptotic BBC3/Puma. Interference with Puma induction by short hairpin RNA technology or retroviral expression of MCL1 or BCL2 significantly reduced both glucocorticoid- and FAS-induced cell death in p16INK4A-reconstituted leukemia cells. These results suggest that Puma, in concert with MCL1 and BCL2 repression, critically mediates p16INK4A-induced death sensitization and that in human T-cell leukemia the deletion of p16INK4A confers apoptosis resistance by shifting the balance of pro- and anti-apoptotic BCL2 proteins toward apoptosis protection.  相似文献   

7.
Risk alleles within a gene desert at the 9p21 locus constitute the most prevalent genetic determinant of cardiovascular disease. Previous research has demonstrated that 9p21 risk variants influence gene expression in vascular tissues, yet the biological mechanisms by which this would mediate atherosclerosis merits further investigation. To investigate possible influences of this locus on other tissues, we explored expression patterns of 9p21-regulated genes in a panel of multiple human tissues and found that the tumor suppressor CDKN2B was highly expressed in subcutaneous adipose tissue (SAT). CDKN2B expression was regulated by obesity status, and this effect was stronger in carriers of 9p21 risk alleles. Covariation between expression of CDKN2B and genes implemented in adipogenesis was consistent with an inhibitory effect of CDKN2B on SAT proliferation. Moreover, studies of postprandial triacylglycerol clearance indicated that CDKN2B is involved in down-regulation of SAT fatty acid trafficking. CDKN2B expression in SAT correlated with indicators of ectopic fat accumulation, including markers of hepatic steatosis. Among genes regulated by 9p21 risk variants, CDKN2B appears to play a significant role in the regulation of SAT expandability, which is a strong determinant of lipotoxicity and therefore might contribute to the development of atherosclerosis.  相似文献   

8.
9.
Stable epigenetic silencing of p16INK4a is a common event in hepatocellular carcinoma (HCC) cells, which is associated with abnormal cell proliferation and liberation from cell cycle arrest. Understanding the early epigenetic events in silencing p16INK4a expression may illuminate a prognostic strategy to block HCC development. Toward this end, we created a reprogram cell model by the fusion mouse HCC cells with mouse embryonic stem cells, in which the ES-Hepa hybrids forfeited HCC cell characteristics along with reactivation of the silenced p16INK4a. HCC characteristics, in terms of gene expression pattern and tumorigenic potential, was restored upon induced differentiation of these reprogrammed ES-Hepa hybrids. The histone methylation pattern relative to p16INK4a silencing during differentiation of the ES-Hepa hybrids was analyzed. H3K27 trimethylation at the p16INK4a promoter region, occurring in the early onset of p16INK4a silencing, was followed by H3K9 dimethylation at later stages. During the induced differentiation of the ES-Hepa hybrids, H3K4 di- and trimethylations were maintained at high levels during the silencing of p16INK4a, strongly suggesting that H3K4 methylation events did not cause the silencing of p16INK4a. Our results suggested that the enrichment of H3K27 trimethylation, independent of H3K9 dimethylation, trimethylation, and DNA methylation, was an early event in the silencing of p16INK4a during the tumor development. This unique chromatin pattern may be a heritable marker of epigenetic regulation for p16INK4a silencing during the developmental process of hepatocellular carcinogenesis.  相似文献   

10.

Background

The p16INK4a is an important tumor suppressor gene (TSG) and aberrant methylation of promoter is known to be a major inactivation mechanism of the tumor suppressor and tumor-related genes. Aberrant TSG methylation was considered an important epigenetic silencing mechanism in the progression of head and neck squamous cell carcinoma (HNSCC). However, some studies have reported differences in the methylation frequencies of P16INK4a promoter between cancer and the corresponding control group. Therefore, we conducted a meta-analysis to better identify the association.

Methods

PubMed, Ovid, ISI Web of Science, and EMBASE were searched to identify eligible studies to evaluate the association of p16INK4a promoter methylation and HNSCC. Odds ratio (ORs) and 95% confidence intervals (95%CI) were calculated to evaluate the strength of association between p16INK4a promoter methylation and HNSCC.

Results

A total of twenty-one studies with 1155 cases and 1017 controls were included in the meta-analysis. The frequencies of p16INK4a promoter methylation in the cancer group were significantly higher than those in the control group (cancer group: median: 46.67%, range = 7.84%-95.12%; control group: median: 18.37%, range = 0–83.33%; respectively). The pooled odds ratio was 3.37 (95%CI = 2.32–4.90) in the cancer group versus the corresponding control group under the random-effects model.

Conclusion

This meta-analysis of 21 published studies identified that aberrant methylation of p16INK4a promoter was found to be significantly associated with HNSCC.  相似文献   

11.

Background

Aberrant methylation of CpG islands acquired in tumor cells in promoter regions plays an important role in carcinogenesis. Accumulated evidence demonstrates P16INK4a gene promoter hypermethylation is involved in non-small cell lung carcinoma (NSCLC), indicating it may be a potential biomarker for this disease. The aim of this study is to evaluate the frequency of P16INK4a gene promoter methylation between cancer tissue and autologous controls by summarizing published studies.

Methods

By searching Medline, EMBSE and CNKI databases, the open published studies about P16INK4a gene promoter methylation and NSCLC were identified using a systematic search strategy. The pooled odds of P16INK4A promoter methylation in lung cancer tissue versus autologous controls were calculated by meta-analysis method.

Results

Thirty-four studies, including 2 652 NSCLC patients with 5 175 samples were included in this meta-analysis. Generally, the frequency of P16INK4A promoter methylation ranged from 17% to 80% (median 44%) in the lung cancer tissue and 0 to 80% (median 15%) in the autologous controls, which indicated the methylation frequency in cancer tissue was much higher than that in autologous samples. We also find a strong and significant correlation between tumor tissue and autologous controls of P16INK4A promoter methylation frequency across studies (Correlation coefficient 0.71, 95% CI:0.51–0.83, P<0.0001). And the pooled odds ratio of P16INK4A promoter methylation in cancer tissue was 3.45 (95% CI: 2.63–4.54) compared to controls under random-effect model.

Conclusion

Frequency of P16INK4a promoter methylation in cancer tissue was much higher than that in autologous controls, indicating promoter methylation plays an important role in carcinogenesis of the NSCLC. Strong and significant correlation between tumor tissue and autologous samples of P16INK4A promoter methylation demonstrated a promising biomarker for NSCLC.  相似文献   

12.
13.
14.
《Epigenetics》2013,8(8):685-690
The INK4b-ARF-INK4a locus encodes for two cyclin-dependent kinase inhibitors, p15INK4b and p16INK4a and a regulator of the p53 pathway, ARF. In addition ANRIL, a non-coding RNA, is also transcribed from the locus. ARF, p15INK4b and p16INK4a are well-established tumor suppressors which function is frequently disabled in human cancers. Recent studies showed that single nucleotide polymorphisms mapping in the vicinity of ANRIL are linked to a wide spectrum of conditions, including cardiovascular disease, ischemic stroke, type 2 diabetes, frailty and Alzheimer’s disease. The INK4b-ARF-INK4a locus is regulated by Polycomb repressive complexes (PRCs), and its expression can be invoked by activating signals. Other epigenetic modifiers such as the histone demethylases JMJD3 and JHDM1B, the SWI/SNF chromatin remodeling complex and DNA methyltransferases regulate the locus interplaying with PRCs. In view of the intimate involvement of the INK4b-ARF-INK4a locus on disease, to understand its regulation is the first step for manipulate it to therapeutic benefit.  相似文献   

15.
The oncogene FOXM1 has been implicated in all major types of human cancer. We recently showed that aberrant FOXM1 expression causes stem cell compartment expansion resulting in the initiation of hyperplasia. We have previously shown that FOXM1 regulates HELLS, a SNF2/helicase involved in DNA methylation, implicating FOXM1 in epigenetic regulation. Here, we have demonstrated using primary normal human oral keratinocytes (NOK) that upregulation of FOXM1 suppressed the tumour suppressor gene p16INK4A (CDKN2A) through promoter hypermethylation. Knockdown of HELLS using siRNA re-activated the mRNA expression of p16INK4A and concomitant downregulation of two DNA methyltransferases DNMT1 and DNMT3B. The dose-dependent upregulation of endogenous FOXM1 (isoform B) expression during tumour progression across a panel of normal primary NOK strains (n = 8), dysplasias (n = 5) and head and neck squamous cell carcinoma (HNSCC) cell lines (n = 11) correlated positively with endogenous expressions of HELLS, BMI1, DNMT1 and DNMT3B and negatively with p16INK4A and involucrin. Bisulfite modification and methylation-specific promoter analysis using absolute quantitative PCR (MS-qPCR) showed that upregulation of FOXM1 significantly induced p16INK4A promoter hypermethylation (10-fold, P<0.05) in primary NOK cells. Using a non-bias genome-wide promoter methylation microarray profiling method, we revealed that aberrant FOXM1 expression in primary NOK induced a global hypomethylation pattern similar to that found in an HNSCC (SCC15) cell line. Following validation experiments using absolute qPCR, we have identified a set of differentially methylated genes, found to be inversely correlated with in vivo mRNA expression levels of clinical HNSCC tumour biopsy samples. This study provided the first evidence, using primary normal human cells and tumour tissues, that aberrant upregulation of FOXM1 orchestrated a DNA methylation signature that mimics the cancer methylome landscape, from which we have identified a unique FOXM1-induced epigenetic signature which may have clinical translational potentials as biomarkers for early cancer screening, diagnostic and/or therapeutic interventions.  相似文献   

16.
17.
18.
19.

Introduction

Recent evidence suggests that tissue accumulation of senescent p16INK4a-positive cells during the life span would be deleterious for tissue functions and could be the consequence of inherent age-associated disorders. Osteoarthritis (OA) is characterized by the accumulation of chondrocytes expressing p16INK4a and markers of the senescence-associated secretory phenotype (SASP), including the matrix remodeling metalloproteases MMP1/MMP13 and pro-inflammatory cytokines interleukin-8 (IL-8) and IL-6. Here, we evaluated the role of p16INK4a in the OA-induced SASP and its regulation by microRNAs (miRs).

Methods

We used IL-1-beta-treated primary OA chondrocytes cultured in three-dimensional setting or mesenchymal stem cells differentiated into chondrocyte to follow p16INK4a expression. By transient transfection experiments and the use of knockout mice, we validate p16INK4a function in chondrocytes and its regulation by one miR identified by means of a genome-wide miR-array analysis.

Results

p16INK4a is induced upon IL-1-beta treatment and also during in vitro chondrogenesis. In the mouse model, Ink4a locus favors in vivo the proportion of terminally differentiated chondrocytes. When overexpressed in chondrocytes, p16INK4a is sufficient to induce the production of the two matrix remodeling enzymes, MMP1 and MMP13, thus linking senescence with OA pathogenesis and bone development. We identified miR-24 as a negative regulator of p16INK4a. Accordingly, p16INK4a expression increased while miR-24 level was repressed upon IL-1-beta addition, in OA cartilage and during in vitro terminal chondrogenesis.

Conclusions

We disclosed herein a new role of the senescence marker p16INK4a and its regulation by miR-24 during OA and terminal chondrogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号