首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Co-purification of an endogenous proteolytic activity has been proposed as the cause for the size heterogeneity of sialyltransferases. Reported herein are results on the effects of various protease inhibitors, sulfhydryl-reducing agents and antimicrobial agents on SAT-1 activity. Addition of protease inhibitors to immunoaffinity-purified rat liver SAT-1 dramatically affects its activity. All protease inhibitors examined, with the exception of PMSF, inhibited the purified enzyme. The most inhibitory were the cysteine (thiol) protease inhibitors. This effect is less spectacular when the effect of these inhibitors was studied on SAT-1 activity in Golgi-enriched microsomes, although the inhibition was greatest by the cysteine protease inhibitors. One dramatic effect, found in both cases, was the apparent activation of SAT-1 activity in the presence of beta-mercaptoethanol.  相似文献   

2.
The activity of cyclic AMP phosphodiesterase (3':5'-cyclic-nucleotide 5'-nucleotidohydrolase, EC 3.1.4.17) in 105 000 X g supernatant fraction from frozen-thawed rat liver was 2.5 times higher than the corresponding preparation from fresh liver. This increased activity of frozen liver enzyme was accompanied by a decreased sensitivity of the enzyme to known activators such as alpha-tocopheryl phosphate and trypsin. Neither membrane-bound cyclic AMP phosphodiesterase, nor supernatant cyclic GMP phosphodiesterase increased in frozen liver preparation. It is unlikely that the activator protein of phosphodiesterase participated in the observed change of enzyme activity. Among rat tissues so far tested, the increased level of cyclic AMP phosphodiesterase was noted only in tissues rich in lysosome content. In the recombination experiment where phosphodiesterase from fresh liver was incubated with lysosomal fraction, stimulation of the enzyme activity was observed with a concomitant loss of sensitivity to above-mentioned activators. Since the stimulation by lysosomal fraction was effectively inhibited by cathepsin B1 inhibitors, leupeptin and antipain, it was deduced cathepsin-B1 (EC 3.4.12.3) type protease(s) was the main causative of activating the cyclic AMP phosphodiesterase. The freezing-thawing process of rat liver made the lysosomal membrane more permeable, and hence lysosomal proteases were released into soluble fraction during phosphodiesterase preparation. These results provide a warning not to use frozen liver for phosphodiesterase preparation, otherwise altered properties of the enzymes will be seen.  相似文献   

3.
Incubation of radiolabeled human C3a with rat peritoneal mast cells resulted in high levels of uptake and extensive degradation of the ligand. Both cell-bound and free radiolabeled human C3a underwent extensive degradation by rat mast cells even at 0 degrees C. We examined several protease inhibitors for their ability to prevent degradation of radiolabeled human C3a by the rat mast cells. The inhibitors PMSF, chymostatin, and soybean trypsin inhibitor were most effective in preventing radiolabeled human C3a degradation. Degradation of the cell-bound ligand was totally inhibited only by PMSF. These compounds are effective inhibitors of a chymotrypsin-like enzyme (chymase) extracted from rat mast cells. Chemical cross-linking of radiolabeled human C3a to surface components on the rat mast cells, in the presence of PMSF, revealed one major and two minor bands. The mast cell component in both the major and minor bands proved to be chymase-associated based on a direct comparison with purified chymase isolated from rat mast cells. However, neither antichymase antibody nor chymase inhibitors influenced the degranulating activity of C3a on rat mast cells that occur independently of the C3a-chymase interactions. We conclude that there are neither specific C3a-binding sites on rat mast cells nor specific receptors whose occupancy leads to cellular activation. Although human C3ades Arg is inactive on guinea pig ileal and lung tissue, it binds to and induces degranulation of rat mast cells, as well as enhances vascular permeability in rat skin, at concentrations nearly identical to that of intact C3a. The fact that both C3a and C3ades Arg stimulated mast cell activation, at concentrations in excess of 10(-6) M, argues against specific binding sites for the anaphylatoxin on rat mast cells. It is proposed that the cationic C3a molecule activates rat mast cells in a secretory and nonlytic manner by a nonspecific mechanism similar to that of other polybasic compounds.  相似文献   

4.
D B Carter  C B Chae 《Biochemistry》1976,15(1):180-185
A chromatin-bound protease, active in 2 M NaCl-5 M urea or 5 M urea alone, was demonstrated in rat liver, kidney, testes, brain, rabbit bone marrow, chicken reticulocyte, and Ehrlich ascites chromatin. Chicken erythrocyte chromatin did not possess any detectable proteolytic activity in salt and urea. The proteolytic activity of rat liver chromatin in salt and urea was found to be independent of the methods of chromatin preparation. The protease can be inhibited by the serine specific reagents phenylmethanesulfonyl fluoride and diisopropyl fluorophosphate and the alkylating reagent, carbobenzoxyphenylalanine chloromethyl ketone, in the presence of organic solvents at 1 mM concentration. The inhibitions of chromatin-bound protease in rat liver by these compounds are irreversible. On the other hand, carbobenzoxyphenylalanine and p-nitrophenyl acetate were shown to be reversible inhibitors of rat liver chromatin-bound protease. The application of these inhibitors during the dissociation of chromatin by salt and urea may be useful to researchers interested in purifying various chromosomal proteins or to those researchers doing reconstitution studies with labile chromatins.  相似文献   

5.
A neutral serine protease was purified as a homogeneous protein from the culture broth of photosynthetic bacterium T-20 by sequential chromatographies on columns of DEAE-cellulose, Toyopearl HW 55F, hydroxyapatite, and CM-cellulose. The molecular weight was estimated to be approximately 44,000 by SDS-PAGE, while the value of approximately 80,000 was obtained when the Hedrick-Smith method was used; this suggested that the enzyme consists of two identical subunits. The isoelectric point was determined to be 6.3 by isoelectric focusing. The enzyme had a pH optimum at 7.8. Maximal enzyme activity was detected at 50°C, and the activity was stable up to 50°C for 5 min at pH 7.0–7.2. The substrate specificity of the protease was investigated with a series of synthetic peptidyl-p-nitroanilide. The best substrate examined was Suc-Ala-Ala-Pro-Phe-pNA. The protease activity was inhibited by various inhibitors of serine protease such as chymostatin, PMSF, and DFP. EDTA, which is an inhibitor of metal protease, also inhibited the protease activity, whereas inhibitors of thiol and aspartic proteases had no significant effect.  相似文献   

6.
A Ca2+ activated protease(s) capable of hydrolyzing several polypeptides at neutral pH including cytoskeletal proteins, actin, myosin, tubulin and neurofilament triplet was identified in calf brain cortex. The enzyme activity precipitates at 75 mM KCl, pH 6.5 – 7.0 and is inhibited by the sulfhydryl inhibitors, N-ethylmaleimide and para-chloromercuribenzoate and the protease inhibitors, antipain, pepstatin and leupeptin, leupeptin being the most effective.  相似文献   

7.
A cysteine metalloproteinase that degrades 125I-insulin B chain at neutral pH values was isolated from C3H mouse liver. The enzyme was partially purified from the 100,000g supernatant fraction by ammonium sulfate precipitation, DEAE-cellulose chromatography, and fast protein liquid chromatography. The molecular weight of the proteinase was estimated to be 190,000 by gel filtration on Sephadex G-200. Degradation of 125I-insulin B chain by the proteinase was inhibited by p-hydroxymercuribenzoate (PHMB) and iodoacetate (cysteine proteinase inhibitors) and by ethylenediaminetetraacetic acid (EDTA) and 1,10-phenanthroline (metalloproteinase inhibitors). The proteinase also degraded 125I-glucagon but did not hydrolyze 125I-insulin, leucine-2-naphthylamide, or several large proteins. Equivalent levels of EDTA- and PHMB-inhibitable 125I-insulin B chain-degrading activity were observed in the 100,000g supernatant fractions of brain, liver, lung, kidney, heart, and spleen from four mouse strains (C3H/HeN, CBA/J, ICR, and C57BL/6). High levels of 125I-insulin B chain-degrading activity were found in the particulate fraction of kidneys and lungs from these four mouse strains; these activities were inhibited by EDTA but not by PHMB. The activity of the soluble liver cysteine metalloproteinase was not altered in C3H mice treated ip with metal chelators, bacterial endotoxin, phenobarbital, dexamethasone, or insulin. Starvation for 24 or 48 hr and alloxan-induced diabetes diminished total activity of this enzyme in liver by about 50 and 30%, respectively. This soluble polypeptide-degrading enzyme appears to be ubiquitous in mice and to be regulated by nutritional conditions.  相似文献   

8.
A proteolytic activity was identified in Dugesia tigrina planaria using the chromogenic substrate Phe-Ala-Ala-Phe (4-NO2)-Phe-Val-Leu-O4MP. The activity of the enzyme increased four times during the regeneration and presented a maximum at 120 hr being higher in tail than head regenerating segments. The protease that displays this activity was purified from worms by a single step on pepstatin-agarose followed by gel-filtration high performance liquid chromatography. The purification resulted in a 34-fold increase in specific activity and the final yield was 10%. The active D. tigrina hydrolase appears to be a dimeric protein composed of identical subunits with 34 kDa associated by disulphide bridges similar to vertebrate cathepsin D. By SDS-PAGE several bands were detected but upon gel filtration HPLC one proteolytically active component, termed Asp-68, was detected and isolated. The maximal activity was observed in a range between pH 3.5-5.0 and the enzyme became inactivated at a pH value above 7.2. The purified enzyme was not inhibited by inhibitors from serine (aprotinin, TPCK, PMSF and TLCK), metallo (EDTA) and cysteine proteinase (E-64) classes. In contrast, inhibitors such as pepstatin, EPNP, and 4-beta-PMA efficiently inhibited the activity of the 68-kDa protease.  相似文献   

9.
From soluble extract of rat kidney we have previously identified an endothelin degradation enzyme that rapidly and specifically cleaves off the C-terminal tryptophan of endothelin-1, resulting in a peptide that is three orders of magnitude weaker in potency than endothelin-1 in causing smooth muscle contraction. The tissue distribution of this enzyme was examined, and the soluble extracts of rat kidney were found to contain the highest enzyme activity, followed by the spleen and the liver. In contrast, no enzyme activity was detected in the soluble extracts of brain, heart, and lung. The biochemical properties of the partially purified enzyme from kidney were further investigated. The optimal pH of the enzyme was between 5 and 7. The endothelin degrading activity was effectively blocked by thiol protease inhibitors such as benzyloxycarbonyl-Phe-Ala-diazomethyl ketone and p-hydroxymercuribenzoic acid, as well as by phenylmethylsulfonyl fluoride, but not by metalloprotease and other serine protease inhibitors. This enzyme displayed a clear difference in substrate specificity when compared with other thiol proteases such as cathepsin B, cathepsin H, and cathepsin L, known to be present in the kidney. These results suggest that a novel protease with endothelin degrading activity is widely distributed in a number of tissues.  相似文献   

10.
球形芽孢杆菌能够合成具杀蚊活性的蛋白晶体,该晶体在蚊中肠碱性条件下降解产生毒性,尽管球形芽孢杆菌蛋白酶与杀蚊毒素的降解无关,但它在球形芽孢杆菌杀蚊制剂的产生中有重要意义。同时球形芽孢杆菌产生的碱性蛋白酶具有潜在的医疗价值。 我们以本实验室分离的高效杀蚊菌C_3—41菌株为材料,研究了球形芽孢杆菌蛋白酶的产生特性及其理化性质,在国内尚属首次报道。  相似文献   

11.
To examine whether serine proteases of rat liver chromatin are also involved in the degradation of newly synthesized and unbound ribosomal proteins and histones, like the nuclear thiol protease which we reported previously (Tsurugi, K. & Ogata, K. (1979) Eur. J. Biochem. 101, 205-213), in vivo experiments were carried out with serine protease inhibitor, PMSF. The following results were obtained. When normal rats received an intraperitoneal injection of PMSF (10 mg per 100 g body weight), nuclear serine proteases were inhibited almost completely for at least 90 min. PMSF did not affect the synthesis of proteins and RNAs of ribosomes and other subcellular fractions. The effects of PMSF treatment in vivo on the degradation of newly synthesized ribosomal proteins and histones in regenerating rat liver pretreated with a low dose of actinomycin D, which preferentially inhibited rRNA synthesis, were examined by using the double-isotope method. It was found that PMSF treatment did not affect their degradation. On the other hand, administration of E-64, a thiol protease inhibitor, to partially hepatectomized rats inhibited the degradation of those proteins markedly. From these results, it is concluded that the nuclear thiol protease, but not serine proteases, is preferentially involved in the degradation of newly synthesized ribosomal proteins and histones which are not associated with rRNA and DNA, respectively.  相似文献   

12.
A peripheral membrane protease was purified from mitochondria of rat submaxillary gland. On non-denaturing PAGE the purified enzyme showed a single protein band with the enzyme activity. It yielded two protein bands with molecular weights of 39 KDa and 20 KDa on SDS-PAGE, indicating that the enzyme is composed of two protein components. The enzyme activity was strongly inhibited by SBTI, aprotinin and benzamidine. PMSF, TLCK and EDTA did not produce inhibition. The enzyme could hydrolyze different synthetic substrates having arginine at the P1 position with highest affinity for the substrate Bz-Phe-Val-Arg-p-nitroanilide was noted. The enzyme showed significant activation of chymotrypsinogen A.  相似文献   

13.
Proteolysis of peripheral nerve myelin was studied in rats with experimental allergic neuritis (EAN). In vitro measurements using rat sciatic nerve homogenate and denatured bovine myelin as a substrate showed two myelin specific enzyme activities at pH 3.8 (inhibited by pepstatin) and pH 5.8 (inhibited by PMSF) in the normal rat and newly appearing activities at pH 2.8 (inhibited by pepstatin) and pH 5.0 (not characterized) in the EAN rat. In EAN the proteolytic activity was not restricted to myelin substrate but degraded total sciatic nerve protein as well. Endogenous sciatic nerve protease at pH 5.8 did not significantly change in activity during the course of disease. On the contrary, activity of acid protease at pH 2.8 corresponded well to the disease. Myelin degradation in EAN, therefore, appears to be mainly due to exogenous non-tissue protease.Abbreviations EAN experimental allergic neuritis - EDTA ethylenediaminetetraacetic acid - HBM hydroxymercuro benzoate - PLP proteolipid protein - PMSF phenylmethylsulfonyl fluoride - PNS peripheral nervous system - SDS sodium dodecylsulfate - TCA trichloroacetic acid This work is part of the M.D. thesis of R. B.  相似文献   

14.
Electron transport particles (ETP) prepared from beef heart mitochondria formed malondialdehyde by NADPH-dependent lipid peroixidation in the presence of ferric ions and ADP or ATP. The reaction was inhibited by MnCl2, EDTA, or radical scavengers, but was not inhibited by p-hydroxymercuribenzoate (PHMB) or respiratory chain inhibitors. The oxidation of NADPH and oxygen consumption by ETP were activated by the addition of ferric ions and APT, and inhibited by inhibitors of lipid peroxidation. This peroxidation system was apparently different from those of liver microsomes and mitochondria as regards the effect of PHMB, optimal pH and the concentration of NADPH for half-maximal reaction velocity.  相似文献   

15.
F R Chen  P C Liu  K K Lee 《Microbios》1999,98(389):27-34
Four chromogenic substrates for characterizing serine protease of Vibrio alginolyticus were evaluated. The protease activity of bacterial extracellular products, or the fractions of 33 kD protease purified by the AKTA purifier system with various columns, was completely inhibited by ethylenediamine tetra-acetic acid, ethylene glycol-bis(beta-amino-ethyl ether) N,N,N',N'-tetraacetic acid (EGTA), antipain and phenylmethylsulphonyl fluoride (PMSF) using water-soluble substrates (azoalbumin and azocasein). It was only completely inhibited by antipain and PMSF using water-insoluble substrates (azocoll and hide powder azure). The protease activity was not, or only partially, inhibited by 1,10-phenanthroline and sodium dodecyl sulphate (SDS) using all four substrates. Since chelating agents and 1,10-phenanthroline are commonly employed as inhibitors to identify metalloprotease, the two water-soluble substrates may not be appropriate for this purpose, except for using 1,10-phenanthroline as an inhibitor. Chelating agents may be still applicable as inhibitors using water-insoluble substrates and 1,10-phenanthroline is highly recommended in the characterization for metalloprotease to avoid confusion. In the present study, the 33 kD protease was further confirmed as an SDS-resistant serine protease and not a metalloprotease.  相似文献   

16.
An N-ethylmaleimide-sensitive ATPase was purified 100-fold from chromaffin granule membranes. The purification procedure included solubilization with polyoxyethylene 9 lauryl ether, chromatography on hydroxylapatite and DEAE-cellulose columns, and glycerol gradient centrifugations. Inclusion of phosphatidylserine and a mixture of protease inhibitors during the purification procedure was necessary to maintain the activity of the preparation. The purified preparation contained four major polypeptides with molecular masses of about 115, 72, 57, and 39 kDa, which were copurified with the ATPase activity. The 115-kDa subunit binds [14C]dicyclohexylcarbodiimide and the subunits of 115 and 39 kDa bind [14C]N-ethylmaleimide. The ATP-dependent proton uptake activity of chromaffin granule membranes is inhibited 50% with about 20 microM N-ethylmaleimide, while over 5 mM concentrations of the inhibitor were required to block the ATPase activity of the membranes. The ATPase activity of the purified enzyme was inhibited via two different affinities: a high affinity site with a Ki in the microM range and a low affinity site in the mM range, each contributing to about 50% inhibition of the enzyme. It is concluded that the proton-ATPase of chromaffin granule membranes contains at least four subunits with the 115-kDa polypeptide being the main subunit having the active site for the ATPase activity of the enzyme.  相似文献   

17.
Percoll gradient fractions of homogenates of murine cloned cytotoxic T lymphocytes (CTL) were analyzed for the trypsin-like enzyme alpha-N-benzyloxy-carbonyl-L-lysinethiobenzyl ester (BLT) esterase recently described in CTL homogenates. Enzymatic activity was found in three areas of the gradient: the dense cytolysin containing granules; a light granule fraction; and a variable amount in the soluble fraction at the top of the gradient. Gel filtration columns showed a major peak of BLT esterase activity eluted at the position of a 60-kDa protein, and an additional, minor BLT esterase peak eluting at about 27 kDa. The separated enzymes were both significantly inhibited by the serine protease inhibitors diisopropylfluorophosphate and phenylmethyl sulfonyl fluoride (PMSF), indicating they are both serine proteases, but showed different patterns of inhibition by a series of inhibitors, suggesting the larger enzyme is not a simple dimer of the smaller. pH activity profiles of both CTL BLT esterases showed an optimum at about pH 8. PMSF inactivation of BLT esterase in detergent extracts of CTL diminished sharply as the pH was dropped below 7. Agents which raise the pH of acidic intracellular compartments were found to markedly enhance the PMSF inactivation of BLT esterase in intact CTL, showing that the granules have a low internal pH. Similarly, [3H]diisopropylfluorophosphate labeling of intact CTL gave four protein bands on non-reduced gels, of which two were labeled threefold more effectively in the presence of chloroquine. In parallel studies of inactivation of CTL lytic activity, PMSF pretreatment caused a 50% reduction of the lytic activity under conditions where greater than 90% of the BLT esterase activity was inactivated. Addition of agents raising the intragranular pH dramatically enhanced the BLT esterase inactivation but did not concomitantly reduce CTL lytic activity. These results indicate that inactivation of lytic function by PMSF is unlikely to be due to its reaction with protease in acidic granules, and suggest that the activity of these enzymes may not be required for cytotoxicity.  相似文献   

18.
The nematophagous fungus Arthrobotrys oligospora produced extracellular proteases when grown in a liquid culture, as revealed by measuring the hydrolysis of the chromogenic substrate Azocoll. The extracellular protease activity was inhibited by phenylmethylsulfonyl fluoride (PMSF) and other serine protease inhibitors and partly inhibited by the aspartate protease inhibitor pepstatin and by a cysteine protease inhibitor [l-trans-epoxysuccinyl-leucylamide-(4-guanidino)-butane, or E-64]. Substrate gel electrophoresis showed that the fungus produced several different proteases, including multiple serine proteases. The function of proteases in the infection of nematodes was examined by treating the fungus with various protease inhibitors. None of the inhibitors tested affected the adhesion of nematodes to the traps, but incubating trap-bearing mycelium with a serine protease inhibitor, PMSF, antipain, or chymostatin, or the metalloprotease inhibitor phenanthroline significantly decreased the immobilization of nematodes captured by the fungus. Inhibitors of cysteine or aspartic proteases did not affect the immobilization of captured nematodes. The effects of PMSF on the immobilization of nematodes were probably due to serine proteases produced by the fungus, since the effects were observed when unbound inhibitor was washed away from the fungus before the nematodes were added to the system. No effects were observed when the nematodes only were pretreated with PMSF.  相似文献   

19.
《Plant science》1988,55(3):205-211
Potato (Solanum tuberosum L.) leaves were shown to contain a lipolytic enzyme activity which is stimulated by treatment with purified trypsin, pronase, and to a lesser degree by chymotrypsin. This protease-stimulated activity was stable over a wide range of pH values. Lipolytic enzyme activity also appeared to be regulated by pH, with a pronounced stimulation at pH 6.0 ± 0.5 and a subsequent inactivation at pH 8.0–9.0. This pH stimulation was slightly by ethylene diamine tetracetic acid (EDTA), and was inhibited by Ca2+. Although leupeptin slightly inhibited the pH stimulation, two other protease inhibitors, phenylmethylsulfonyl fluoride (PMSF) and soybean trypsin inhibitor showed no effect. While some of the lipolytic enzyme activitiesn potato leaves (those detected by 1-acyl-2-[6-[(7-nitro-2,1,3 benzoxadiazol-4-yl) amino]-caproyl] phosphatidylcholine (C6-NBD-PC) hydrolysis) are stimulated by protease or pH treatment, others (those detected by 4-methylumbelliferyl laurate (4MUL) hydrolysis) are inactivated by them. The possible physiological significance of this apparent proteolytic activation is discussed.  相似文献   

20.
Phenylmethylsulfonyl fluoride (PMSF)-inhibited carboxypeptidase from cat liver was purified 148-fold by chromatography on CM- and DEAE-cellulose with 27.3% yield. Molecular weight of the enzyme is 100-110 kD as determined by gel filtration on Sephadex G-150. The enzyme has maximum activity at pH 5.50-5.75; its activity is completely inhibited by PMSF or p-chloromercuribenzoate and partially inhibited by iodoacetamide. EDTA, 2-mercaptoethanol, N-ethylmaleimide, Co2+ and Ca2+, basic carboxypeptidase inhibitor guanidinoethylmercaptosuccinic acid, and angiotensin-converting enzyme inhibitor captopril do not influence its activity. The enzyme cleaves arginine from enkephalin-Leu5-Arg6 and dansyl-Phe-Leu-Arg to form enkephalin-Leu5 and dansyl-Phe-Leu, respectively, and very slowly cleaves leucine from carbobenzoxy-Gly-Leu. Further cleavage of either enkephalin-Leu5 or dansyl-Phe-Leu was not detected. The highest activity of this enzyme was found in adrenal glands and testicles; this activity was 30% lower in hypophysis, and still lower in liver and kidney. The PMSF-inhibited carboxypeptidase activity in brain was about 6-16 times lower than that in adrenal gland. In brain regions, the highest activity was detected in gray matter of cerebral hemispheres and cerebellum, and slightly lower activity was found in thalamus/hypothalamus, striatum, and hippocampus. The lowest activity was found in quadrigeminal bodies, medulla oblongata, and white matter of cerebral hemispheres. The enzyme exists mainly in soluble form; the activity of membrane-associated enzyme is 7-25% of soluble enzyme activity depending on tissue type. We consider here a possible involvement of PMSF-inhibited carboxypeptidase in the metabolism of biologically active peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号