首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmodium falciparum causes the most deadly form of malaria and accounts for over one million deaths annually. The malaria parasite is unable to salvage pyrimidines and relies on de novo biosynthesis for survival. Dihydroorotate dehydrogenase (DHOD), a mitochondrially localized flavoenzyme, catalyzes the rate-limiting step of this pathway and is therefore an attractive antimalarial chemotherapeutic target. Using a target-based high throughput screen, we have identified a series of potent, species-specific inhibitors of P. falciparum DHOD (pfDHOD) that are also efficacious against three cultured strains (3D7, HB3, and Dd2) of P. falciparum. The primary antimalarial mechanism of action of these compounds was confirmed to be inhibition of pfDHOD through a secondary assay with transgenic malaria parasites, and the structural basis for enzyme inhibition was explored through in silico structure-based docking and site-directed mutagenesis. Compound-mediated cytotoxicity was not observed with human dermal fibroblasts or renal epithelial cells. These data validate pfDHOD as an antimalarial drug target and provide chemical scaffolds with which to begin medicinal chemistry efforts.  相似文献   

2.
The plasmodial surface anion channel mediates uptake of nutrients and other solutes into erythrocytes infected with malaria parasites. The clag3 genes of P. falciparum determine this channel’s activity in human malaria, but how the encoded proteins contribute to transport is unknown. Here, we used proteases to examine the channel’s composition and function. While proteases with distinct specificities all cleaved within an extracellular domain of CLAG3, they produced differing degrees of transport inhibition. Chymotrypsin-induced inhibition depended on parasite genotype, with channels induced by the HB3 parasite affected to a greater extent than those of the Dd2 clone. Inheritance of functional proteolysis in the HB3×Dd2 genetic cross, DNA transfection, and gene silencing experiments all pointed to the clag3 genes, providing independent evidence for a role of these genes. Protease protection assays with a Dd2-specific inhibitor and site-directed mutagenesis revealed that a variant L1115F residue on a CLAG3 extracellular loop contributes to inhibitor binding and accounts for differences in functional proteolysis. These findings indicate that surface-exposed CLAG3 is the relevant pool of this protein for channel function. They also suggest structural models for how exposed CLAG3 domains contribute to pore formation and parasite nutrient uptake.  相似文献   

3.
Duplications and interchromosomal transpositions of chromosome segments are implicated in the genetic variability of Plasmodium falciparum malaria parasites. One parasite clone, HB3, was shown to lack a subtelomeric region of chromosome 13 that normally carries a PfHRPIII gene. We show here that the chromosome 13 segment carrying PfHRPIII was replaced in HB3 by a duplicated terminal segment from chromosome 11. Mapping results indicate that the segment includes at least 100-200 kb of subtelomeric DNA and contains duplicated copies of the Pf332 and RESA-2 genes. We followed inheritance of this duplication in a genetic cross between the HB3 and another P.falciparum clone, Dd2, that is euploid for the Pf332, RESA-2 and PfHRPIII genes. Three types of progeny from the cross showed expected inheritance forms: a Dd2 euploid parent type, an HB3 aneuploid parent type, and a recombinant euploid type that carried PfHRPIII from Dd2 chromosome 13 and Pf332 from HB3 chromosome 11. However, a fourth euploid progeny type was also observed, in which the chromosome 13 segment from HB3 was transposed back to replace the terminus of chromosome 11. Three of 14 individual progeny were of this type. These findings suggest a mechanism of recombination from subtelomeric pairing and exchange between non-homologous chromosomes in meiosis.  相似文献   

4.
Development of malaria parasites within vertebrate erythrocytes requires nutrient uptake at the host cell membrane. The plasmodial surface anion channel (PSAC) mediates this transport and is an antimalarial target, but its molecular basis is unknown. We report a parasite gene family responsible for PSAC activity. We used high-throughput screening for nutrient uptake inhibitors to identify a compound highly specific for channels from the Dd2 line of the human pathogen P. falciparum. Inheritance of this compound's affinity in a Dd2 × HB3 genetic cross maps to a single parasite locus on chromosome 3. DNA transfection and in vitro selections indicate that PSAC-inhibitor interactions are encoded by two clag3 genes previously assumed to function in cytoadherence. These genes are conserved in plasmodia, exhibit expression switching, and encode an integral protein on the host membrane, as predicted by functional studies. This protein increases host cell permeability to diverse solutes.  相似文献   

5.
The plasmodial surface anion channel (PSAC) is an unusual ion channel induced on the human red blood cell membrane after infection with the malaria parasite, Plasmodium falciparum. Because PSAC is permeant to small metabolic precursors essential for parasite growth and is present on red blood cells infected with geographically divergent parasite isolates, it may be an ideal target for future antimalarial development. Here, we used chemically induced mutagenesis and known PSAC antagonists that inhibit in vitro parasite growth to examine whether resistance mutations in PSAC can be readily induced. Stable mutants resistant to phloridzin were generated and selected within 3 weeks after treatment with 1-methyl-3-nitro-1-nitrosoguanidine. These mutants were evaluated with osmotic lysis and electrophysiological transport assays, which indicate that PSAC inhibition by phloridzin is complex with at least two different modes of inhibition. Mutants resistant to the growth inhibitory effects of phloridzin expressed PSAC activity indistinguishable from that on sensitive parasites, indicating selection of resistance via mutations in one or more other parasite targets. Failure to induce mutations in PSAC activity is consistent with a highly constrained channel protein less susceptible to resistance mutations; whether this protein is parasite- or host-encoded remains to be determined.  相似文献   

6.
7.
SSJ-127, a novel antimalarial rhodacyanine derivative, has shown potent antimalarial activity against chloroquine-resistant Plasmodium strains in vitro and subcutaneous administration of SSJ-127 results in a complete cure of a mouse malaria model. SSJ-127 was detected by fluorescence microscopy in the mouse malaria parasites Plasmodium berghei after exposure of infected red blood cells to the compound in vitro and in vivo. Selective accumulation of SSJ-127 in an organelle is observed in all blood stages of live malaria parasites. The organelle is clearly different from the mitochondrion and the nucleus in terms of morphology. The shape of the organelle changed during the asexual blood stages of the parasite. There was always a close association between the organelle and the mitochondrion. These results raised the possibility that SSJ-127 accumulates in an apicoplast of the malaria parasite and affects protozoan parasite-specific pathways.  相似文献   

8.
Malarial parasites have two highly conserved cytoplasmic DNA molecules: a 6-kb tandemly arrayed DNA that has characteristics of a mitochondrial genome, and a 35-kb circular DNA that encodes functions commonly found in chloroplasts. We examined the inheritance pattern of these elements in two genetic crosses of Plasmodium falciparum clones. Parent-specific oligonucleotide probes and single-strand conformation polymorphism analysis identified single nucleotide changes that distinguished the parental 6- and 35-kb DNA molecules in the progeny. In all 16 independent recombinant progeny of a cross between a Central American clone, HB3, and a Southeast Asian clone, Dd2, the 6- and 35-kb DNAs were inherited from the Dd2 parent. In all nine independent recombinant progeny of a cross between clone HB3 and a likely African clone, 3D7, the 6-kb DNA was inherited from the 3D7 parent. Inheritance of cytoplasmic genomes of the Dd2 and 3D7 parents was, therefore, dominant over that of the HB3 parent. Cytoplasmic DNA molecules were found almost exclusively in the female gametes of malarial parasites; hence, clone HB3 did not appear to have served as a maternal parent for the progeny of two crosses. Defective differentiation into male gametes by clone Dd2 is likely to be a reason for the cytoplasmic inheritance pattern seen in the HB3 x Dd2 cross. However, incompetence of male or female gametes is unlikely to explain the uniparental dominance in recombinant progeny of the HB3 x 3D7 cross, since both parents readily self-fertilized and completed the malaria life cycle on their own. Instead, the data suggest unidirectional parental incompatibility in cross-fertilization of these malarial parasites, where a usually cosexual parental clone can participate only as a male or as a female. Such an incompatibility may be speculated as indicating an early phase of reproductive isolation of P. falciparum clones from different geographical regions.  相似文献   

9.
To survive within a red blood cell, the malaria parasite alters dramatically the permeability of the host's plasma membrane (allowing the uptake of essential nutrients and the removal of potentially hazardous metabolites). The pathway(s) responsible for the increased permeability have been proposed as putative chemotherapeutic targets and/or selective routes for antimalarial agents that target the internal parasite. This review covers our current understanding of this parasite-induced phenomenon in Plasmodium falciparum-infected human red blood cells. In particular, recent electrophysiological studies, using the patch-clamp technique, are reviewed.  相似文献   

10.
Previous studies demonstrated that Plasmodium falciparum strain D10 became highly resistant to the mitochondrial electron transport chain (mtETC) inhibitor atovaquone when the mtETC was decoupled from the pyrimidine biosynthesis pathway by expressing the fumarate-dependent (ubiquinone-independent) yeast dihydroorotate dehydrogenase (yDHODH) in parasites. To investigate the requirement for decoupled mtETC activity in P. falciparum with different genetic backgrounds, we integrated a single copy of the yDHODH gene into the genomes of D10attB, 3D7attB, Dd2attB, and HB3attB strains of the parasite. The yDHODH gene was equally expressed in all of the transgenic lines. All four yDHODH transgenic lines showed strong resistance to atovaquone in standard short-term growth inhibition assays. During longer term growth with atovaquone, D10attB-yDHODH and 3D7attB-yDHODH parasites remained fully resistant, but Dd2attB-yDHODH and HB3attB-yDHODH parasites lost their tolerance to the drug after 3 to 4 days of exposure. No differences were found, however, in growth responses among all of these strains to the Plasmodium-specific DHODH inhibitor DSM1 in either short- or long-term exposures. Thus, DSM1 works well as a selective agent in all parasite lines transfected with the yDHODH gene, whereas atovaquone works for some lines. We found that the ubiquinone analog decylubiquinone substantially reversed the atovaquone inhibition of Dd2attB-yDHODH and HB3attB-yDHODH transgenic parasites during extended growth. Thus, we conclude that there are strain-specific differences in the requirement for mtETC activity among P. falciparum strains, suggesting that, in erythrocytic stages of the parasite, ubiquinone-dependent dehydrogenase activities other than those of DHODH are dispensable in some strains but are essential in others.  相似文献   

11.
With more than 40% of the world’s population at risk, 200–300 million infections each year, and an estimated 1.2 million deaths annually, malaria remains one of the most important public health problems of mankind today. With the propensity of malaria parasites to rapidly develop resistance to newly developed therapies, and the recent failures of artemisinin-based drugs in Southeast Asia, there is an urgent need for new antimalarial compounds with novel mechanisms of action to be developed against multidrug resistant malaria. We present here a novel image analysis algorithm for the quantitative detection and classification of Plasmodium lifecycle stages in culture as well as discriminating between viable and dead parasites in drug-treated samples. This new algorithm reliably estimates the number of red blood cells (isolated or clustered) per fluorescence image field, and accurately identifies parasitized erythrocytes on the basis of high intensity DAPI-stained parasite nuclei spots and Mitotracker-stained mitochondrial in viable parasites. We validated the performance of the algorithm by manual counting of the infected and non-infected red blood cells in multiple image fields, and the quantitative analyses of the different parasite stages (early rings, rings, trophozoites, schizonts) at various time-point post-merozoite invasion, in tightly synchronized cultures. Additionally, the developed algorithm provided parasitological effective concentration 50 (EC50) values for both chloroquine and artemisinin, that were similar to known growth inhibitory EC50 values for these compounds as determined using conventional SYBR Green I and lactate dehydrogenase-based assays.  相似文献   

12.
Due to the recent advances of atovaquone, a naphthoquinone, through clinical trials as treatment for malarial infection, 19 quinone derivatives with previously reported structures were also evaluated for blood schizonticide activity against the malaria parasite Plasmodium falciparum. These compounds include 2-hydroxy-3-methylamino naphthoquinones (2-9), lapachol (10), nor-lapachol (11), iso-lapachol (12), phthiocol (13) and phenazines (12-20). Their cytotoxicities were also evaluated against human hepatoma and normal monkey kidney cell lines. Compounds 2 and 5 showed the highest activity against P. falciparum chloroquine-resistant blood-stage parasites (clone W2), indicated by their low inhibitory concentration for 50% (IC50) of parasite growth. The therapeutic potential of the active compounds was evaluated according to the selectivity index, which is a ratio of the cytotoxicity minimum lethal dose which eliminates 50% of cells and the in vitro IC50. Naphthoquinones 2 and 5, with activities similar to the reference antimalarial chloroquine, were also active against malaria in mice and suppressed parasitaemia by more than 60% in contrast to compound 11 which was inactive. Based on their in vitro and in vivo activities, compounds 2 and 5 are considered promising molecules for antimalarial treatment and warrant further study.  相似文献   

13.
The asexual blood stages of the Plasmodium falciparum parasite are responsible for inducing the clinical symptoms and the most severe presentations of malaria infection that causes frequent mortality and morbidity in tropical and subtropical areas of the world, making the blood stages of infection a key target of new malaria treatment and prevention strategies. Progress towards the development of more effective treatment and prevention strategies has been hindered by the limited availability of infection models that permit the sequential analysis of blood stage parasites in vitro followed by in vivo analysis to confirm therapeutic benefits. To advance a model for in vitro and in vivo analysis of blood stage parasites, we examined nine laboratory strains of P. falciparum to determine which strains could adapt to growth in vivo in splenectomized squirrel monkeys (Saimiri sciureus). Only one of the nine laboratory strains tested, the FCB strain, adapted to in vivo growth. Morphological analysis show that the adapted ring-stage parasites have a different morphology from original parasites cultured in vitro, and more often they were found to localize at the edge of the infected red blood cell. No remarkable differences were observed for both trophozoites and schizonts. The adapted strain can be cultured back in vitro similar to the original parasite, indicating that the adapted parasite can develop both in vitro and in vivo. This squirrel monkey-adapted P. falciparum parasite is expected to be suitable and is advantageous for the research and development of vaccines and antimalarial drugs.  相似文献   

14.
The discovery of effective new antimalarial agents is urgently needed. One of the most frequently studied molecules anchored to the parasite surface is the merozoite surface protein-1 (MSP1). At red blood cell invasion MSP1 is proteolytically processed, and the 19-kDa C-terminal fragment (MSP119) remains on the surface and is taken into the red blood cell, where it is transferred to the food vacuole and persists until the end of the intracellular cycle. Because a number of specific antibodies inhibit erythrocyte invasion and parasite growth, MSP119 is therefore a promising target against malaria. Given the structural homology of cupredoxins with the Fab domain of monoclonal antibodies, an approach combining NMR and isothermal titration calorimetry (ITC) measurements with docking calculations based on BiGGER is employed on MSP119-cupredoxin complexes. Among the cupredoxins tested, rusticyanin forms a well defined complex with MSP119 at a site that overlaps with the surface recognized by the inhibitory antibodies. The addition of holo-rusticyanin to infected cells results in parasitemia inhibition, but negligible effects on parasite growth can be observed for apo-rusticyanin and other proteins of the cupredoxin family. These findings point to rusticyanin as an excellent therapeutic tool for malaria treatment and provide valuable information for drug design.  相似文献   

15.
The human erythrocyte contains an abundance of the thiol-dependant peroxidase Peroxiredoxin-2 (Prx2), which protects the cell from the pro-oxidant environment it encounters during its 120 days of life in the blood stream. In malarial infections, the Plasmodium parasite invades red cells and imports Prx2 during intraerythrocytic development, presumably to supplement in its own degradation of peroxides generated during cell metabolism, especially hemoglobin (Hb) digestion. Here we demonstrate that an irreversible Prx2 inhibitor, Conoidin A (2,3-bis(bromomethyl)-1,4-dioxide-quinoxaline; BBMQ), has potent cytocidal activity against cultured P. falciparum. Parasite growth was also inhibited in red cells that were treated with BBMQ and then washed prior to parasite infection. These cells remained susceptible to merozoite invasion, but failed to support normal intraerythrocytic development. In addition the potency of chloroquine (CQ), an antimalarial drug that prevents the detoxification of Hb-derived heme, was significantly enhanced in the presence of BBMQ. CQ IC50 values decreased an order of magnitude when parasites were either co-incubated with BBMQ, or introduced into BBMQ-pretreated cells; these effects were equivalent for both drug-resistant and drug-sensitive parasite lines. Together these results indicate that treatment of red cells with BBMQ renders them incapable of supporting parasite growth and increases parasite sensitivity to CQ. We also propose that molecules such as BBMQ that target host cell proteins may constitute a novel host-directed therapeutic approach for treating malaria.  相似文献   

16.
This study measured the antiplasmodial activity of nine zinc-dipicolylamine (ZnDPA) complexes against three strains of Plasmodium falciparum, the causative parasite of malaria. Growth inhibition assays showed significant activity against all tested strains, with 50% inhibitory concentrations between 5 and 600 nM and almost no toxic effect against host cells including healthy red blood cells. Fluorescence microscopy studies with a green-fluorescent ZnDPA probe showed selective targeting of infected red blood cells. The results suggest that ZnDPA coordination complexes are promising antiplasmodial agents with potential for targeted malaria treatment.  相似文献   

17.
The malaria parasite causes lysis of red blood cells, resulting in anemia, a major cause of mortality and morbidity. Intuitively, one would expect the production of red blood cells to increase in order to compensate for this loss. However, it has been observed that this response is weaker than would be expected. Furthermore, iron supplementation for iron deficient children in malaria endemic regions can paradoxically adversely affect the clinical outcome of malaria infection. A possible explanation may lie in the preference that some malaria parasites show for infecting immature red blood cells (reticulocytes). In the presence of a parasite preference for immature red cells, a rise in red cell production can ‘fuel the fire’ of infection by increasing the availability of the parasite's preferred target cell.We present a mathematical model of red blood cell production and infection in order to explore this hypothesis. We assess the effect of varying the reticulocyte replacement rate and preference of the parasite for reticulocytes on four key outcome measures assessing anemia and parasitemia.For a given level of parasite preference for reticulocytes we uncover an optimal erythropoietic response which minimizes disease severity. Increasing red blood cell production much above this optimum confers no benefit to the patient, and in fact can increase the degree of anemia and parasitemia. These conclusions are consistent with epidemiological studies demonstrating that both iron deficiency and anemia are protective against severe malaria, whilst iron supplementation in malaria endemic regions is with an increased number of malaria related adverse effects. Thus, suppression of red blood cell production, rather than being an unfortunate side effect of inflammation, may be a host protective effect against severe malarial anemia.  相似文献   

18.
Resistance of Plasmodium falciparum to almost all antimalarial drugs, including the first-line treatment with artemisinins, has been described, representing an obvious threat to malaria control. In vitro antimalarial sensitivity testing is crucial to detect and monitor drug resistance. Current assays have been successfully used to detect drug effects on parasites. However, they have some limitations, such as the use of radioactive or expensive reagents or long incubation times. Here we describe a novel assay to detect antimalarial drug effects, based on flow cytometric detection of hemozoin (Hz), which is rapid and does not require any additional reagents. Hz is an optimal parasite maturation indicator since its amount increases as the parasite matures. Due to its physical property of birefringence, Hz depolarizes light, hence it can be detected using optical methods such as flow cytometry. A common flow cytometer was adapted to detect light depolarization caused by Hz. Synchronized in vitro cultures of P. falciparum were incubated for 48 hours with several antimalarial drugs. Analysis of depolarizing events, corresponding to parasitized red blood cells containing Hz, allowed the detection of parasite maturation. Moreover, chloroquine resistance and the inhibitory effect of all antimalarial drugs tested, except for pyrimethamine, could be determined as early as 18 to 24 hours of incubation. At 24 hours incubation, 50% inhibitory concentrations (IC50) were comparable to previously reported values. These results indicate that the reagent-free, real-time Hz detection assay could become a novel assay for the detection of drug effects on Plasmodium falciparum.  相似文献   

19.
Following the bite of an infective mosquito, malaria parasites first invade the liver where they develop and replicate for a number of days before being released into the bloodstream where they invade red blood cells and cause disease. The biology of the liver stages of malaria parasites is relatively poorly understood due to the inaccessibility of the parasites to sampling during this phase of their life cycle. Here we report the detection in blood and faecal samples of malaria parasite DNA throughout their development in the livers of mice and before the parasites begin their growth in the blood circulation. It is shown that parasite DNA derived from pre-erythrocytic stage parasites reaches the faeces via the bile. We then show that different primate malaria species can be detected by PCR in blood and faecal samples from naturally infected captive macaque monkeys. These results demonstrate that pre-erythrocytic parasites can be detected and quantified in experimentally infected animals. Furthermore, these results have important implications for both molecular epidemiology and phylogenetics of malaria parasites. In the former case, individuals who are malaria parasite negative by microscopy, but PCR positive for parasite DNA in their blood, are considered to be “sub-microscopic” blood stage parasite carriers. We now propose that PCR positivity is not necessarily an indicator of the presence of blood stage parasites, as the DNA could derive from pre-erythrocytic parasites. Similarly, in the case of molecular phylogenetics based on DNA sequences alone, we argue that DNA amplified from blood or faeces does not necessarily come from a parasite species that infects the red blood cells of that particular host.  相似文献   

20.
The most severe form of human malaria is caused by the parasite Plasmodium falciparum. The second messenger cAMP has been shown to be important for the parasite's ability to infect the host's liver, but its role during parasite growth inside erythrocytes, the stage responsible for symptomatic malaria, is less clear. The P. falciparum genome encodes two adenylyl cyclases, the enzymes that synthesize cAMP, PfACα and PfACβ. We now show that one of these, PfACβ, plays an important role during the erythrocytic stage of the P. falciparum life cycle. Biochemical characterization of PfACβ revealed a marked pH dependence, and sensitivity to a number of small molecule inhibitors. These inhibitors kill parasites growing inside red blood cells. One particular inhibitor is selective for PfACβ relative to its human ortholog, soluble adenylyl cyclase (sAC); thus, PfACβ represents a potential target for development of safe and effective antimalarial therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号