首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Ke X  Scheu S 《Oecologia》2008,157(4):603-617
Management practices of arable systems determine the distribution of soil organic matter thereby changing decomposer animal activity and their impact on nutrient mineralization, plant growth and plant-herbivore interactions. Decomposer-mediated changes in plant growth and insect pest performance were investigated in wheat-aphid model systems in the greenhouse. Three types of litter distribution were established: litter patch at the soil surface (simulating mulching), litter patch deeper in soil (simulating ploughing) and litter homogeneously mixed into soil (simulating disk cultivation). The litter was labelled with (15)N to follow the mineralization and uptake of nutrients by the plants. Earthworms (Aporrectodea caliginosa) and Collembola (Protaphorura armata) were included as representatives of major functional groups of decomposers. Wheat (Triticum aestivum) was planted and aphids (Rhophalosiphum padi) were introduced to leaves as one of the most important pests. Earthworms, Collembola and litter distribution affected plant growth, N acquisition and aphid development in an interactive way. Earthworms and Collembola increased biomass of seeds, shoots and roots of wheat. Increased plant growth by earthworms and Collembola was mainly due to increased transfer of N from soil (rather than litter) into plants. Despite increasing plant growth, earthworms reduced aphid reproduction. Aphid reproduction was not correlated closely with plant N concentrations, but rather with the concentration of litter N in wheat. Unexpectedly, both Collembola and earthworms predominantly affected the mobilization of N from soil organic matter, and by altering the distribution of litter earthworms reduced infestation of crops by aphids via reducing plant capture of litter N, in particular if the litter was concentrated deeper in soil. The results suggest that management practices stimulating a continuous moderate increase in nutrient mobilization from soil organic matter rather than nutrient flushes from decomposing fresh organic matter result in maximum plant growth with minimum plant pest infestation.  相似文献   

2.
《农业工程》2021,41(6):512-523
Earthworms have been well reported to have a beneficial effect on soil microbes, soil microbial biomass (SMB), fungal community, soil structure, water retention and plant growth in different terrestrial ecosystems. However, the interactions between environmental stressors and various species of earthworms and the subsequent effect on soil microbes, organic matter, soil structure and plant growth are still uncertain. The purpose of this analysis was to test 1- the impact of environmental stressors on earthworm behaviour. 2- the effect of various earthworms on soil microbes, plant growth, soil structure and the carbon cycle. We noted that less fatal temperatures are generally unknown, but higher fatal temperatures range from 25 to 48 °C. Earthworms have a role to play, depending on the nature of organic residues, in both the formation and degradation of soil aggregates. Improvements in microbial biomass and plant growth have been established according to temperature, soil toxicity, soil type, earthworms abundance, organic residues types and field conditions. We observed that although the summer temperature in the arid area was approximately (°C 48), it was found that a particular type of earthworm (Namalycastis indica) was responsible for improving soil characteristics.While a great deal of analysis has been carried out on the role of earthworms within the soil ecology, such a review identifies important knowledge gaps, particularly in the determination of the impacts of earthworm species on the soil structure, microbial biomass and plant productivity, in particular since most papers focused on European species and overlooked the role of earthworms in the arid landscape. Further research is recommended to compare the impacts of different earthworms species on soil microbes and plant growth in various soil types, earthworm abundance, field conditions, organic residues locations, inorganic fertilizers, pesticides, fertile or non-fertile soils and diverse conditions of drought and moisture.  相似文献   

3.
Earthworms are keystone detritivores that can influence primary producers by changing seedbed conditions, soil characteristics, flow of water, nutrients and carbon, and plant–herbivore interactions. The invasion of European earthworms into previously earthworm-free temperate and boreal forests of North America dominated by Acer, Quercus, Betula, Pinus and Populus has provided ample opportunity to observe how earthworms engineer ecosystems. Impacts vary with soil parent material, land use history, and assemblage of invading earthworm species. Earthworms reduce the thickness of organic layers, increase the bulk density of soils and incorporate litter and humus materials into deeper horizons of the soil profile, thereby affecting the whole soil food web and the above ground plant community. Mixing of organic and mineral materials turns mor into mull humus which significantly changes the distribution and community composition of the soil microflora and seedbed conditions for vascular plants. In some forests earthworm invasion leads to reduced availability and increased leaching of N and P in soil horizons where most fine roots are concentrated. Earthworms can contribute to a forest decline syndrome, and forest herbs in the genera Aralia, Botrychium, Osmorhiza, Trillium, Uvularia, and Viola are reduced in abundance during earthworm invasion. The degree of plant recovery after invasion varies greatly among sites and depends on complex interactions with soil processes and herbivores. These changes are likely to alter competitive relationships among plant species, possibly facilitating invasion of exotic plant species such as Rhamnus cathartica into North American forests, leading to as yet unknown changes in successional trajectory.  相似文献   

4.
Human management practices and large detritivores such as earthworms incorporate plant litter into the soil, thereby forming a heterogeneous soil environment from which plant roots extract nutrients. In a greenhouse experiment we investigated effects of earthworms and spatial distribution of 15N-labelled grass litter on plants of different functional groups [Lolium perenne (grass), Plantago lanceolata (forb), Trifolium repens (legume)]. Earthworms enhanced shoot and root growth in L. perenne and P. lanceolata and N uptake from organic litter and soil in all plant species. Litter concentrated in a patch (compared with litter mixed homogeneously into the soil) increased shoot biomass and 15N uptake from the litter in L. perenne and enhanced root proliferation in P. lanceolata when earthworms were present. Growth of clover (T. repens) was rather independent of the presence of earthworms and organic litter distribution: nevertheless, clover took up more nitrogen in the presence of earthworms and exploited more 15N from the added litter than the other plant species. The magnitude of the effects of earthworms and organic litter distribution differed between the plant species, indicating different responses of plants with contrasting root morphology. Aphid (Myzus persicae) reproduction was reduced on P. lanceolata in the presence of earthworms. We suggest that earthworm activity may indirectly alter plant chemistry and hence defence mechanisms against herbivores.  相似文献   

5.
蚯蚓在我国南方土壤修复中的应用   总被引:1,自引:0,他引:1  
蚯蚓作为生物量最大的土壤动物, 对土壤生态系统和环境质量影响深远。本研究介绍了华南地区主要应用的皮质远盲蚓(Amynthas corticis)、毛利远盲蚓(A. morrisi)、壮伟远盲蚓(A. robustus)、参状远盲蚓(A. aspergillum)、南美岸蚓(Pontoscolex corethrurus)和赤子爱胜蚓(Eisenia fetida)的生态特征, 阐述了它们与土壤pH值、酶活性、金属富集和有效性改变、孔道和微团聚体形成之间的紧密关系: (1)蚯蚓生存的土壤酸碱性范围较广(pH为3.8-7.9), 其存活率与土壤类型、有机质含量和成分、土壤污染程度和蚯蚓种类相关; (2)肠道内、蚓粪和蚓触圈的酶活性分别表征了蚯蚓取食喜好、土壤养分循环及微生物种群特征; (3)蚯蚓能够富集不同种类的金属并改变其有效性, 这些变化具有蚓种间、金属种类间和土壤类型之间的差异; (4)蚯蚓活动及其生产的蚓粪能改变土体结构、产生孔道、影响土壤团聚体数量、大小和分布。蚯蚓的上述作用使其在解决中国南方红壤酸化、土壤金属污染、茶园土壤养分不平衡、高速公路建设临时用地土壤损毁等方面具有广阔的应用前景。目前, 由于华南远盲蚓的生理特征差异研究较少, 远盲蚓繁育技术的缺乏一定程度上限制了这些蚯蚓在中型和大型尺度下应用技术的研究和推广。有必要进一步挖掘蚯蚓在土壤修复中的潜力, 进行蚯蚓主导的相关技术研发, 深入探讨其影响机制。  相似文献   

6.

Background and aims

Intercropping of legumes and cereals appears as an alternative agricultural practice to decrease the use of chemical fertilizers while maintaining high yields. A better understanding of the biotic and abiotic factors determining interactions between plants in such associations is required. Our study aimed to analyse the effect of earthworms on the legume–cereal interactions with a focus on the modifications induced by earthworms on the forms of soil phosphorus (P).

Methods

In a glasshouse experiment we investigated the effect of an endogeic earthworm (Allolobophora chlorotica) on the plant biomass and on N and P acquisition by durum wheat (Triticum turgidum durum L.) and chickpea (Cicer arietinum L.) either grown alone or intercropped. The modifications of the different organic and inorganic P forms in the bulk soil were measured.

Results

There was no overyielding of the intercrop in the absence of earthworms. Earthworms had a strong influence on biomass and resource allocation between roots and shoots whereas no modification was observed in terms of total biomass production and P acquisition. Earthworms changed the interaction between the intercropped species mainly by reducing the competition for nutrients. Facilitation (positive plant–plant interactions) was only observed for the root biomass and P acquisition in the presence of earthworms. Earthworms decreased the amount of organic P extracted with NaOH (Po NaOH), while they increased the water soluble inorganic P (Pi H2O) content.

Conclusions

In this experiment, earthworms could be seen as “troubleshooter” in plant–plant interaction as they reduced the competition between the intercropped species. Our study brings new insights into how earthworms affect plant growth and the P cycle.  相似文献   

7.
Aira M  Domínguez J 《PloS one》2011,6(1):e16354

Background

Earthworms are key organisms in organic matter decomposition because of the interactions they establish with soil microorganisms. They enhance decomposition rates through the joint action of direct effects (i.e. effects due to direct earthworm activity such as digestion, burrowing, etc) and indirect effects (i.e. effects derived from earthworm activities such as cast ageing). Here we test whether indirect earthworm effects affect microbial community functioning in the substrate, as when earthworms are present (i. e., direct effects).

Methodology/Principal Findings

To address these questions we inoculated fresh organic matter (pig manure) with worm-worked substrates (vermicompost) produced by three different earthworm species. Two doses of each vermicompost were used (2.5 and 10%). We hypothesized that the presence of worm-worked material in the fresh organic matter will result in an inoculum of different microorganisms and nutrients. This inoculum should interact with microbial communities in fresh organic matter, thus promoting modifications similar to those found when earthworms are present. Inoculation of worm-worked substrates provoked significant increases in microbial biomass and enzyme activities (β-glucosidase, cellulase, phosphatase and protease). These indirect effects were similar to, although lower than, those obtained in pig manure with earthworms (direct and indirect earthworm effects). In general, the effects were not dose-dependent, suggesting the existence of a threshold at which they were triggered.

Conclusion/Significance

Our data reveal that the relationships between earthworms and microorganisms are far from being understood, and suggest the existence of several positive feedbacks during earthworm activity as a result of the interactions between direct and indirect effects, since their combination produces stronger modifications to microbial biomass and enzyme activity.  相似文献   

8.
王笑  王帅  滕明姣  林小芬  吴迪  孙静  焦加国  刘满强  胡锋 《生态学报》2017,37(15):5146-5156
不同生态型蚯蚓的取食偏好和生境有所差异,因此蚯蚓的生态型差异可能关乎其对土壤性质的不同影响;有关不同生态型蚯蚓对土壤性质尤其是微生物学性质影响的研究有助于了解蚯蚓生态功能的作用机制。在野外调控试验的第4年采集土壤,研究了牛粪混施和表施处理下内层种威廉腔环蚓(Metaphire guillelmi)和表层种赤子爱胜蚓(Eisenia foetida)对设施菜地土壤微生物群落结构和主要理化性质的影响。结果表明,土壤微生物群落结构同时受到蚯蚓种类和牛粪施用方式的影响。牛粪表施时,两种蚯蚓均显著降低了菌根真菌、真菌生物量和原生动物生物量(P0.05);牛粪混施时,不同蚯蚓的影响有所差异,威廉腔环蚓明显增加了菌根真菌、真菌生物量和放线菌生物量,而赤子爱胜蚓的作用不明显。此外,两种蚯蚓均提高了土壤孔隙度、团聚体稳定性和土壤p H、矿质氮以及微生物生物量碳氮水平,但提高幅度取决于蚯蚓种类和牛粪施用方式。冗余分析表明蚯蚓影响下土壤微生物群落结构的变化与团聚体稳定性、p H、速效磷、矿质氮呈正相关,而与土壤容重呈负相关。  相似文献   

9.
Survival and movement of Escherichia coli O157:H7 in both soil and vermicompost is of concern with regards to human health. Whilst it is accepted that E. coli O157:H7 can persist for considerable periods in soils, it is not expected to survive thermophilic composting processes. However, the natural behavior of earthworms is increasingly utilized for composting (vermicomposting), and the extent to which earthworms promote the survival and dispersal of the bacterium within such systems is unknown. The faecal material produced by earthworms provides a ready supply of labile organic substrates to surrounding microbes within soil and compost, thus promoting microbial activity. Earthworms can also cause significant movement of organisms through the channels they form. Survival and dispersal of E. coli O157:H7 were monitored in contaminated soil and farmyard manure subjected to earthworm digestion over 21 days. Our findings lead to the conclusion that anecic earthworms such as Lumbricus terrestris may significantly aid vertical movement of E. coli O157 in soil, whereas epigeic earthworms such as Dendrobaena veneta significantly aid lateral movement within compost. Although the presence of earthworms in soil and compost may aid proliferation of E. coli O157 in early stages of contamination, long-term persistence of the pathogen appears to be unaffected.  相似文献   

10.
11.
Influence of the agricultural management practices on soil quality and the ecosystem functioning has been an increasing concern in soil science and ecology with sustainable agriculture. This study deals with the changes of soil earthworm communityfrom a paddy soil under different long-term fertilizations. The soil earthworms were collected and counted from different fertilizer treated plots in the field after the rape harvest in May 2004, and their taxonomic groups were determined under a binocular stereoscope at the laboratory. The body of the earthworm (Metaphire californica) was crushed by a cell crusher to collect protein, and the protein molecules with different sizes were analyzed by electrophoresis. Furthermore, the Metaphire californica collected was hydrolyzed and the aliquots were subject to an amino acid auto-analyzer. The results showed that totally seven species of earthworms were recognized in the paddy field with the number varying with different fertilization treatments. The structure of earthworm communities was dramatically affected by the fertilization practice. Under chemical fertilization only, both the number of earthworm species and the quantity of individuals were significantly smaller than those under other treatments, or even than those under no fertilization. Furthermore, there was an obvious decrease in the total amino acid and the contents of most individual amino acids of Metaphire californica under chemical fertilization only, compared with those under the combined fertilization of chemical and organic fertilizers. Although chemical fertilizers in combination with rice straw return increased earthworm amino acid content, long-term pig manure application tended to increase earthworm protein content. As a molecular footprint, long-term chemical fertilization caused a reduction in the content of protein with MW less than 25 kd, but a significant increase in that of protein with molecule size around 33 kd. Our study demonstrated that different fertilizations affected not only earthworm population but also diversity and richness in the paddy soil after 16 years of treatment, and that long-term chemical fertilization may impact the soil animal community and, thus, influence the paddy ecosystem functioning for yield stability. This study implicated that not only the community structure but also the amino acid metabolism for life functioning of earthworms in cropland soils may pose significant responses to the agricultural management practices.  相似文献   

12.
Wang D D  Li H X  Hu F  Wang X 《农业工程》2007,27(4):1292-1298
It is well known that the earthworm's activities can increase the availability of soil nutrients, improve soil structure, and enhance the biomass of plants in uncontaminated soil. Recently, many researchers found that some metal-tolerant earthworms can survive and even change the fractional distribution of heavy metals in contaminated soil. Furthermore, it has been revealed that earthworms are able to increase metal availability, and therefore, accumulate more metals in plants through their burrowing and casting activity. It is clear that the influence of soil animals is an important factor for phyto-remedation that must be taken into account. ~In this article, the authors studied some effects of addition of earthworms (Metaphire guillelmi), corn straw, and in combinations of earthworms and corn straw on the growth and Cu uptake by ryegrass in Cu contaminated pot soils. The experiment consisted of four levels of Cu addition (0, 100, 200, 400 mg·kg?1) and four treatments. The treatments were 1. control (CK); 2.straw mulching only (M); 3. earthworm additions to soil only (E); and 4.straw mulching plus earthworm additions (ME). Each treatment had three replicates. 10 seeds of ryegrass (Lolium multiflorum) were sowed in each pot and harvested after 30 days. After 30 days of incubation, all earthworms were found to be alive and the pot soils were burrowed through by earthworms. Results showed that the biomass of earthworm declined with the increase of the dosage of Cu additions. The biomass of earthworm increased significantly in treatment 4 (ME) as compared with treatment 3 (E). Not only the earthworms could get more food from the straw, but also could counteract some negative effects of Cu on the earthworms. The rates of straw decomposition in ME treatment increased by about 58.11% ?77.32%. The earthworm activities increased root biomass of ryegrass significantly, but did not show the effect on plant root growth. On the contrary, straw enhanced roots biomass significantly instead of shoots biomass. It was also found that the concentration of Cu in the plant shoot and the plant root, as well as plant Cu uptake were enhanced by earthworm's activities and straw mulching. The increased amount by straw mulching was lower than that of earthworms (E). The treatment of the earthworm–straw mulching combinations enhanced plant Cu concentration, and the amount increased by it was lower than that of the earthworm treatment (E) but higher than that of straw mulching treatment (M). The accumulation factors of copper in the shoots of ryegrass were increased by 31.22% ?121.07%, 2.12% ?61.28% and 25.56% ?132.64%, respectively, in treatment 3(E), 2(M), and 4(ME), respectively. In conclusion, the earthworm activities, straw-mulching and their interactions may have potential roles in elevating phyto-extraction efficiency in low to medium level Cu contaminated soil.  相似文献   

13.
Xiang C G  Zhang P J  Pan G X  Qiu D S  Chu Q H 《农业工程》2006,26(6):1667-1673
Influence of the agricultural management practices on soil quality and the ecosystem functioning has been an increasing concern in soil science and ecology with sustainable agriculture. This study deals with the changes of soil earthworm communityfrom a paddy soil under different long-term fertilizations. The soil earthworms were collected and counted from different fertilizer treated plots in the field after the rape harvest in May 2004, and their taxonomic groups were determined under a binocular stereoscope at the laboratory. The body of the earthworm (Metaphire californica) was crushed by a cell crusher to collect protein, and the protein molecules with different sizes were analyzed by electrophoresis. Furthermore, the Metaphire californica collected was hydrolyzed and the aliquots were subject to an amino acid auto-analyzer. The results showed that totally seven species of earthworms were recognized in the paddy field with the number varying with different fertilization treatments. The structure of earthworm communities was dramatically affected by the fertilization practice. Under chemical fertilization only, both the number of earthworm species and the quantity of individuals were significantly smaller than those under other treatments, or even than those under no fertilization. Furthermore, there was an obvious decrease in the total amino acid and the contents of most individual amino acids of Metaphire californica under chemical fertilization only, compared with those under the combined fertilization of chemical and organic fertilizers. Although chemical fertilizers in combination with rice straw return increased earthworm amino acid content, long-term pig manure application tended to increase earthworm protein content. As a molecular footprint, long-term chemical fertilization caused a reduction in the content of protein with MW less than 25 kd, but a significant increase in that of protein with molecule size around 33 kd. Our study demonstrated that different fertilizations affected not only earthworm population but also diversity and richness in the paddy soil after 16 years of treatment, and that long-term chemical fertilization may impact the soil animal community and, thus, influence the paddy ecosystem functioning for yield stability. This study implicated that not only the community structure but also the amino acid metabolism for life functioning of earthworms in cropland soils may pose significant responses to the agricultural management practices.  相似文献   

14.
Recent studies on earthworm invasion of North American soils report dramatic changes in soil structure, nutrient dynamics and plant communities in ecosystems historically free of earthworms. However, the direct and indirect impacts of earthworm invasions on animals have been largely ignored. This paper summarizes the current knowledge on the impact of earthworm invasion on other soil fauna, vertebrates as well as invertebrates.Earthworm invasions can have positive effects on the abundance of other soil invertebrates, but such effects are often small, transient, and restricted to habitats with harsh climates or a long history of earthworm co-occurrence with other soil invertebrates. Middens and burrows can increase soil heterogeneity and create microhabitats with a larger pore size, high microbial biomass, and microclimates that are attractive to micro- and mesofauna. Under harsh climatic conditions, the aggregates formed by earthworms may increase the stability of soil microclimates. Positive effects can also be seen when comminution and mucus secretion increase the palatability of unpalatable organic material for microorganisms which are the main food of most micro- and mesofaunal groups. For larger invertebrates or small vertebrates, invasive earthworms may become important prey, with the potential to increase resource availability. In the longer-term, the activity of invading earthworms can have a strong negative impact on indigenous faunal groups across multiple trophic levels. Evidence from field and laboratory studies indicates that the restructuring of soil layers, particularly the loss of organic horizons, physical disturbance to the soil, alteration of understory vegetation, and direct competition for food resources, lead directly and indirectly to significant declines in the abundance of soil micro- and mesofauna. Though studies of invasive earthworm impacts on the abundance of larger invertebrates or vertebrates are generally lacking, recent evidence suggests that reduced abundance of small soil fauna and alteration of soil microclimates may be contributing to declines in vertebrate fauna such as terrestrial salamanders. Preliminary evidence also suggests the potential for earthworm invasions to interact with other factors such as soil pollution, to negatively affect vertebrate populations.  相似文献   

15.
Schmidt  Olaf  Curry  James P. 《Plant and Soil》1999,214(1-2):187-198
The effects of earthworms (Lumbricidae) on plant biomass production and N allocation in model intercropping systems of winter wheat and white clover were evaluated in two pot experiments. Wheat and wheat-clover mixtures were grown in a low-organic loam soil, earthworms were added at densities comparable to field population densities and the experiments were terminated 48 and 17 d after earthworm introductions. In both experiments, earthworms significantly increased the biomass and N uptake of wheat while they had generally no effects on clover. As a result, earthworm activity increased the proportion of wheat biomass in the total plant biomass of the mixture. Nitrogen budgets of the experiment lasting 48 d indicated that additional N in the system made available by earthworm activity was primarily taken up by the wheat. Earthworms also affected intra-plant N allocation in wheat which had significantly higher shoot:root N ratios when earthworms were present. When clover was labelled with 15N in the experiment which lasted 17 d, endogeic earthworms significantly reduced the amounts of 15N excess transferred from living or decomposing clover roots to accompanying wheat plants. Earthworms assimilated small quantities of 15N tracer from decomposing clover roots but not from living clover roots. The results of these model experiments suggest that earthworms can affect the balance between intercropped cereals and legumes by altering intra- and inter-plant N allocation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
蚯蚓-秸秆及其交互作用对黑麦草修复Cu污染土壤的影响   总被引:3,自引:1,他引:3  
王丹丹  李辉信  胡锋  王霞 《生态学报》2007,27(4):1292-1299
以高沙土为供试土壤,加入Cu^2+以模拟成:0,100,200,400mg/kgCu^2+的Cu污染土壤,设置接种蚯蚓(E)、表施秸秆(M),同时加入蚯蚓和秸秆(ME)及不加蚯蚓和秸秆的对照(CK)4个处理,并种植黑麦草。研究蚯蚓、秸秆相互作用对黑麦草吸收、富集铜的影响。结果表明:加入秸秆显著提高了蚯蚓的生物量,一定程度上缓解了重金属对蚯蚓的毒害,同时蚯蚓显著提高了秸秆的分解率,较无蚯蚓对照提高了58.11%~77.32%。接种蚯蚓(E,ME)还提高了土壤有效态重金属(DTPA-Cu)含量,秸秆处理(M)则降低了土壤有效态重金属含量。研究还发现,E处理促进了黑麦草地上部生长,而M和ME处理均显著提高了黑麦草地下部的生物量。E和ME处理同时提高了植物地上部和地下部的Cu浓度及Cu吸收量,M处理则只对植物的地下部Cu浓度和Cu吸收量有显著促进作用。总体来看,E处理、M处理及ME处理分别使黑麦草地上部Cu富集系数提高了31.22%~121.07%.2.12%~61.28%和25.56%~132.64%。  相似文献   

17.
How do earthworms affect microfloral and faunal community diversity?   总被引:17,自引:1,他引:16  
Much of the work regarding earthworm effects on other organisms has focused on the functional significance of microbial-earthworm interactions, and little is known on the effects of earthworms on microfloral and faunal diversity. Earthworms can affect soil microflora and fauna populations directly and indirectly by three main mechanisms: (1) comminution, burrowing and casting; (2) grazing; (3) dispersal. These activities change the soil's physico-chemical and biological status and may cause drastic shifts in the density, diversity, structure and activity of microbial and faunal communities within the drilosphere. Certain organisms and species may be enhanced, reduced or not be affected at all depending on their ability to adapt to the particular conditions of different earthworm drilospheres. A large host of factors (including CaCO3, enzymes, mucus and antimicrobial substances) influence the ability of preferentially or randomly ingested organisms to survive (or not) passage through the earthworm gut, and their resultant capacity to recover and proliferate (or not) in earthworm casts. Small organisms, particularly microflora and microfauna, with limited ability to move within the soil, may benefit from the (comparatively) long ranging movements of earthworms. Microflora and smaller fauna appear to be particularly sensitive to earthworm activities, and priming effects enhancing nutrient release, particularly in casts, are common. Larger fauna such as microarthropods, enchytraeids and Isopods may be enhanced under some conditions (e.g., in earthworm middens), but in other cases earthworm activity may lead to a decrease in their populations due to competition for food (microbes and organic materials), and spatial and temporal changes in food abundance. Nevertheless, considering the presently available data, the beneficial interactions of earthworms and microflora and fauna appear to far outweigh the potential negative effects. However, much is still unknown regarding the interactions of earthworms of different ecological categories on the diversity and function of microfloral and faunal communities, and much more interdisciplinary research is needed to assess the potential role of earthworms in regulating the diversity of microflora and fauna in soil systems and the potentially beneficial or harmful effects this regulation may have on ecosystem function and plant growth in different ecosystems.  相似文献   

18.
水稻土在不同施肥管理下的土壤质量及其生态系统功能的变化是当前土壤学和农业生态学的关注领域。对太湖地区一个15a的长期不同施肥处理下稻田进行了蚯蚓群落的调查采样,并测定了蚯蚓蛋白质含量和氨基酸组成。供试水稻土中共检出7种蚯蚓。长期不同施肥措施影响了蚯蚓的群落结构,单施化肥下农田蚯蚓的种类和数量明显减少,多样性指数和丰富度明显降低,且蚯蚓总氨基酸的含量和大部分种类氨基酸含量降低,同时蚯蚓中分子量小于25kd的蛋白质含量降低,而分子量33kd附近的蛋白质含量明显增加;相反,长期化肥配合秸杆还田和配施猪粪趋向于提高蚯蚓蛋白质含量或氨基酸含量。看来.农田中蚯蚓不但在种群变化上,而且在体内生命活性物质组成上均响应稻田不同施肥措施下的土壤环境变化。  相似文献   

19.
蚯蚓在生态系统中的作用   总被引:23,自引:0,他引:23  
蚯蚓能够对许多决定土壤肥力的过程产生重要影响, 被称为“生态系统工程师”。它通过取食、消化、排泄和掘穴等活动在其体内外形成众多的反应圈, 从而对生态系统的生物、化学和物理过程产生影响。蚯蚓在生态系统中既是消费者、分解者, 又是调节者, 它在生态系统中的功能具体表现在: (1) 对土壤中有机质分解和养分循环等关键过程的影响; (2) 对土壤理化性质的影响; (3) 与植物、微生物及其他动物的相互作用。蚯蚓活动及其在生态系统中的功能受蚯蚓生态类群、种群大小、植被、母岩、气候、时间尺度以及土地利用历史的综合控制。蚯蚓外来种入侵与生态系统的关系以及蚯蚓对全球变化的响应和影响是两个值得关注的问题。土壤本身的复杂性, 蚯蚓自然历史和生物地理学知识的缺乏, 野外控制蚯蚓群落方法的滞后等都限制了蚯蚓生态学的发展。其他新技术如研究养分循环的碳氮同位素分析和揭示土壤微结构的图像分析等技术的应用是蚯蚓生态功能研究的迫切需要。  相似文献   

20.
Earthworms are one of the most important and beneficial macrofauna, and are used extensively in organic farming. Earthworms mediate soil biological regulation systems, and produce biogenic structures. They help to maintain soil structure, water infiltration, and regulate the availability of nutrients assimilated by plants. The objectives of this study were to perform morphological and molecular characterizations of 24 earthworm individuals collected from geographically diverse locations to assess the level of genetic variation. For molecular analysis, the effectiveness of RAPD, ISSR, and Universal rice primers (URPs) markers was investigated to identify polymorphism among 24 isolates of earthworms. A total of 62 molecular markers were used for amplification of genomic DNA of earthworms. Of these, 10 RAPD, 10 ISSR, and 10 URPs markers were used for characterization, which showed 95.7%, 96.7% and 98.3% polymorphism, respectively. The dendrogram, generated from the DNA markers by the unweighted pair group method using arithmetic averages, grouped all the isolates into two main clusters. All Eisenia fetida isolates were clustered in group A, whereas group B included three isolates belonging to Eudrilus eugeniae. Molecular markers allowed a rapid assessment of genetic variation among these closely related isolates of earthworms. These results suggest that molecular markers are a good choice for diversity analysis of earthworm individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号