首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results from T-10 experiments in regimes with nonmonotonic plasma current profiles are presented. The possibility of controlling the current profile j(r) by electron-cyclotron current drive is demonstrated experimentally. Nonmonotonic q profiles with the reversed shear are obtained in which the q min value varies in a wide range, q min=1–2.3. It is shown that the current profiles with q min~2 (in this case, there are two resonant magnetic surfaces q=2 in the plasma) can cause the onset of MHD instabilities. The possibility of the formation of an internal transport barrier in reversed-shear discharges in the T-10 tokamak is analyzed. In T-10, electron transport is governed by short-wavelength electron turbulence. As a result, there is no clear evidence of the formation of an inner transport barrier in these experiments.  相似文献   

2.
Results are presented from experiments on the formation of an internal electron transport barrier near the q = 1.5 rational surface in the T-10 tokamak. The experiments were carried out in the regime with off-axis electron cyclotron resonance (ECR) heating followed by a fast plasma current ramp-up. After suppressing sawtooth oscillations by off-axis ECR heating, an internal transport barrier began to form near the q = 1.5 rational surface. In the phase of the current ramp-up, the quality of the transport barrier improved; as a result, the plasma energy confinement time increased 2–2.5 times. The intentionally produced flattening of the profile of the safety factor q(r) insignificantly affected magnetohydrodynamic activity in the plasma column in spite of the theoretical possibility of formation of substantial m/n = 3/2 and 2/1 magnetic islands. Conditions are discussed under which the flattening of the profile of the safety factor q near low-order rational surfaces leads to the formation of either an internal transport barrier or the development of an island magnetic structure induced by tearing modes.  相似文献   

3.
An improved scaling for the current density generated due to collisionless motion of α-particles in a tokamak is proposed. The dependence of the current density on the radial profile of the safety factor q is investigated. Monotonically increasing q profiles are considered, as well as q profiles with a minimum in the axial region of the plasma column. It is shown that the current density depends on the variation in q along the charged particle trajectories, rather than on the q value at the starting magnetic surface. The dependence of the current density on the gradient of q is strongest in the plasma core because of the large deviation of the drift surfaces from the magnetic ones in this region. At the plasma edge, the larger the second derivative of the plasma density, the greater the contribution of the gradient of q. For conventional plasma density profiles, the poloidal-angle-averaged current density calculated for a varying safety factor q is always lower than that calculated for a constant q. The effect of the nonuniformity of the safety factor on the current generation at the magnetic axis of a tokamak is investigated.  相似文献   

4.
Results are presented from investigations of the nonmonotonic spatial distributions of charge-exchange neutral fluxes and optical radiation from plasma in the DAMAVAND tokamak. It is shown that, during ohmic heating of the plasma, the regions with enhanced confinement of both the background plasma particles and heavy impurity ions arise near rational magnetic surfaces with q = 1 and 2. These regions are characterized by enhanced emission of accelerated charge-exchange neutrals and optical radiation from impurity ions.  相似文献   

5.
Generation of electron Bernstein waves by the ordinary-extraordinary-Bernstein (O-X-B) mode conversion process has been successfully demonstrated on W7-AS. According to Kirchoff’s law, the inverse process of plasma EC emission by B-X-O mode conversion at particular angles must take place in tokamak plasmas. The optical depth at electron cyclotron harmonics is generally very high for electron Bernstein waves in tokamak plasmas. Consequently the O-mode ECE spectrum measured below the plasma frequency will show steps in the emitted power when each EC harmonic coincides with the upper hybrid resonance zone, where the mode conversion occurs, giving a local measurement of the relationship between the total magnetic field and plasma density. In a spherical tokamak, there are several EC harmonics below the plasma frequency, so several such steps can be observed via the B-X-O mode conversion mechanism. This is a very promising way to get information about the q profile in ST plasmas.  相似文献   

6.
The behavior of turbulent fluxes in the vicinity of a resonant point m/n = q(x res) in a plane edge plasma layer in a tokamak is studied by numerically analyzing the nonlinear MHD equations in a five-field electromagnetic model. Simulations show that the heat and electron turbulent fluxes decrease with increasing ion temperature at the plasma edge. It is shown that these fluxes are suppressed due to the stabilization mechanism associated with an increase in the shear of the E × B drift velocity, which in turn increases with increasing ion pressure gradient. The effect of the zonal magnetic field on turbulent transport is also investigated. It is shown that an increase in this field stabilizes edge plasma turbulence.  相似文献   

7.
Analytical solutions for global geodesic acoustic modes in the plasma of a tokamak with circular concentric magnetic surfaces are obtained. In the framework of ideal magnetohydrodynamics, an integral equation for eigenvalues (dispersion relation) taking into account toroidal coupling between electrostatic perturbations and electromagnetic perturbations with the poloidal mode number |m| = 2 is derived. In the absence of such coupling, the dispersion relation yields only the standard continuous spectrum. The existence of a global geodesic acoustic mode is analyzed for equilibria with both on-axis and off-axis maxima of the local geodesic acoustic frequency. The analytical results are compared with results of numerical calculations.  相似文献   

8.
Abstract-the formation of transport barriers under electron cyclotron resonance heating and current drive in the t-10 tokamak is studied. in regimes with off-axis co-eccd and q L <4 at the limiter, a spontaneous transition to improved confinement accompanied by the formation of two electron transport barriers is observed. the improvement resembles an L-H transition. It manifests itself as density growth, a decrease in the Dα emission intensity, and an increase in the central electron and ion temperatures. Two deep wells on the potential profile (the first one at r/a L ≈0.6, where a L is the limiter radius, and the second one near the edge) arise during the transition. the internal barrier is formed when dq/dr~0 with q≈1 in the barrier region.  相似文献   

9.
The effect of variations in the key parameter of short-wavelength turbulence—the ion-acoustic Larmor radius ρ s , which determines the position of the maximum of the drift instability growth rate over poloidal wavenumbers—was studied experimentally at the FT-2 tokamak. For this purpose, helium was injected to hydrogen plasma, which resulted in a change in the electron temperature at the plasma edge. The universality of the exponential shape of the turbulence spectra over radial wavenumbers q and a substantial excess of the characteristic turbulence scale L over the ion-acoustic Larmor radius was confirmed with the help of correlative diagnostics of enhanced scattering. This excess at the discharge periphery reaches a value of 3–5 at a low electron temperature, apparently, due to an increase in the dissipation of drift waves upon their cascade transfer toward short scale-lengths.  相似文献   

10.
The formation of pressure profiles in turbulent tokamak plasmas in ohmic heating regimes and transient regimes induced by turning-on of electron-cyclotron resonance (ECR) heating is investigated. The study is based on self-consistent modeling of low-frequency turbulent plasma convection described by an adiabatically reduced set of hydrodynamic-type equations. The simulations show that, in the ohmic heating stage, turbulence forms and maintains profiles of the total plasma pressure corresponding to turbulentrelaxed states. These profiles are close to self-consistent profiles of the total plasma pressure experimentally observed on the T-10 tokamak in ohmic regimes with different values of the safety factor q L at the limiter. Simulations of nonstationary regimes induced by turning-on of on- and off-axis ECR heating show that the total plasma pressure profiles in the transient regimes remain close to those in the turbulent-relaxed state, as well as to the profiles experimentally observed on T-10.  相似文献   

11.
An improved confinement regime with an external transport barrier (H-mode) is obtained during electron-cyclotron resonance heating of a plasma in the T-10 tokamak. A characteristic feature of this regime is a spontaneous density growth accompanied by a drop in the intensity of Dα line and an increase in βp by a factor of ~1.6. The threshold power for the L-H transition is close to that predicted by the ITER scaling. The best characteristics of the H-mode are achieved with decreasing q L to 2.2. It is shown that the external transport barrier arises for electrons, whereas the heat transport barrier insignificantly contributes to improved confinement.  相似文献   

12.
In the experiments carried out on the Globus-M tokamak in regimes with injection of 26-keV neutral beams with a power of 0.75–0.85 MW, two branches of instabilities excited by fast ions were observed in the early stage of a discharge: a low-frequency energetic particle mode (EPM) in the frequency range of 5–30 kHz and a high-frequency mode in the range of 50–200 kHz, identified as a toroidal Alfvén eigenmode (TAE). The TAE developed in the initial phase of the discharge at q(0) > 1 and terminated when sawtooth oscillations were excited at q(0) < 1. The spectrum and spatial localization of the mode agree with predictions of the linear theory. The modes observed in the Globus-M tokamak possess both properties common to other tokamaks and their own specific features.  相似文献   

13.
q-Space plots obtained experimentally using pulsed field-gradient stimulated echo (PGSTE) nuclear magnetic resonance (NMR) spectroscopy from water diffusing in red blood cells (RBCs) of different canonical (distinct variant) morphologies have “signature” features. The experimental q-space plots from suspensions of stomatocytes, echinocytes and spherocytes generated chemically had no diffraction features; in contrast a sample of blood from a patient with hereditary spherocytosis showed diffraction minima. To understand the forms of q-space plots, mathematical/geometrical models of discocytes, stomatocytes, echinocytes and spherocytes were used as restricting boundaries in simulations of water diffusion with Monte Carlo random walks. These simulations indicated that diffusion-diffraction minima are expected for each of the cell shapes considered. The absence of diffusion-diffraction minima in stomatocytes generated by dithiothreitol treatment was surmised to be due to non-alignment of the cells with the magnetic field of the NMR spectrometer. Differential interference contrast microscopy images of the chemically generated spherocyte and echinocyte suspensions showed them to be heterogeneous in cell shape. Therefore, we concluded that the shape heterogeneity caused the loss of the diffusion-diffraction features, which were observed in the more homogeneous sample from a patient with hereditary spherocytosis, and in the simulations of homogeneous cell suspensions. This understanding of factors that affect q-space plots from RBC suspensions will assist morphological studies of other cell and tissue types.  相似文献   

14.
During signal transduction, the G protein, Gαq, binds and activates phospholipase C-β isozymes. Several diseases have been shown to manifest upon constitutively activating mutation of Gαq, such as uveal melanoma. Therefore, methods are needed to directly inhibit Gαq. Previously, we demonstrated that a peptide derived from a helix-turn-helix (HTH) region of PLC-β3 (residues 852–878) binds Gαq with low micromolar affinity and inhibits Gαq by competing with full-length PLC-β isozymes for binding. Since the HTH peptide is unstructured in the absence of Gαq, we hypothesized that embedding the HTH in a folded protein might stabilize the binding-competent conformation and further improve the potency of inhibition. Using the molecular modeling software Rosetta, we searched the Protein Data Bank for proteins with similar HTH structures near their surface. The candidate proteins were computationally docked against Gαq, and their surfaces were redesigned to stabilize this interaction. We then used yeast surface display to affinity mature the designs. The most potent design bound Gαq/i with high affinity in vitro (KD = 18 nM) and inhibited activation of PLC-β isozymes in HEK293 cells. We anticipate that our genetically encoded inhibitor will help interrogate the role of Gαq in healthy and disease model systems. Our work demonstrates that grafting interaction motifs into folded proteins is a powerful approach for generating inhibitors of protein–protein interactions.  相似文献   

15.
A study is made of the relaxation of plasma rotation in nonaxisymmetric toroidal magnetic confinement systems, such as stellarators and rippled tokamaks. In this way, a solution to the drift kinetic equation is obtained that explicitly takes into account the time dependence of the distribution function, and expressions for the diffusive particle fluxes and longitudinal viscosity are derived that make it possible to write a closed set of equations describing the time evolution of the ambipolar electric field E and the longitudinal (with respect to the magnetic field) plasma velocity U0. Solutions found to the set of evolutionary equations imply that the relaxation of these two parameters to their steady-state values occurs in the form of damped oscillations whose frequency is about 2vT/R (where vT is the ion thermal velocity and R is the major plasma radius) and whose damping rate depends on the ion-ion collision frequency and on the magnetic field parameters. In particular, it is shown that, for tokamaks with a slightly rippled longitudinal magnetic field, the frequency of oscillations in the range q>2 (where q is the safety factor) is, as a rule, much higher than the damping rate. For stellarators, this turns out to be true only of the central plasma region, where the helical ripple amplitude ? of the magnetic field is much smaller than the toroidal ripple amplitude δ=r/R.  相似文献   

16.
Heading date is a major determinant of adaptability and yield potential in rice (Oryza sativa L.) and is influenced by photoperiod. Among chromosome segment substitution lines, the introgression line C63 contains a segment of the short arm of chromosome 6 from indica Qingluzhan 11 in the japonica Nipponbare background and exhibits a delayed heading date under both long day (LD) and short day (SD) natural field conditions. This study demonstrates that the late heading date of the C63 line is controlled by a single recessive gene, Heading date from Qingluzhan 11 (Hd-q). Hd-q was mapped to a region of less than 43.7 kb. Complementation testing revealed that Ef7 (LOC_Os06g05060), a homolog of Arabidopsis ELF3, is the candidate gene, while Hd-q is a new allele of Ef7. Sequence alignment revealed at least five Ef7 alleles among 11 rice cultivars based on polymorphism in the coding region. Unlike other alleles, Hd-q has a single nucleotide polymorphism (T/A) in exon 2, which leads to premature termination of translation. In addition to delayed heading date, Hd-q has pleiotropic effects on major agronomic characteristics, which were determined by comparing the near-isogenic line, NIL (Hd-q), with its recurrent parent Nipponbare. The Hd-q allele improved grain yield under both LD and SD conditions and in different geographical regions. Finally, a dCAPS (derived cleaved amplified polymorphic sequence) marker was developed based on the T/A polymorphism, and will be useful for introgression of the Hd-q allele via marker-assisted selection. The Hd-q allele is a useful target for the improvement of rice adaptation and production, especially at low latitudes.  相似文献   

17.
Neutron spin-echo spectroscopy was used to study structural fluctuations that occur in hemoglobin (Hb) and myoglobin (Mb) in solution. Using neutron spin-echo data up to a very high momentum transfer q (∼ 0.62 Å 1), we characterized the internal dynamics of these proteins at the levels of dynamic pair correlation function and self-correlation function in the time range of several picoseconds to a few nanoseconds. In the same protein solution, data transition from pair correlation motion to self-correlation motion as the momentum transfer q increases. At low q, coherent scattering dominates; at high q, observations are largely due to incoherent scattering. The low q data were interpreted in terms of an effective diffusion coefficient; on the other hand, the high q data were interpreted in terms of mean square displacements. Comparison of data from the two homologous proteins collected at different temperatures and protein concentrations was used to assess the contributions made by translational and rotational diffusion and internal modes of motion to the data. The temperature dependence of decay times can be attributed to changes in the viscosity and temperature of the solvent, as predicted by the Stokes-Einstein relationship. This is true for contributions from both diffusive and internal modes of motion, indicating an intimate relationship between the internal dynamics of the proteins and the viscosity of the solvent. Viscosity change associated with protein concentration can account for changes in diffusion observed at different concentrations, but is apparently not the only factor involved in the changes in internal dynamics observed with change in protein concentration. Data collected at high q indicate that internal modes in Mb are generally faster than those in Hb, perhaps due to the greater surface-to-volume ratio of Mb and the fact that surface groups tend to exhibit faster motion than buried groups. Comparison of data from Hb and data from Mb at low q indicates an unexpectedly rapid motion of Hb αβ dimers relative to one another. Dynamic motion of subunits is increasingly perceived as important to the allosteric behavior of Hb. Our data demonstrate that this motion is highly sensitive to protein concentration, temperature, and solvent viscosity, indicating that great care needs to be exercised in interpreting its effect on protein function.  相似文献   

18.
We have used cryo-transmission electron microscopy (cryo-TEM) for inspection of aggregates formed by dimyristoylphosphatidylcholine (DMPC) and dihexanoylphosphatidylcholine (DHPC) in aqueous solution at total phospholipid concentrations cL≤5% and DMPC/DHPC ratios q≤4.0. In combination with ocular inspections, we are able to sketch out this part of phase-diagram at T=14-80 °C. The temperature and the ratio q are the dominating variables for changing sample morphology, while cL to a lesser extent affects the aggregate structure. At q=0.5, small, possibly disc-shaped, aggregates with a diameter of ∼6 nm are formed. At higher q-values, distorted discoidal micelles that tend to short cylindrical micelles are observed. The more well-shaped discs have a diameter of around 20 nm. Upon increasing q or the temperature, long slightly flattened cylindrical micelles that eventually branch are formed. A holey lamellar phase finally appears upon further elevation of q or temperature. The implications for biological NMR work are two. First, discs prepared as membrane mimics are frequently much smaller than predicted by current “ideal bicelle” models. Second, the q≈3 preparations used for aligning water-soluble biomolecules in magnetic fields consist of perforated lamellar sheets. Furthermore, the discovered sequence of morphological transitions may have important implications for the development of bicelle-based membrane protein crystallization methods.  相似文献   

19.
Large-scale plasma oscillations (so-called MHD oscillations) observed at the T-10 tokamak are investigated. The central electron cyclotron heating was used to enhance oscillations at the m/n = 1/1 mode with the goal of determining the internal characteristics of the process. The spatially resolved electron cyclotron emission diagnostics allowed analyzing the propagation characteristics of plasma perturbations. The experiments have revealed that excitation of oscillations in a particular mode occur simultaneously in the entire area located within the corresponding rational magnetic surface. The propagation of plasma perturbations along the torus is found to be inhomogeneous. The electron cyclotron emission diagnostics allowed finding eigen (resonance) frequencies of plasma oscillations from the parameters of their inhomogeneous propagation in the plasma core and comparing them with spectra of oscillations of the magnetic field induced by the plasma current in the edge plasma, which were recorded by magnetic probes. It is established that the frequencies of eigenmodes are independent of the electron temperature, plasma density, and auxiliary heating power. Even spatial harmonics of the principal magnetic surface are observed under strong excitation of oscillations. The rational magnetic surfaces that determine oscillation harmonics retain their position during the entire steady-state phase of the total plasma current in spite of the strong sharpening of the temperature profile due to central heating.  相似文献   

20.
The results of experimental studies of discharge disruptions in the T-10 tokamak at the limiting plasma density are presented. On the basis of measurements of the generated soft X-ray emission, for a group of “slow” disruptions, the dynamics of the magnetic configuration of the central part of the plasma column is studied and the possible role of the m/n = 1/1 mode in the excitation of predisruptions or the final stage of disruption is analyzed. It is shown that the characteristics of plasma electron cooling in predisruptions correspond to those of electron cooling upon pellet injection into T-10 and in discharge predisruptions occurring in regimes with the “quiet mode.” It is found that, in the latter case, the reason for predisruptions and fast electron cooling in the plasma core is the instability of the m/n = 2/1 mode, its spontaneous spatial reconstruction, and the generation of a “cooling wave” during this process. Measurements of the electron temperature (determined from the plasma radiation intensity at the second electron cyclotron harmonic) in the zone of the m/n = 2/1 mode have shown that the transformation of the m/n = 2/1 mode leads to the excitation of predisruptions and the final phase of disruption not only in regimes with the “quiet mode,” but also in disruptions of ordinary ohmic discharges. The experimental results obtained in this work make it possible to determine the scenario of the development of “slow” discharge disruptions in the T-10 tokamak at the limiting plasma density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号