首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
African potato (Hypoxis hemerocallidea, AP) is a traditional herbal medicine widely used as an immune booster and also for the treatment of various ailments such as urinary diseases, prostrate hypertrophy and cancer. Amongst the chemical components contained in AP, the norlignan glycoside, hypoxoside (HYP) is purported to be the most important phytochemical in terms of AP's medicinal value. Additional constituents in AP include the sterols, beta-sitosterol (BSS), stigmasterol (STG), and the stanol, stigmastanol (STN). The potential of extracts of AP, AP formulations as well as HYP, its aglycone rooperol (ROP) and the sterols to inhibit in vitro metabolism of drug marker substrates by human cytochrome P450 (CYP) enzymes such as CYP3A4, 3A5 and CYP19 were investigated. Samples were also assessed for their effect on drug transport proteins such as P-glycoprotein (P-gp). The effects on CYP-mediated metabolism were studied by fluorometric microtitre plate assay. The potential interaction with P-gp was investigated by measuring the efflux of the fluorescent dye rhodamine 123 (Rh 123) in the CaCo-2 (colon carcinoma) cell line. Various extracts of AP, AP formulations, only STG and the norlignans, in particular the aglycone ROP, exhibited inhibitory effects on CYP3A4-, 3A5- and 19-mediated metabolism. The extracts and the formulations that contained a significant amount of HYP showed high induction of P-gp compared to the positive control, ritonavir. Whilst extrapolation of the current in vitro findings to clinical effects may well be considered speculative, these in vitro data should be heeded as a signal of possible in vivo interactions. Appropriate measures are therefore necessary to explore the possibility of such in vitro-in vivo correlations.  相似文献   

2.
The primary objective of this study was to determine specific cytochrome P450 isozyme(s) involved in the metabolism of aldrin to its toxic metabolite dieldrin in flathead mullet (Mugil cephalus) liver microsomes. To identify the cytochrome P450 isozyme responsible for the aldrin metabolism in mullet liver, the effects of mammalian‐specific cytochrome P450 inhibitors and substrates were determined in the epoxidation reaction of aldrin. CYP3A‐related inhibitors, ketoconazole, SKF‐525A, and cimetidine, inhibited the metabolism of aldrin. The contribution of CYP1A to the aldrin metabolism was shown by the inhibition of 7‐ethoxyresorufin‐O‐deethylase activity in the presence of aldrin. The results indicate that CY1A and CYP3A are the cytochrome P450s involved in aldrin epoxidase activity in mullet. In addition, the suitability of aldrin epoxidase activity for monitoring of environmental pollution was also assessed in the fish samples caught from four different locations of the West Black Sea coast of Turkey.  相似文献   

3.
Zou L  Harkey MR  Henderson GL 《Life sciences》2002,71(13):1579-1589
We evaluated the effects of 25 purified components of commonly used herbal products on the catalytic activity of cDNA-expressed cytochrome P450 isoforms in in vitro experiments. Increasing concentrations of the compounds were incubated with a panel of recombinant human CYP isoforms (CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) and their effects on the conversion of specific surrogate substrates measured fluorometrically in a 96-well plate format. For each test substance, the IC50 (the concentration required to inhibit metabolism of surrogate substrates by 50%) was estimated and compared with IC50's for the positive control inhibitory drugs furafylline, sulfaphenazole, tranylcypromine, quinidine, and ketoconazole. Constituents of Ginkgo biloba (ginkgolic acids I and II), kava (desmethoxyyangonin, dihydromethysticin, and methysticin), garlic (allicin), evening primrose oil (cis-linoleic acid), and St. John's wort (hyperforin and quercetin) significantly inhibited one or more of the cDNA human P450 isoforms at concentrations of less than 10 uM. Some of the test compounds (components of Ginkgo biloba, kava, and St. John's wort) were more potent inhibitors of the isoforms 1A2, 2C19, and 2C19 than the positive controls used in each assay (furafylline, sulfaphenazole, and tranylcypromine, respectively), which are known to produce clinically significant drug interactions. The enzyme most sensitive to the inhibitory of effects of these compounds was CYP2C19, while the isoform least effected was CYP2D6. These data suggest that herbal products containing evening primrose oil, Ginkgo biloba, kava, and St. John's Wort could potentially inhibit the metabolism of co-administered medications whose primary route of elimination is via cytochrome P450.  相似文献   

4.
P-glycoprotein (P-gp) is an efflux transporter that regulates bioavailability of orally administered drugs at the intestinal epithelium. To develop an in vitro experimental model that mimics P-gp-mediated intestinal drug transport in vivo, we employed normal intestinal epithelium three-dimensionally cultured. Physiological expression of P-gp mRNA and the expression of its protein at the apical membrane were observed in the small intestinal epithelium grown as cystic organoids. Rhodamine123 (Rh123), a substrate for P-gp, was actively transported in the basoapical direction and accumulated in the luminal space, while the epithelial integrity was kept intact. Furthermore, we were able to monitor the whole process of Rh123 transport and its inhibition by verapamil in real-time, from which kinetic parameters for Rh123 transport could be estimated by a mathematical modeling. The method here described to evaluate the dynamics of P-gp-mediated transport in primary intestinal epithelial cells would be instrumental in investigating the physiological function of P-gp and its inhibitors/inducers in vitro.  相似文献   

5.
The hydroxylation of prostaglandin (PG) E1, PGE2, and PGA1 was investigated in a reconstituted rabbit liver microsomal enzyme system containing phenobarbital-inducible isozyme 2 or 5,6-benzoflavone-inducible isoenzyme 4 of P-450, NADPH-cytochrome P-450 reductase, phosphatidylcholine, and NADPH. Significant metabolism of prostaglandins by isozyme 2 occurred only in the presence of cytochrome b5. Under these conditions, PGE1 hydroxylation was linear with time (up to 45 min) and protein concentration, and maximal rates were obtained with a 1:1:2 molar ratio of reductase: cytochrome b5:P-450LM2. Moreover, P-450LM2 catalyzed the conversion of PGE1, PGE2, and PGA1 to the respective 19- and 20-hydroxy metabolites in a ratio of about 5:1, and displayed comparable activities toward the three prostaglandins based on the total products formed in 60 min. Apocytochrome b5 or ferriheme could not substitute for intact cytochrome b5, while reconstitution of apocytochrome b5 with ferriheme led to activities similar to those obtained with the native cytochrome. Isozyme 4 of P-450 differed markedly from isozyme 2 in that it catalyzed prostaglandin hydroxylation at substantial rates in the absence of cytochrome b5, was regiospecific for position 19 of all three prostaglandins, and had an order of activity of PGA1 greater than PGE1 greater than PGE2. P-450LM4 preparations from untreated and induced animals had similar activities with PGE1 and PGE2, respectively. Addition of cytochrome b5 resulted in a 20 to 30% increase in the rate of PGE1 hydroxylation and an appreciably greater enhancement in the extent of all the P-450LM4-catalyzed reactions, the stimulation being greatest with PGE2 (3-fold) and least with PGA1 (1.6-fold). Cytochrome b5 was thus required for maximal metabolism of all three prostaglandins, but did not alter the regiospecificity or the order of activity of P-450 isozyme 4 with the individual substrates. In the presence of cytochrome b5, the prostaglandin hydroxylase activities of isozyme 4 were two to six times higher than those of isozyme 2.  相似文献   

6.
Incubation of l-alpha-acetylmethadol (LAAM) or norLAAM with cDNA-expressed P450s 3A4, 2B6, and 2C18 produced significant N-demethylation products. P450s 2C19, 2C8, 3A5, 2C9, 3A7, 1A1, and 2D6 (norLAAM only), also produced detectable product. Coexpression of cytochrome b(5) enhanced LAAM N-demethylation, most dramatically for 3A4, but had marginal effects on norLAAM N-demethylation. Modeling total liver metabolism using immunoquantification and relative activity factors of P450s suggests contributions of P450 3A4 > 2B6 > 2C18, with the importance of 2B6 to 2C isozymes enhanced by relative activity factors. The ratio of dinorLAAM to norLAAM plus dinorLAAM formed from LAAM did not exceed 20%, and was isozyme and cytochrome b(5) coexpression dependent. This ratio decreased with concentration with 3A4, but was relatively constant for 2B6 and 2C18. The human liver microsomes substrate-concentration response was similar to cDNA-expressed 3A4, but the ratio was higher. Changes in the environment of cDNA-expressed 3A4 also effected the magnitude of the ratio, but not the concentration-dependent decrease. These studies show that the N-demethylation of LAAM and norLAAM is not restricted to P450 3A4, particularly P450s 2B6 and 2C18, and suggest that the mechanism of sequential metabolism for 3A4 differs from that of 2B6 and 2C18.  相似文献   

7.
Spices, herbal and black teas, and soybean products were analyzed for their capacity to inhibit in vitro metabolism of drug marker substrates by human cytochrome P-450 (CYP) isoforms. Inhibition of drug metabolism was determined using aliquots or infusions from these products in a fluorescence-detection assay. Aliquots and infusions of all natural product categories inhibited 3A4 metabolism to some extent. Of the 26 aliquots from teas and spices further tested with 2C9, 2C19 and 2D6, many demonstrated significant inhibitory activity on the metabolism mediated by these isoforms. Black teas and herbal tea mixtures were generally more inhibitory than single-entity herbal teas. Spices and single-entity herbal teas showed species-specific isoform inhibition with sage, thyme, cloves, St John's Wort and goldenseal having the highest activity against several isoforms. Seven soybean varieties tested, as well as daidzein and genistein isolated from soybean, were found to inhibit 3A4-mediated metabolism. Genistein was found to inhibit 3A7- but not 3A5-mediated metabolism of the marker substrate. Assessment of the in vitro CYP inhibition potential for these natural products has important implications for predicting the likelihood of natural product-drug interactions if these products are taken concomitantly.  相似文献   

8.
Cytochrome b5 has been shown to stimulate, inhibit or have no effect on catalysis by P450 cytochromes. Its action is known to depend on the isozyme of cytochrome P450, the substrate, and experimental conditions. Cytochrome P450 2B4 (CYP 2B4) has been used in our laboratory as a model isozyme to study the role of cytochrome b5 in cytochrome P450 catalysis using two substrates, methoxyflurane and benzphetamine. One substrate is the volatile anesthetic, methoxyflurane, whose metabolism is consistently markedly stimulated by cytochrome b5. The other is benzphetamine, whose metabolism is minimally modified by cytochrome b5. Determination of the stoichiometry of the metabolism of both substrates showed that the amount of product formed is the net result of the simultaneous stimulatory and inhibitory actions of cytochrome b5 on catalysis. Site-directed mutagenesis studies revealed that both cytochrome b5 and cytochrome P450 reductase interact with cytochrome P450 on its proximal surface on overlapping but non-identical binding sites. Comparison of the rate of reduction of oxyferrous CYP 2B4 and the rate of substrate oxidation by cyt b5 and reductase with stopped-flow spectrophotometric and rapid chemical quench experiments has demonstrated that although cytochrome b5 and reductase reduce oxyferrous CYP 2B4 at the same rate, substrate oxidation proceeds more slowly in the presence of the reductase.  相似文献   

9.
The epithelial cells of the gastrointestinal tract have the capacity to engage in biotransformation of ingested chemicals. A principal component of phase I metabolism of xenobiotics is the family of hemeproteins referred to as cytochrome(s) P450. The presence of cytochrome P450 isoforms was examined by Western blot analysis in the epithelial cells of the colon and proximal small intestine of male rats following oral administration with either beta-naphthoflavone or phenobarbital. The appearance of beta-naphthoflavone-inducible cytochrome P450IAI was observed in the colon and small intestine. The appearance of this cytochrome P450 isoform was concurrent with increases (up to 150-fold) in cytochrome P450-related O-deethylation of 7-ethoxycoumarin and 7-ethoxyresorufin in both tissues. Following administration of phenobarbital, cytochrome P450IIBI was identified immunochemically in the small intestine. However, this isozyme could not be detected in colon. These data suggest that the epithelial cells of the proximal small intestine respond to beta-naphthoflavone and phenobarbital in a manner similar to the liver, whereas colonic epithelial cells may have a greater capacity to respond to P450IAI-type inducers such as beta-naphthoflavone. Evidence exists that differences in cytochrome P450 isozyme composition can affect the ultimate metabolic fate of ingested chemicals, including carcinogens, and thus a role for colonic P450-dependent monooxygenase activity in the biogenesis of cancer in this tumor-susceptible tissue is suggested.  相似文献   

10.
MDR- and CYP3A4-mediated drug-herbal interactions   总被引:8,自引:0,他引:8  
Pal D  Mitra AK 《Life sciences》2006,78(18):2131-2145
  相似文献   

11.
Oxidation of indole by cytochrome P450 enzymes   总被引:9,自引:0,他引:9  
Indole is a product of tryptophan catabolism by gut bacteria and is absorbed into the body in substantial amounts. The compound is known to be oxidized to indoxyl and excreted in urine as indoxyl (3-hydroxyindole) sulfate. Further oxidation and dimerization of indoxyl leads to the formation of indigoid pigments. We report the definitive identification of the pigments indigo and indirubin as products of human cytochrome P450 (P450)-catalyzed metabolism of indole by visible, (1)H NMR, and mass spectrometry. P450 2A6 was most active in the formation of these two pigments, followed by P450s 2C19 and 2E1. Additional products of indole metabolism were characterized by HPLC/UV and mass spectrometry. Indoxyl (3-hydroxyindole) was observed as a transient product of P450 2A6-mediated metabolism; isatin, 6-hydroxyindole, and dioxindole accumulated at low levels. Oxindole was the predominant product formed by P450s 2A6, 2E1, and 2C19 and was not transformed further. A stable end product was assigned the structure 6H-oxazolo[3,2-a:4, 5-b']diindole by UV, (1)H NMR, and mass spectrometry, and we conclude that P450s can catalyze the oxidative coupling of indoles to form this dimeric conjugate. On the basis of these results, we propose that the P450/NADPH-P450 reductase system can catalyze oxidation of indole to a variety of products.  相似文献   

12.
Approximately 90% of the NADPH- and NADH-dependent O-demethylation of p-nitroanisole (PNA) in the hepatic microsomal fraction from phenobarbital (PB)-treated rabbits and in the pulmonary microsomal fraction from untreated rabbits is catalyzed by the same isozyme of cytochrome P-450. This isozyme of cytochrome P-450 catalyzes less than 60% of this reaction in the hepatic microsomal fraction from untreated rabbits. Antibodies to NADPH-cytochrome P-450 reductase inhibit NADPH-dependent metabolism of p-nitroanisole by about 90% but have no effect on NADH-dependent metabolism. Hepatic NADPH-dependent metabolism of pNA and reduction of cytochrome c are inhibited to the same extent with varying amounts of antibodies to NADPH cytochrome P-450 reductase. The same relationship between inhibition of monooxygenase and reductase activities is observed for the hepatic and pulmonary metabolism of benzphetamine and 7-ethoxycoumarin. In contrast, the relationship between inhibition of the pulmonary NADPH-dependent metabolism of pNA and reductase activity is biphasic; at 75% inhibition of reductase activity, metabolism of pNA is inhibited by less than 25%. For NADH-dependent metabolism of pNA, our results indicate that both electrons are transferred to cytochrome P-450 from cytochrome b5.  相似文献   

13.
In the drug discovery process, the metabolic fate of drugs is crucially important to prevent drug-drug interactions. Therefore, P450 isozyme selectivity prediction is an important task for screening drugs of appropriate metabolism profiles. Recently, large-scale activity data of five P450 isozymes (CYP1A2 CYP2C9, CYP3A4, CYP2D6, and CYP2C19) have been obtained using quantitative high-throughput screening with a bioluminescence assay. Although some isozymes share similar selectivities, conventional supervised learning algorithms independently learn a prediction model from each P450 isozyme. They are unable to exploit the other P450 isozyme activity data to improve the predictive performance of each P450 isozyme's selectivity. To address this issue, we apply transfer learning that uses activity data of the other isozymes to learn a prediction model from multiple P450 isozymes. After using the large-scale P450 isozyme selectivity dataset for five P450 isozymes, we evaluate the model's predictive performance. Experimental results show that, overall, our algorithm outperforms conventional supervised learning algorithms such as support vector machine (SVM), Weighted k-nearest neighbor classifier, Bagging, Adaboost, and latent semantic indexing (LSI). Moreover, our results show that the predictive performance of our algorithm is improved by exploiting the multiple P450 isozyme activity data in the learning process. Our algorithm can be an effective tool for P450 selectivity prediction for new chemical entities using multiple P450 isozyme activity data.  相似文献   

14.

Background

HIV protease inhibitor (PI)-induced inflammatory response in macrophages is a major risk factor for cardiovascular diseases. We have previously reported that berberine (BBR), a traditional herbal medicine, prevents HIV PI-induced inflammatory response through inhibiting endoplasmic reticulum (ER) stress in macrophages. We also found that HIV PIs significantly increased the intracellular concentrations of BBR in macrophages. However, the underlying mechanisms of HIV PI-induced BBR accumulation are unknown. This study examined the role of P-glycoprotein (P-gp) in HIV PI-mediated accumulation of BBR in macrophages.

Methodology and Principal Findings

Cultured mouse RAW264.7 macrophages, human THP-1-derived macrophages, Wild type MDCK (MDCK/WT) and human P-gp transfected (MDCK/P-gp) cells were used in this study. The intracellular concentration of BBR was determined by HPLC. The activity of P-gp was assessed by measuring digoxin and rhodamine 123 (Rh123) efflux. The interaction between P-gp and BBR or HIV PIs was predicated by Glide docking using Schrodinger program. The results indicate that P-gp contributed to the efflux of BBR in macrophages. HIV PIs significantly increased BBR concentrations in macrophages; however, BBR did not alter cellular HIV PI concentrations. Although HIV PIs did not affect P-gp expression, P-gp transport activities were significantly inhibited in HIV PI-treated macrophages. Furthermore, the molecular docking study suggests that both HIV PIs and BBR fit the binding pocket of P-gp, and HIV PIs may compete with BBR to bind P-gp.

Conclusion and Significance

HIV PIs increase the concentration of BBR by modulating the transport activity of P-gp in macrophages. Understanding the cellular mechanisms of potential drug-drug interactions is critical prior to applying successful combinational therapy in the clinic.  相似文献   

15.
Hematopoietic stem cells show reduced staining with a mitochondrial fluorescent dye, rhodamine 123 (Rh-123), which was supposed to indicate decreased mitochondrial activity in these cells. Rh123 and several other fluorescent dyes are substrates for transport mediated by P-glycoprotein (P-gp), an efflux pump responsible for multidrug resistance in tumor cells. We have found that staining of human bone marrow cells with fluorescent dyes is potentiated by P-gp inhibitors and inversely correlated with P-gp expression. P-gp is expressed in practically all hematopoietic progenitor cells, including long-term culture-initiating cells. The highest levels of P-gp among the progenitors are associated with cells displaying characteristics of pluripotent stem cells. These results have implications for stem cell purification and bone marrow resistance to cancer chemotherapy.  相似文献   

16.
Rabbit cytochrome P450 isozyme 2 requires cytochrome b5 to metabolize the volatile anesthetic methoxyflurane but not the substrate benzphetamine [E. Canova-Davis and L. Waskell (1984) J. Biol. Chem. 259, 2541-2546]. To determine whether the requirement for cytochrome b5 for methoxyflurane oxidation is mediated by an allosteric effect on cytochrome P450 LM2 or cytochrome P450 reductase, we have investigated whether this anesthetic can induce a role for cytochrome b5 in benzphetamine metabolism. Using rabbit liver microsomes and antibodies raised in guinea pigs against rabbit cytochrome b5, we found that methoxyflurane did not create a cytochrome b5 requirement for benzphetamine metabolism. Methoxyflurane also failed to induce a role for cytochrome b5 in benzphetamine metabolism in the purified, reconstituted mixed function oxidase system. Studies of the reaction kinetics established that in the absence of cytochrome b5, methoxyflurane and benzphetamine are competitive inhibitors, and that in the presence of cytochrome b5, benzphetamine and methoxyflurane are two alternate substrates in competition for a single site on the same enzyme. These results all indicate that the methoxyflurane-induced cytochrome b5 dependence of the mixed function oxidase cytochrome P450 LM2 system is a direct result of the interaction between methoxyflurane and the substrate binding site of cytochrome P450 LM2 and suggest the focus of future studies of this question.  相似文献   

17.
Zhu HJ  Liu GQ 《Life sciences》2004,75(11):1313-1322
The accumulation of glutamate in the extracellular space in the central nervous system (CNS) plays a major part in ischemic and anoxic damage. In this study, we examined the effect of glutamate on the expression and activity of P-glycoprotein (P-gp) in rat brain microvessel endothelial cells (RBMECs) making up the blood-brain barrier (BBB). The level of P-gp expression significantly increased in RBMECs after the treatment of 100 microM glutamate. At this concentration, glutamate also enhanced rat mdr1a and mdr1b mRNA levels determined by RT-PCR analysis. Flow cytometry was used to study P-gp activity by analysis of intracellular rhodamine123 (Rh123) accumulation. Overexpression of P-gp resulted in a decreased intracellular accumulation of Rh123 in RBMECs. Glutamate-induced increase of intracellular reactive oxygen species (ROS) was observed by using the 2',7'-dichlorofluorescein (2',7'-DCF) assay. MK-801, a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist, and ROS scavenger N-acetylcysteine obviously blocked ROS generation and attenuated the changes of both expression and activity of P-gp induced by glutamate in RBMECs. These data suggested that glutamate up-regulated P-gp expression in RBMECs by an NMDA receptor-mediated mechanism and that glutamate-induced generation of ROS was linked to the regulation of P-gp expression. Therefore, transport of P-gp substrates in BBB appears to be affected during ischemic and anoxic injury.  相似文献   

18.
There are 75 full length cytochrome P450 (CYP) genes known in the genome of the nematode Caenorhabditis elegans. The individual biological functions of the vast majority are mostly as yet unknown. Here the impact of cytochrome P450 isoforms on the metabolism of PCB52, an ortho-substituted, non-coplanar 2,2′,5,5′-tetrachlorbiphenyl, as a model PCB of these worldwide distributed pollutants is investigated. Organic extracts, isolated from treated worms and analyzed by GC/MS, contained two obvious PCB52-derived products which have been identified as C3-, C4- and/or C6-hydroxy-PCB52. Moreover, these hydroxylase reactions strictly required the functional expression of the NADPH-dependent cytochrome P450 reductase (CPR) encoding emb-8 gene, which was recently shown to be essential also for several other cytochrome P450-dependent enzymatic reactions. Multiple and subsequent single RNAi-gene silencing experiments, as well as the use of cyp-mutant strains, identified members of the CYP-14A subfamily and CYP-34A6 as the major isoforms contributing to PCB52 metabolism in C. elegans. In the gene-silenced worms and mutants, the reduction in formation of hydroxylated products ranged from 55% to 78%. These results demonstrate for the first time that C. elegans shares with mammals the capacity to produce CYP-dependent PCB metabolites and may thus facilitate future studies on biotransformation.  相似文献   

19.
The biochemical basis for the marked difference in the rate of the hepatic metabolism of 2,2',4,4',5,5'-hexachlorobiphenyl (245-HCB) by Beagle dogs and Sprague-Dawley rats has been investigated. Control dog liver microsomes metabolize this substrate 15 times faster than control rat liver microsomes. Upon treatment with phenobarbital (PB), at least two cytochrome P-450 isozymes are induced in the dog, and the hepatic microsomal metabolism of 245-HCB is increased on both a per nanomole P-450 basis (twofold) and a per milligram protein basis (fivefold). One of the PB-induced isozymes, PBD-2, has been purified to a specific content of 17-19 nmol/mg protein and to less than 95% homogeneity, as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In a reconstituted system containing cytochrome b5, this isozyme shows an activity toward 245-HCB which is greater than threefold that seen in intact liver microsomes from PB-induced dogs. A reconstituted system containing the major isozyme induced by PB in the rat (PB-B) metabolizes 245-HCB at 1/10 the rate observed with purified PBD-2. Antibody inhibition studies have shown that PBD-2 accounts for greater than 90% of the hepatic microsomal metabolism of 245-HCB in control and PB-induced dogs, while PB-B only accounts for about half of the metabolism of this compound by microsomes obtained from PB-treated rats. Immunoblot analysis has revealed that the level of PBD-2 in dog liver microsomes increases nearly sixfold with PB treatment, and this increase correlates well with the fivefold increase in the rate of hepatic microsomal metabolism of 245-HCB by dogs. Together these data support a primary role for isozyme PBD-2 in the hepatic metabolism of 245-HCB in control and PB-induced dogs. In addition, these results suggest that, in contrast to rats, dogs can readily metabolize 245-HCB as a result of the presence of a cytochrome P-450 isozyme with efficient 245-HCB metabolizing activity.  相似文献   

20.
Plants produce and release large quantities of methanol, especially when attacked by herbivores. It seems that the herbivores may suffer from methanol intoxication. Here we reported the tolerance to and the metabolism of methanol by Ostrinia furnacalis third-instar larvae. When larvae were exposed to dietary methanol, formaldehyde and formic acid for 72 h, the estimated LC50 value was 28, 40 and 29 mg/g diet, respectively. Toxicity of methanol was enhanced by 4-methylpyrazole, 3-amino-1,2,4-triazole and piperonyl butoxide, and toxicity of formaldehyde was increased by 3-amino-1,2,4-triazole and piperonyl butoxide. However, triphenyl phosphate had little synergistic effects on both methanol and formaldehyde. These data indicate that alcohol dehydrogenase, and probably catalase and cytochrome P450 monooxygenase oxidize methanol to formaldehyde, catalase and cytochrome P450 monooxygenase catalyze formaldehyde to formic acid, water and carbon dioxide, and carboxylesterase may have a minor effect. Several fatty acid methyl esters (FAMEs) were identified from extracts of the frass of larvae which had been exposed to a methanol-contained diet, in contrast to those on a methanol-free artificial diet. In vitro tests revealed that a crude enzyme solution from the larvae could synthesize FAMEs from corresponding fatty acids and methanol. In addition, dietary methanol induced higher esterase activities in the first-, second- and third-instar larvae. These findings demonstrate that both oxidative metabolism and non-oxidative metabolism are partially responsible for methanol elimination in O. furnacalis larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号