首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recoverin is an EF-hand Ca(2+)-binding protein that is suggested to control the activity of the G-protein-coupled receptor kinase GRK-1 or rhodopsin kinase in a Ca(2+)-dependent manner. It undergoes a Ca(2+)-myristoyl switch when Ca(2+) binds to EF-hand 2 and 3. We investigated the mechanism of this switch by the use of point mutations in EF-hand 2 (E85Q) and 3 (E121Q) that impair their Ca(2+) binding. EF-hand 2 and 3 display different properties and serve different functions. Binding of Ca(2+) to recoverin is a sequential process, wherein EF-hand 3 is occupied first followed by the filling of EF-hand 2. After EF-hand 3 bound Ca(2+), the subsequent filling of EF-hand 2 triggers the exposition of the myristoyl group and in turn binding of recoverin to membranes. In addition, EF-hand 2 controls the mean residence time of recoverin at membranes by decreasing the dissociation rate of recoverin from membranes by 10-fold. We discuss this mechanism as one critical step for inhibition of rhodopsin kinase by recoverin.  相似文献   

2.
Recoverin is a neuronal calcium sensor protein that controls the activity of rhodopsin kinase in a Ca(2+)-dependent manner. Mutations in the EF-hand Ca2+ binding sites are valuable tools for investigating the functional properties of recoverin. In the recoverin mutant E121Q (Rec E121Q ) the high-affinity Ca2+ binding site is disabled. The non-myristoylated form of Rec E121Q binds one Ca2+ via its second Ca(2+)-binding site (EF-hand 2), whereas the myristoylated variant does not bind Ca2+ at all. Binding of Ca2+ to non-myristoylated Rec E121Q apparently triggers exposure of apolar side chains, allowing for association with hydrophobic matrices. Likewise, an interaction surface for the recoverin target rhodopsin kinase is constituted upon Ca2+ binding to the non-acylated mutant. Structural changes resulting from Ca(2+)-occupation of EF-hand 2 in myristoylated and non-myristoylated recoverin variants are discussed in terms of critical conditions required for biological activity.  相似文献   

3.
Recoverin is a Ca2+-regulated signal transduction modulator found in vertebrate retina that has been shown to undergo dramatic conformational changes upon Ca2+ binding to its two functional EF-hand motifs. To elucidate the differential impact of the N-terminal myristoylation as well as occupation of the two Ca2+ binding sites on recoverin structure and function, we have investigated a non-myristoylated E85Q mutant exhibiting virtually no Ca2+ binding to EF-2. Crystal structures of the mutant protein as well as the non-myristoylated wild-type have been determined. Although the non-myristoylated E85Q mutant does not display any functional activity, its three-dimensional structure in the presence of Ca2+ resembles the myristoylated wild-type with two Ca2+ but is quite dissimilar from the myristoylated E85Q mutant. We conclude that the N-terminal myristoyl modification significantly stabilizes the conformation of the Ca2+-free protein (i.e. the T conformation) during the stepwise transition toward the fully Ca2+-occupied state. On the basis of these observations, a refined model for the role of the myristoyl group as an intrinsic allosteric modulator is proposed.  相似文献   

4.
Xu X  Ishima R  Ames JB 《Proteins》2011,79(6):1910-1922
Recoverin, a member of the neuronal calcium sensor (NCS) branch of the calmodulin superfamily, serves as a calcium sensor in retinal rod cells. Ca2+‐induced conformational changes in recoverin promote extrusion of its covalently attached myristate, known as the Ca2+‐myristoyl switch. Here, we present nuclear magnetic resonance (NMR) relaxation dispersion and chemical shift analysis on 15N‐labeled recoverin to probe main chain conformational dynamics. 15N NMR relaxation data suggest that Ca2+‐free recoverin undergoes millisecond conformational dynamics at particular amide sites throughout the protein. The addition of trace Ca2+ levels (0.05 equivalents) increases the number of residues that show detectable relaxation dispersion. The Ca2+‐dependent chemical shifts and relaxation dispersion suggest that recoverin has an intermediate conformational state (I) between the sequestered apo state (T) and Ca2+ saturated extruded state (R): T ? I ? R. The first step is a fast conformational equilibrium ([T]/[I] < 100) on the millisecond time scale (τexδω < 1). The final step (I ? R) is much slower (τexδω > 1). The main chain structure of I is similar in part to the structure of half‐saturated E85Q recoverin with a sequestered myristoyl group. We propose that millisecond dynamics during T ? I may transiently increase the exposure of Ca2+‐binding sites to initiate Ca2+ binding that drives extrusion of the myristoyl group during I ? R. Proteins 2011; © 2011 Wiley‐Liss, Inc.  相似文献   

5.
Ames JB  Hamasaki N  Molchanova T 《Biochemistry》2002,41(18):5776-5787
Recoverin, a member of the EF-hand superfamily, serves as a calcium sensor in retinal rod cells. A myristoyl or related fatty acyl group covalently attached to the N-terminus of recoverin facilitates the binding of recoverin to retinal disk membranes by a mechanism known as the Ca2+-myristoyl switch. Previous structural studies revealed that the myristoyl group of recoverin is sequestered inside the protein core in the absence of calcium. The cooperative binding of two calcium ions to the second and third EF-hands (EF-2 and EF-3) of recoverin leads to the extrusion of the fatty acid. Here we present nuclear magnetic resonance (NMR), fluorescence, and calcium-binding studies of a myristoylated recoverin mutant (myr-E85Q) designed to abolish high-affinity calcium binding to EF-2 and thereby trap the myristoylated protein with calcium bound solely to EF-3. Equilibrium calcium-binding studies confirm that only one Ca2+ binds to myr-E85Q under the conditions of this study with a dissociation constant of 100 microM. Fluorescence and NMR spectra of the Ca2+-free myr-E85Q are identical to those of Ca2+-free wild type, indicating that the E85Q mutation does not alter the stability and structure of the Ca2+-free protein. In contrast, the fluorescence and NMR spectra of half-saturated myr-E85Q (one bound Ca2+) look different from those of Ca2+-saturated wild type (two bound Ca2+), suggesting that half-saturated myr-E85Q may represent a structural intermediate. We report here the three-dimensional structure of Ca2+-bound myr-E85Q as determined by NMR spectroscopy. The N-terminal myristoyl group of Ca2+-bound myr-E85Q is sequestered within a hydrophobic cavity lined by many aromatic residues (F23, W31, Y53, F56, F83, and Y86) resembling that of Ca2+-free recoverin. The structure of Ca2+-bound myr-E85Q in the N-terminal region (residues 2-90) is similar to that of Ca2+-free recoverin, whereas the C-terminal region (residues 100-202) is more similar to that of Ca2+-bound wild type. Hence, the structure of Ca2+-bound myr-E85Q represents a hybrid between the structures of recoverin with zero and two Ca2+ bound. The binding of Ca2+ to EF-3 leads to local structural changes within the EF-hand that alter the domain interface and cause a 45 degrees swiveling of the N- and C-terminal domains, resulting in a partial unclamping of the myristoyl group. We propose that Ca2+-bound myr-E85Q may represent a stable intermediate state in the kinetic mechanism of the calcium-myristoyl switch.  相似文献   

6.
Recoverin is a member of the neuronal calcium sensor (NCS) family of EF-hand calcium binding proteins. In a visual cycle of photoreceptor cells, recoverin regulates activity of rhodopsin kinase in a Ca2+-dependent manner. Like all members of the NSC family, recoverin contains a conserved cysteine (Cys38) in nonfunctional EF-hand 1. This residue was shown to be critical for activation of target proteins in some members of the NCS family but not for interaction of recoverin with rhodopsin kinase. Spectrophotometric titration of Ca2+-loaded recoverin gave 7.6 for the pKa value of Cys38 thiol, suggesting partial deprotonation of the thiol in vivo conditions. An ability of recoverin to form a disulfide dimer and thiol-oxidized monomer under mild oxidizing conditions was found using SDS-PAGE in reducing and nonreducing conditions and Ellman's test. Both processes are reversible and modulated by Ca2+. Although formation of the disulfide dimer takes place only for Ca2+-loaded recoverin, accumulation of the oxidized monomer proceeds more effectively for apo-recoverin. The Ca2+ modulated susceptibility of the recoverin thiol to reversible oxidation may be of potential importance for functioning of recoverin in photoreceptor cells.  相似文献   

7.
GCAP-2, a mammalian photoreceptor-specific protein, is a Ca2+-dependent regulator of the retinal membrane guanylyl cyclases (Ret-GCs). Sensing the fall in intracellular free Ca2+ after photo-excitation, GCAP-2 stimulates the activity of Ret-GC leading to cGMP production. Like other members of the recoverin superfamily, GCAP-2 is a small N-myristoylated protein containing four EF-hand consensus motifs. In this study, we demonstrate that like recoverin and neurocalcin, GCAP-2 alters its conformation in response to Ca2+-binding as measured by a Ca2+-dependent change in its far UV CD spectrum. Differences in the conformation of the Ca2+-bound and Ca2+-free forms of GCAP-2 were also observed by examining their relative susceptibility to V8 protease. In contrast to recoverin, we do not observe proteolytic cleavage of the myristoylated N-terminus of Ca2+-bound GCAP-2. NMR spectra also show that, in contrast to recoverin, the chemical environment of the N-terminus of GCAP-2 is not dramatically altered by Ca2+ binding. Despite the similarity of GCAP-2 and recoverin, the structural consequences of Ca2+-binding for these two proteins are significantly dissimilar.  相似文献   

8.
Recoverin is an N-myristoylated 23 kDa calcium-binding protein from retina, which modulates the Ca2+-sensitive deactivation of rhodopsin via Ca2+-dependent inhibition of rhodopsin kinase. It was shown by intrinsic and bis-ANS probe fluorescence, circular dichroism, and differential scanning calorimetry that myristoylated recombinant recoverin interacts specifically with zinc ions. Similar to the calcium binding, the binding of zinc to Ca2+-loaded recoverin additionally increases its alpha-helical content, hydrophobic surface area, and environmental mobility/polarity of its tryptophan residues. In contrast to the calcium binding, the binding of zinc decreases thermal stability of the Ca2+-loaded protein. Zn2+-titration of recoverin, traced by bis-ANS fluorescence, reveals binding of a single Zn2+ ion per protein molecule. It was shown that the double-mutant E85Q/E121Q with inactivated Ca2+-binding EF-hands 2 and 3 (Alekseev, A. M.; Shulga-Morskoy, S. V.; Zinchenko, D. V.; Shulga-Morskaya, S. A.; Suchkov, D. V.; Vaganova, S. A.; Senin, I. I.; Zargarov, A. A.; Lipkin, V. M.; Akhtar, M.; Philippov, P. P. FEBS Lett. 1998, 440, 116-118), which can be considered as an analogue of the apo-protein, binds Zn2+ ion as well. Apparent zinc equilibrium binding constants evaluated from spectrofluorimetric Zn2+-titrations of the protein are 1.4 x 10(5) M(-1) (dissociation constant 7.1 microM) for Ca2+-loaded wild-type recoverin and 3.3 x 10(4) M(-1) (dissociation constant 30 microM) for the E85Q/E121Q mutant (analogue of apo-recoverin). Study of the binding of wild-type recoverin to ROS membranes showed a zinc-dependent increase of its affinity for the membranes, without regard to calcium content, suggesting further solvation of a protein myristoyl group upon Zn2+ binding. Possible implications of these findings to the functioning of recoverin are discussed.  相似文献   

9.
Ozawa T  Fukuda M  Nara M  Nakamura A  Komine Y  Kohama K  Umezawa Y 《Biochemistry》2000,39(47):14495-14503
We investigated the relationship between metal ion selective conformational changes of recoverin and its metal-bound coordination structures. Recoverin is a 23 kDa heterogeneously myristoylated Ca(2+)-binding protein that inhibits rhodopsin kinase. Upon accommodating two Ca(2+) ions, recoverin extrudes a myristoyl group and associates with the lipid bilayer membrane, which was monitored by the surface plasmon resonance (SPR) technique. Large changes in SPR signals were observed for Sr(2+), Ba(2+), Cd(2+), and Mn(2+) as well as Ca(2+), indicating that upon binding to these ions, recoverin underwent a large conformational change to extrude the myristoyl group, and thereby interacted with lipid membranes. In contrast, no SPR signal was induced by Mg(2+), confirming that even though it accommodates two Mg(2+) ions, recoverin does not induce the large conformational change. To investigate the coordination structures of metal-bound Ca(2+) binding sites, FT-IR studies were performed. The EF-hands, Ca(2+)-binding regions each comprising 12 residues, arrange to coordinate Ca(2+) with seven oxygen ligands, two of which are provided by a conserved bidentate Glu at the 12th relative position in the EF-hand. FT-IR analysis confirmed that Sr(2+), Ba(2+), Cd(2+), and Mn(2+) were coordinated to COO(-) of Glu by a bidentate state as well as Ca(2+), while coordination of COO(-) with Mg(2+) was a pseudobridging state with six-coordinate geometry. These SPR and FT-IR results taken together reveal that metal ions with seven-coordinate geometry in the EF-hands induce a large conformational change in recoverin so that it extrudes the myristoyl group, while metal ions with six-coordinate geometry in the EF-hands such as Mg(2+) remain the myristoyl group sequestered in recoverin.  相似文献   

10.
NCS (neuronal Ca2+ sensor) proteins belong to a family of calmodulin-related EF-hand Ca2+-binding proteins which, in spite of a high degree of structural similarity, are able to selectively recognize and regulate individual effector enzymes in a Ca2+-dependent manner. NCS proteins vary at their C-termini, which could therefore serve as structural control elements providing specific functions such as target recognition or Ca2+ sensitivity. Recoverin, an NCS protein operating in vision, regulates the activity of rhodopsin kinase, GRK1, in a Ca2+-dependent manner. In the present study, we investigated a series of recoverin forms that were mutated at the C-terminus. Using pull-down assays, surface plasmon resonance spectroscopy and rhodopsin phosphorylation assays, we demonstrated that truncation of recoverin at the C-terminus significantly reduced the affinity of recoverin for rhodopsin kinase. Site-directed mutagenesis of single amino acids in combination with structural analysis and computational modelling of the recoverin-kinase complex provided insight into the protein-protein interface between the kinase and the C-terminus of recoverin. Based on these results we suggest that Phe3 from the N-terminal helix of rhodopsin kinase and Lys192 from the C-terminal segment of recoverin form a cation-π interaction pair which is essential for target recognition by recoverin. Taken together, the results of the present study reveal a novel rhodopsin-kinase-binding site within the C-terminal region of recoverin, and highlights its significance for target recognition and regulation.  相似文献   

11.
The neuronal calcium sensor (NCS) proteins (e.g. recoverin, neurocalcins, and frequenin) are expressed at highest levels in excitable cells, and some of them regulate desensitization of G protein-coupled receptors. Here we present NMR analysis and genetic functional studies of an NCS homolog in fission yeast (Ncs1p). Ncs1p binds three Ca2+ ions at saturation with an apparent affinity of 2 microm and Hill coefficient of 1.9. Analysis of NMR and fluorescence spectra of Ncs1p revealed significant Ca2+-induced protein conformational changes indicative of a Ca2+-myristoyl switch. The amino-terminal myristoyl group is sequestered inside a hydrophobic cavity of the Ca2+-free protein and becomes solvent-exposed in the Ca2+-bound protein. Subcellular fractionation experiments showed that myristoylation and Ca2+ binding by Ncs1p are essential for its translocation from cytoplasm to membranes. The ncs1 deletion mutant (ncs1Delta) showed two distinct phenotypes: nutrition-insensitive sexual development and a growth defect at high levels of extracellular Ca2+ (0.1 m CaCl(2)). Analysis of Ncs1p mutants lacking myristoylation (Ncs1p(G2A)) or deficient in Ca2+ binding (Ncs1p(E84Q/E120Q/E168Q)) revealed that Ca2+ binding was essential for both phenotypes, while myristoylation was less critical. Exogenous cAMP, a key regulator for sexual development, suppressed conjugation and sporulation of ncs1Delta, suggesting involvement of Ncs1p in the adenylate cyclase pathway turned on by the glucose-sensing G protein-coupled receptor Git3p. Starvation-independent sexual development of ncs1Delta was also complemented by retinal recoverin, which controls Ca2+-regulated desensitization of rhodopsin. In contrast, the Ca2+-intolerance of ncs1Delta was not affected by cAMP or recoverin, suggesting that the two ncs1Delta phenotypes are mechanistically independent. We propose that Schizosaccharomyces pombe Ncs1p negatively regulates sporulation perhaps by controlling Ca2+-dependent desensitization of Git3p.  相似文献   

12.
The FRQ1 gene is essential for growth of budding yeast and encodes a 190-residue, N-myristoylated (myr) calcium-binding protein. Frq1 belongs to the recoverin/frequenin branch of the EF-hand superfamily and regulates a yeast phosphatidylinositol 4-kinase isoform. Conformational changes in Frq1 due to N-myristoylation and Ca(2+) binding were assessed by nuclear magnetic resonance (NMR), fluorescence, and equilibrium Ca(2+)-binding measurements. For this purpose, Frq1 and myr-Frq1 were expressed in and purified from Escherichia coli. At saturation, Frq1 bound three Ca(2+) ions at independent sites, which correspond to the second, third, and fourth EF-hand motifs in the protein. Affinity of the second site (K(d) = 10 microM) was much weaker than that of the third and fourth sites (K(d) = 0.4 microM). Myr-Frq1 bound Ca(2+) with a K(d)app of 3 microM and a positive Hill coefficient (n = 1.25), suggesting that the N-myristoyl group confers some degree of cooperativity in Ca(2+) binding, as seen previously in recoverin. Both the NMR and fluorescence spectra of Frq1 exhibited very large Ca(2+)-dependent differences, indicating major conformational changes induced upon Ca(2+) binding. Nearly complete sequence-specific NMR assignments were obtained for the entire carboxy-terminal domain (residues K100-I190). Assignments were made for 20% of the residues in the amino-terminal domain; unassigned residues exhibited very broad NMR signals, most likely due to Frq1 dimerization. NMR chemical shifts and nuclear Overhauser effect (NOE) patterns of Ca(2+)-bound Frq1 were very similar to those of Ca(2+)-bound recoverin, suggesting that the overall structure of Frq1 resembles that of recoverin. A model of the three-dimensional structure of Ca(2+)-bound Frq1 is presented based on the NMR data and homology to recoverin. N-myristoylation of Frq1 had little or no effect on its NMR and fluorescence spectra, suggesting that the myristoyl moiety does not significantly alter Frq1 structure. Correspondingly, the NMR chemical shifts for the myristoyl group in both Ca(2+)-free and Ca(2+)-bound myr-Frq1 were nearly identical to those of free myristate in solution, indicating that the fatty acyl chain is solvent-exposed and not sequestered within the hydrophobic core of the protein, unlike the myristoyl group in Ca(2+)-free recoverin. Subcellular fractionation experiments showed that both the N-myristoyl group and Ca(2+)-binding contribute to the ability of Frq1 to associate with membranes.  相似文献   

13.
The molecule of photoreceptor Ca(2+)-binding protein recoverin contains four potential Ca(2+)-binding sites of the EF-hand type, but only two of them (the second and the third) can actually bind calcium ions. We studied the interaction of Ca2+ with recoverin and its mutant forms containing point amino acid substitutions at the working Ca(2+)-binding sites by measuring the intrinsic protein fluorescence and found that the substitution of Gln for Glu residues chelating Ca2+ in one (the second or the third) or simultaneously in both (the second and the third) Ca(2+)-binding sites changes the affinity of the protein to Ca2+ ions in different ways. The Gln for Glu121 substitution in the third site and the simultaneous Gln substitutions in the second (for Glu85) and in the third (for Glu121) sites result in the complete loss of the capability of recoverin for a strong binding of Ca(2+)-ions. On the other hand, the Gln for Glu85 substitution only in the second site moderately affects its affinity to the cation. Hence, we assumed that recoverin successively binds Ca(2+)-ions: the second site is filled with the cation only after the third site has been filled. The binding constants for the third and the second Ca(2+)-binding sites of recoverin determined by spectrofluorimetric titration are 3.7 x 10(6) and 3.1 x 10(5) M-1, respectively.  相似文献   

14.
Hwang JY  Koch KW 《Biochemistry》2002,41(43):13021-13028
In visual transduction, guanylate cyclase-activating proteins (GCAPs) activate the membrane-bound guanylate cyclase 1 (ROS-GC1) to synthesize cGMP under conditions of low cytoplasmic [Ca2+]free. GCAPs are neuronal Ca2+-binding proteins with three functional EF-hands and a consensus site for N-terminal myristoylation. GCAP-1 and GCAP-2 regulated ROS-GC1 activities differently. The myristoyl group in GCAP-1 had a strong influence on the Ca2+-dependent regulation of ROS-GC1 (shift in IC50). In contrast, myristoylation of GCAP-2 did not change the cyclase activation profile (no shift in IC50). Thus, the myristoyl group controlled the Ca2+-sensitivity of GCAP-1, but not that of GCAP-2. The myristoyl group restricted the accessibility of one cysteine in GCAP-1 and GCAP-2 observed by measuring the time-dependent thiol reactivity of cysteines. This shielding effect was not relieved when Ca2+ was buffered by EGTA. We applied surface plasmon resonance (SPR) spectroscopy to monitor the Ca2+-dependent binding of myristoylated and nonmyristoylated GCAP-1 and GCAP-2 to immobilized phospholipid membranes. None of the GCAPs exhibited a Ca2+-myristoyl switch as observed for recoverin. Thus, the myristoyl group controls the Ca2+-sensitivity of GCAP-1 (not that of GCAP-2) by an allosteric mechanism, but this control step does not involve a myristoyl switch.  相似文献   

15.
Recoverin, a 23-kDa Ca2+-binding protein of the neuronal calcium sensing (NCS) family, inhibits rhodopsin kinase, a Ser/Thr kinase responsible for termination of photoactivated rhodopsin in rod photoreceptor cells. Recoverin has two functional EF hands and a myristoylated N terminus. The myristoyl chain imparts cooperativity to the Ca2+-binding sites through an allosteric mechanism involving a conformational equilibrium between R and T states of the protein. Ca2+ binds preferentially to the R state; the myristoyl chain binds preferentially to the T state. In the absence of myristoylation, the R state predominates, and consequently, binding of Ca2+ to the non-myristoylated protein is not cooperative. We show here that a mutation, C39A, of a highly conserved Cys residue among NCS proteins, increases the apparent cooperativity for binding of Ca2+ to non-myristoylated recoverin. The binding data can be explained by an effect on the T/R equilibrium to favor the T state without affecting the intrinsic binding constants for the two Ca2+ sites.  相似文献   

16.
Recoverin, a member of the EF-hand protein superfamily, serves as a calcium sensor in retinal rod cells. A myristoyl group covalently attached to the N-terminus of recoverin facilitates its binding to retinal disk membranes by a mechanism known as the Ca(2+)-myristoyl switch. Samples of (15)N-labeled Ca(2+)-bound myristoylated recoverin bind anisotropically to phospholipid membranes as judged by analysis of (15)N and (31)P chemical shifts observed in solid-state NMR spectra. On the basis of a (2)H NMR order parameter analysis performed on recoverin containing a fully deuterated myristoyl group, the N-terminal myristoyl group appears to be located within the lipid bilayer. Two-dimensional solid-state NMR ((1)H-(15)N PISEMA) spectra of uniformly and selectively (15)N-labeled recoverin show that the Ca(2+)-bound protein is positioned on the membrane surface such that its long molecular axis is oriented approximately 45 degrees with respect to the membrane normal. The N-terminal region of recoverin points toward the membrane surface, with close contacts formed by basic residues K5, K11, K22, K37, R43, and K84. This orientation of the membrane-bound protein allows an exposed hydrophobic crevice, near the membrane surface, to serve as a potential binding site for the target protein, rhodopsin kinase. Close agreement between experimental and calculated solid-state NMR spectra of recoverin suggests that membrane-bound recoverin retains the same overall three-dimensional structure that it has in solution. These results demonstrate that membrane binding by recoverin is achieved primarily by insertion of the myristoyl group inside the bilayer with apparently little rearrangement of the protein structure.  相似文献   

17.
Guanylyl cyclase-activating proteins (GCAPs) and recoverin are retina-specific Ca(2+)-binding proteins involved in phototransduction. We provide here evidence that in spite of structural similarities GCAPs and recoverin differently change their overall hydrophobic properties in response to Ca(2+). Using native bovine GCAP1, GCAP2 and recoverin we show that: i) the Ca(2+)-dependent binding of recoverin to Phenyl-Sepharose is distinct from such interactions of GCAPs; ii) fluorescence intensity of 1-anilinonaphthalene-8-sulfonate (ANS) is markedly higher at high [Ca(2+)](free) (10 microM) than at low [Ca(2+)](free) (10 nM) in the presence of recoverin, while an opposing effect is observed in the presence of GCAPs; iii) fluorescence resonance energy transfer from tryptophane residues to ANS is more efficient at high [Ca(2+)](free) in recoverin and at low [Ca(2+)](free) in GCAP2. Such different changes of hydrophobicity evoked by Ca(2+) appear to be the precondition for possible mechanisms by which GCAPs and recoverin control the activities of their target enzymes.  相似文献   

18.
Guanylate cyclase-activating proteins (GCAPs) are neuronal calcium sensors that activate membrane bound guanylate cyclases (EC 4.6.1.2.) of vertebrate photoreceptor cells when cytoplasmic Ca2+ decreases during illumination. GCAPs contain four EF-hand Ca2+-binding motifs, but the first EF-hand is nonfunctional. It was concluded that for GCAP-2, the loss of Ca2+-binding ability of EF-hand 1 resulted in a region that is crucial for targeting guanylate cyclase [Ermilov, A.N., Olshevskaya, E.V. & Dizhoor, A.M. (2001) J. Biol. Chem.276, 48143-48148]. In this study we tested the consequences of mutations in EF-hand 1 of GCAP-1 with respect to Ca2+ binding, Ca2+-induced conformational changes and target activation. When the nonfunctional first EF-hand in GCAP-1 is replaced by a functional EF-hand the chimeric mutant CaM-GCAP-1 bound four Ca2+ and showed similar Ca2+-dependent changes in tryptophan fluorescence as the wild-type. CaM-GCAP-1 neither activated nor interacted with guanylate cyclase. Size exclusion chromatography revealed that the mutant tended to form inactive dimers instead of active monomers like the wild-type. Critical amino acids in EF-hand 1 of GCAP-1 are cysteine at position 29 and proline at position 30, as changing these to glycine was sufficient to cause loss of target activation without a loss of Ca2+-induced conformational changes. The latter mutation also promoted dimerization of the protein. Our results show that EF-hand 1 in wild-type GCAP-1 is critical for providing the correct conformation for target activation.  相似文献   

19.
A myosin II is thought to be the driving force of the fast cytoplasmic streaming in the plasmodium of Physarum polycephalum. This regulated myosin, unique among conventional myosins, is inhibited by direct Ca2+ binding. Here we report that Ca2+ binds to the first EF-hand of the essential light chain (ELC) subunit of Physarum myosin. Flow dialysis experiments of wild-type and mutant light chains and the regulatory domain revealed a single binding site that shows moderate specificity for Ca2+. The regulatory light chain, in contrast to regulatory light chains of higher eukaryotes, is unable to bind divalent cations. Although the Ca2+-binding loop of ELC has a canonical sequence, replacement of glutamic acid to alanine in the -z coordinating position only slightly decreased the Ca2+ affinity of the site, suggesting that the Ca2+ coordination is different from classical EF-hands; namely, the specific "closed-to-open" conformational transition does not occur in the ELC in response to Ca2+. Ca2+- and Mg2+-dependent conformational changes in the microenvironment of the binding site were detected by fluorescence experiments. Transient kinetic experiments showed that the displacement of Mg2+ by Ca2+ is faster than the change in direction of cytoplasmic streaming; therefore, we conclude that Ca2+ inhibition could operate in physiological conditions. By comparing the Physarum Ca2+ site with the well studied Ca2+ switch of scallop myosin, we surmise that despite the opposite effect of Ca2+ binding on the motor activity, the two conventional myosins could have a common structural basis for Ca2+ regulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号