首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Arriving at the native conformation of a polypeptide chain characterized by minimum most free energy is a problem of long standing interest in protein structure prediction endeavors. Owing to the computational requirements in developing free energy estimates, scoring functions--energy based or statistical--have received considerable renewed attention in recent years for distinguishing native structures of proteins from non-native like structures. Several cleverly designed decoy sets, CASP (Critical Assessment of Techniques for Protein Structure Prediction) structures and homology based internet accessible three dimensional model builders are now available for validating the scoring functions. We describe here an all-atom energy based empirical scoring function and examine its performance on a wide series of publicly available decoys. Barring two protein sequences where native structure is ranked second and seventh, native is identified as the lowest energy structure in 67 protein sequences from among 61,659 decoys belonging to 12 different decoy sets. We further illustrate a potential application of the scoring function in bracketing native-like structures of two small mixed alpha/beta globular proteins starting from sequence and secondary structural information. The scoring function has been web enabled at www.scfbio-iitd.res.in/utility/proteomics/energy.jsp.  相似文献   

2.
We have developed an all-atom free-energy force field (PFF01) for protein tertiary structure prediction. PFF01 is based on physical interactions and was parameterized using experimental structures of a family of proteins believed to span a wide variety of possible folds. It contains empirical, although sequence-independent terms for hydrogen bonding. Its solvent-accessible surface area solvent model was first fit to transfer energies of small peptides. The parameters of the solvent model were then further optimized to stabilize the native structure of a single protein, the autonomously folding villin headpiece, against competing low-energy decoys. Here we validate the force field for five nonhomologous helical proteins with 20-60 amino acids. For each protein, decoys with 2-3 A backbone root mean-square deviation and correct experimental Cbeta-Cbeta distance constraints emerge as those with the lowest energy.  相似文献   

3.
We present a knowledge‐based function to score protein decoys based on their similarity to native structure. A set of features is constructed to describe the structure and sequence of the entire protein chain. Furthermore, a qualitative relationship is established between the calculated features and the underlying electromagnetic interaction that dominates this scale. The features we use are associated with residue–residue distances, residue–solvent distances, pairwise knowledge‐based potentials and a four‐body potential. In addition, we introduce a new target to be predicted, the fitness score, which measures the similarity of a model to the native structure. This new approach enables us to obtain information both from decoys and from native structures. It is also devoid of previous problems associated with knowledge‐based potentials. These features were obtained for a large set of native and decoy structures and a back‐propagating neural network was trained to predict the fitness score. Overall this new scoring potential proved to be superior to the knowledge‐based scoring functions used as its inputs. In particular, in the latest CASP (CASP10) experiment our method was ranked third for all targets, and second for freely modeled hard targets among about 200 groups for top model prediction. Ours was the only method ranked in the top three for all targets and for hard targets. This shows that initial results from the novel approach are able to capture details that were missed by a broad spectrum of protein structure prediction approaches. Source codes and executable from this work are freely available at http://mathmed.org /#Software and http://mamiris.com/ . Proteins 2014; 82:752–759. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
Protein-DNA interactions are crucial for many biological processes. Attempts to model these interactions have generally taken the form of amino acid-base recognition codes or purely sequence-based profile methods, which depend on the availability of extensive sequence and structural information for specific structural families, neglect side-chain conformational variability, and lack generality beyond the structural family used to train the model. Here, we take advantage of recent advances in rotamer-based protein design and the large number of structurally characterized protein-DNA complexes to develop and parameterize a simple physical model for protein-DNA interactions. The model shows considerable promise for redesigning amino acids at protein-DNA interfaces, as design calculations recover the amino acid residue identities and conformations at these interfaces with accuracies comparable to sequence recovery in globular proteins. The model shows promise also for predicting DNA-binding specificity for fixed protein sequences: native DNA sequences are selected correctly from pools of competing DNA substrates; however, incorporation of backbone movement will likely be required to improve performance in homology modeling applications. Interestingly, optimization of zinc finger protein amino acid sequences for high-affinity binding to specific DNA sequences results in proteins with little or no predicted specificity, suggesting that naturally occurring DNA-binding proteins are optimized for specificity rather than affinity. When combined with algorithms that optimize specificity directly, the simple computational model developed here should be useful for the engineering of proteins with novel DNA-binding specificities.  相似文献   

5.
A simple method is described for speeding up the computation of base pairing interractions. It is especially effective on microcomputers.  相似文献   

6.
DNA charge transport chemistry is found to provide a sensitive method for probing protein-dependent changes in DNA structure and enzymatic reactions. Here we describe the development of an electrochemical assay of protein binding to DNA-modified electrodes based upon the detection of associated perturbations in DNA base stacking. Gold electrode surfaces that were modified with loosely packed DNA duplexes, covalently crosslinked to a redox-active intercalator and containing the binding site of the test protein, were constructed. Charge transport through DNA as a function of protein binding was then assayed. Substantial attenuation in current is seen in the presence of the base-flipping enzymes HhaI methylase and uracil DNA glycosylase, as well as with TATA-binding protein. When restriction endonuclease PvuII (R.PvuII) binds to its methylated target, little base-stacking perturbation occurs and little diminution in current flow is observed. Importantly, the kinetics of restriction by R.PvuII of its nonmethylated target is also easily monitored electrochemically. This approach should be generally applicable to assaying protein--DNA interactions and reactions on surfaces.  相似文献   

7.
Eleven protein-DNA crystal structures were analyzed to test the hypothesis that hydration sites predicted in the first hydration shell of DNA mark the positions where protein residues hydrogen-bond to DNA. For nine of those structures, protein atoms, which form hydrogen bonds to DNA bases, were found within 1.5 A of the predicted hydration positions in 86% of the interactions. The correspondence of the predicted hydration sites with the hydrogen-bonded protein side chains was significantly higher for bases inside the conserved DNA recognition sequences than outside those regions. In two CAP-DNA complexes, predicted base hydration sites correctly marked 71% (within 1.5 A) of protein atoms, which form hydrogen bonds to DNA bases. Phosphate hydration was compared to actual protein binding sites in one CAP-DNA complex with 78% marked contacts within 2.0 A. These data suggest that hydration sites mark the binding sites at protein-DNA interfaces.  相似文献   

8.

Background  

A good scoring function is essential for molecular docking computations. In conventional scoring functions, energy terms modeling pairwise interactions are cumulatively summed, and the best docking solution is selected. Here, we propose to transform protein-ligand interactions into three-dimensional geometric networks, from which recurring network substructures, or network motifs, are selected and used to provide probability-ranked interaction templates with which to score docking solutions.  相似文献   

9.
Hsieh MJ  Luo R 《Proteins》2004,56(3):475-486
A well-behaved physics-based all-atom scoring function for protein structure prediction is analyzed with several widely used all-atom decoy sets. The scoring function, termed AMBER/Poisson-Boltzmann (PB), is based on a refined AMBER force field for intramolecular interactions and an efficient PB model for solvation interactions. Testing on the chosen decoy sets shows that the scoring function, which is designed to consider detailed chemical environments, is able to consistently discriminate all 62 native crystal structures after considering the heteroatom groups, disulfide bonds, and crystal packing effects that are not included in the decoy structures. When NMR structures are considered in the testing, the scoring function is able to discriminate 8 out of 10 targets. In the more challenging test of selecting near-native structures, the scoring function also performs very well: for the majority of the targets studied, the scoring function is able to select decoys that are close to the corresponding native structures as evaluated by ranking numbers and backbone Calpha root mean square deviations. Various important components of the scoring function are also studied to understand their discriminative contributions toward the rankings of native and near-native structures. It is found that neither the nonpolar solvation energy as modeled by the surface area model nor a higher protein dielectric constant improves its discriminative power. The terms remaining to be improved are related to 1-4 interactions. The most troublesome term is found to be the large and highly fluctuating 1-4 electrostatics term, not the dihedral-angle term. These data support ongoing efforts in the community to develop protein structure prediction methods with physics-based potentials that are competitive with knowledge-based potentials.  相似文献   

10.
Protein-RNA interactions play important roles in many biological processes. Given the high cost and technique difficulties in experimental methods, computationally predicting the binding complexes from individual protein and RNA structures is pressingly needed, in which a reliable scoring function is one of the critical components. Here, we have developed a knowledge-based scoring function, referred to as ITScore-PR, for protein-RNA binding mode prediction by using a statistical mechanics-based iterative method. The pairwise distance-dependent atomic interaction potentials of ITScore-PR were derived from experimentally determined protein–RNA complex structures. For validation, we have compared ITScore-PR with 10 other scoring methods on four diverse test sets. For bound docking, ITScore-PR achieved a success rate of up to 86% if the top prediction was considered and up to 94% if the top 10 predictions were considered, respectively. For truly unbound docking, the respective success rates of ITScore-PR were up to 24 and 46%. ITScore-PR can be used stand-alone or easily implemented in other docking programs for protein–RNA recognition.  相似文献   

11.
Halogen bonding, a non-covalent interaction between the halogen σ-hole and Lewis bases, could not be properly characterized by majority of current scoring functions. In this study, a knowledge-based halogen bonding scoring function, termed XBPMF, was developed by an iterative method for predicting protein-ligand interactions. Three sets of pairwise potentials were derived from two training sets of protein-ligand complexes from the Protein Data Bank. It was found that two-dimensional pairwise potentials could characterize appropriately the distance and angle profiles of halogen bonding, which is superior to one-dimensional pairwise potentials. With comparison to six widely used scoring functions, XBPMF was evaluated to have moderate power for predicting protein-ligand interactions in terms of “docking power”, “ranking power” and “scoring power”. Especially, it has a rather satisfactory performance for the systems with typical halogen bonds. To the best of our knowledge, XBPMF is the first halogen bonding scoring function that is not dependent on any dummy atom, and is practical for high-throughput virtual screening. Therefore, this scoring function should be useful for the study and application of halogen bonding interactions like molecular docking and lead optimization.
Figure
Heat map of 2D XB potentials for OA-Cl  相似文献   

12.
13.
The binding affinities of protein-nucleic acid interactions could be altered due to missense mutations occurring in DNA- or RNA-binding proteins, therefore resulting in various diseases. Unfortunately, a systematic comparison and prediction of the effects of mutations on protein-DNA and protein-RNA interactions (these two mutation classes are termed MPDs and MPRs, respectively) is still lacking. Here, we demonstrated that these two classes of mutations could generate similar or different tendencies for binding free energy changes in terms of the properties of mutated residues. We then developed regression algorithms separately for MPDs and MPRs by introducing novel geometric partition-based energy features and interface-based structural features. Through feature selection and ensemble learning, similar computational frameworks that integrated energy- and nonenergy-based models were established to estimate the binding affinity changes resulting from MPDs and MPRs, but the selected features for the final models were different and therefore reflected the specificity of these two mutation classes. Furthermore, the proposed methodology was extended to the identification of mutations that significantly decreased the binding affinities. Extensive validations indicated that our algorithm generally performed better than the state-of-the-art methods on both the regression and classification tasks. The webserver and software are freely available at http://liulab.hzau.edu.cn/PEMPNI and https://github.com/hzau-liulab/PEMPNI.  相似文献   

14.
Huang SY  Zou X 《Proteins》2008,72(2):557-579
Using an efficient iterative method, we have developed a distance-dependent knowledge-based scoring function to predict protein-protein interactions. The function, referred to as ITScore-PP, was derived using the crystal structures of a training set of 851 protein-protein dimeric complexes containing true biological interfaces. The key idea of the iterative method for deriving ITScore-PP is to improve the interatomic pair potentials by iteration, until the pair potentials can distinguish true binding modes from decoy modes for the protein-protein complexes in the training set. The iterative method circumvents the challenging reference state problem in deriving knowledge-based potentials. The derived scoring function was used to evaluate the ligand orientations generated by ZDOCK 2.1 and the native ligand structures on a diverse set of 91 protein-protein complexes. For the bound test cases, ITScore-PP yielded a success rate of 98.9% if the top 10 ranked orientations were considered. For the more realistic unbound test cases, the corresponding success rate was 40.7%. Furthermore, for faster orientational sampling purpose, several residue-level knowledge-based scoring functions were also derived following the similar iterative procedure. Among them, the scoring function that uses the side-chain center of mass (SCM) to represent a residue, referred to as ITScore-PP(SCM), showed the best performance and yielded success rates of 71.4% and 30.8% for the bound and unbound cases, respectively, when the top 10 orientations were considered. ITScore-PP was further tested using two other published protein-protein docking decoy sets, the ZDOCK decoy set and the RosettaDock decoy set. In addition to binding mode prediction, the binding scores predicted by ITScore-PP also correlated well with the experimentally determined binding affinities, yielding a correlation coefficient of R = 0.71 on a test set of 74 protein-protein complexes with known affinities. ITScore-PP is computationally efficient. The average run time for ITScore-PP was about 0.03 second per orientation (including optimization) on a personal computer with 3.2 GHz Pentium IV CPU and 3.0 GB RAM. The computational speed of ITScore-PP(SCM) is about an order of magnitude faster than that of ITScore-PP. ITScore-PP and/or ITScore-PP(SCM) can be combined with efficient protein docking software to study protein-protein recognition.  相似文献   

15.

Background  

Although experimental methods for determining protein structure are providing high resolution structures, they cannot keep the pace at which amino acid sequences are resolved on the scale of entire genomes. For a considerable fraction of proteins whose structures will not be determined experimentally, computational methods can provide valuable information. The value of structural models in biological research depends critically on their quality. Development of high-accuracy computational methods that reliably generate near-experimental quality structural models is an important, unsolved problem in the protein structure modeling.  相似文献   

16.
17.
Secondary structure prediction parameters and optimised decision constants for use with the method of Garnier et al. [(1978) J. Mol. Biol. 120, 97-120] have been derived for two new and distinct substates of beta-structure. These we term internal and external on the basis of their hydrogen bonding patterns. The profiles of the amino acids for several of the parameters are considerably different in the two substates. Predictions using the new parameters attempt to distinguish the strands at the core of the beta-sheet from those at its edges and so restrict the possible topologies in tertiary structure prediction. The potential application of these parameters is illustrated for the class of beta/alpha proteins.  相似文献   

18.
We propose a method for extracting useful kinetic information from all-atom molecular dynamics simulations of protein folding. By calculating the time correlation functions between the evolution of different structural properties during the course of the simulation we can determine the endpoint of the reaction and the mechanism by which it occurs. As a test of our method we use thermal denaturation simulations on a 76 residue protein, ubiquitin. The method we present should be used in combination with current techniques for analyzing molecular dynamics trajectories.  相似文献   

19.
The matrix protein VP40 is an indispensable component of viral assembly and budding by the Ebola virus. VP40 is a monomer in solution, but can fold into hexameric and octameric states, two oligomeric conformations that play central roles in the Ebola viral life cycle. While the X-ray structures of monomeric and octameric VP40 have been determined, the structure of hexameric VP40 has only been solved by three-dimensional electron microscopy (EM) to a resolution of approximately 30 A. In this paper, we present the refinement of the EM reconstruction of truncated hexameric VP40 to approximately 20 A and the construction of an all-atom model (residues 44-212) using the EM model at approximately 20 A and the X-ray structure of monomeric VP40 as templates. The hexamer model suggests that the monomer-hexamer transition involves a conformational change in the N-terminal domain that is not evident during octamerization and therefore, may provide the basis for elucidating the biological function of VP40.  相似文献   

20.
The identification of geometric relationships between protein structures offers a powerful approach to predicting the structure and function of proteins. Methods to detect such relationships range from human pattern recognition to a variety of mathematical algorithms. A number of schemes for the classification of protein structure have found widespread use and these implicitly assume the organization of protein structure space into discrete categories. Recently, an alternative view has emerged in which protein fold space is seen as continuous and multidimensional. Significant relationships have been observed between proteins that belong to what have been termed different 'folds'. There has been progress in the use of these relationships in the prediction of protein structure and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号