首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibroblast migration, proliferation, extracellular matrix protein synthesis and degradation, all of which play important roles in inflammation, are themselves induced by various growth factors and cytokines. Less is known about the interaction of these substances on lung fibroblast function in pulmonary fibrosis. The goal of this study was to investigate the effects of PDGF alone and in combination with IL-1beta and TNF-alpha on the production of human lung fibroblast matrix metalloproteinases, proliferation, and the chemotactic response. The assay for MMPs activity against FITC labeled type I and IV collagen was based on the specificity of the enzyme cleavage of collagen. Caseinolytis and gelatinolytic activities of secreted proteinases were analyzed by zymography. Fibronectin in conditioned media was measured using human lung fibronectin enzyme immunoassay. Cell proliferation was measured by 3H-Thymidine incorporation assay. Cell culture supernatants were tested for PGE2 content by ELISA. Chemotactic activity was measured using the modified Boyden chamber. Matrix metalloproteinase assay indicated that IL-1beta, TNF-alpha and PDGF induced intestitial collagenase (MMP-1) production. MMP assay also indicated that IL-1beta and TNF-alpha had inhibitory effects on MMP-2,9(gelatinaseA,B) production. Casein zymography confirmed that IL-1beta stimulated stromlysin (matrix metalloproteinase 3; MMP-3) and gelatin zymography demonstrated that TNF-alpha induced MMP-9 production in human lung fibroblast, whereas PDGF alone did not. PDGF in combination with IL-1beta and TNF-alpha induced MMP-3 and MMP-9 activity, as demonstrated by zymography. PDGF stimulated lung fibroblast proliferation in a concentration-dependent manner, whereas IL-1beta and TNF-alpha alone had no effect. In contrast, the proliferation of human lung fibroblasts by PDGF was inhibited in the presence of IL-1beta and TNF-alpha, and this inhibition was not a consequence of any elevation of PGE2. PDGF stimulated fibroblast chemotaxis in a concentration-dependent manner, and this stimulation was augmented by combining PDGF with IL-1beta and TNF-alpha. These findings suggested that PDGF differentially regulated MMPs production in combination with cytokines, and further that MMP assay and zymography had differential sensitivity for detecting MMPs. The presence of cytokines with PDGF appears to modulate the proliferation and chemotaxis of human lung fibroblasts.  相似文献   

2.
3.
PG are known to inhibit T cell proliferation, at least in part by suppressing IL-2 production, but effects of PG on the production of other lymphokines have not been well studied. We have found that PGE2 and PGE1, but not PGF2 alpha, inhibit both proliferation and production of granulocyte-macrophage (GM)-CSF by murine TH clones stimulated with Ag or anti-CD3 antibody. Thus, signals generated via the Ag receptor:CD3 complex were inhibited by PGE. Most interesting, however, was the finding that PGE2 and PGE1 could act synergistically with IL-2 for the induction of GM-CSF in some TH1 clones. Dependence on PGE2 for this response was not found in all clones, as some TH1 cells could produce GM-CSF after IL-2 alone, and some cells did not produce GM-CSF even in the presence of PGE2 and IL-2. These observations indicate that there is a subset of TH1 cells receptive to a stimulating activity of PGE2 in the presence of IL-2. PGE2 is known to elevate cAMP levels in T cells. Therefore, we tested whether other agents known to increase cAMP, such as forskolin and cholera toxin, could act in conjunction with IL-2 to induce GM-CSF secretion. As was found with PGE2, these compounds also induced GM-CSF activity in the presence of IL-2, suggesting a critical role for cAMP in this process. Overall these data indicate that the requirements for activation of GM-CSF secretion vary among individual T cells. Most importantly they provide the first evidence that E-series PG are positive signals for lymphokine induction in certain T cells, whereas simultaneously acting as negative signals limiting proliferation. This result also suggests that treatment with anti-inflammatory drugs that decrease PGE2 concentrations may inhibit lymphokine secretion normally stimulated by this pathway.  相似文献   

4.
5.
The pronounced synovial hyperplasia often found in the joints of patients with rheumatoid arthritis could be explained partially by the action of monocyte-macrophage polypeptides (monokines). This report demonstrates that two cytokines which may be derived from monocyte-macrophage populations, namely platelet-derived growth factor (PDGF) and basic fibroblast growth factor (bFGF), stimulate the DNA synthesis and proliferation of human synovial fibroblast-like cells cultured in low (i.e., 1%) fetal bovine serum. Epidermal growth factor, insulin-like growth factor-I, insulin-like growth factor-II (multiplication stimulating activity) and substance P were inactive. Unlike IL-1, PDGF and FGF do not also stimulate PGE2, plasminogen activator, and hyaluronic acid levels. Thus PDGF and FGF, arising from stimulated monocyte-macrophages, may play a role in the stimulation of mesenchymal cell proliferation that often accompanies chronic inflammatory arthritic disease. The synovial cells respond to a variety of cytokines in different ways suggesting multiple-signaling pathways.  相似文献   

6.
Interleukin-1 (IL-1) is synthesized by and released from macrophages in response to a variety of stimuli and appears to play an essential role in virtually all inflammatory conditions. In tissues of mesenchymal origin (e.g., cartilage, muscle, bone, and soft connective tissue) IL-1 induces changes characteristic of both destructive as well as reparative phenomena. Previous studies with natural IL-1 of varying degrees of purity have suggested that it is capable of modulating a number of biological activities of fibroblasts. We have compared the effects of purified human recombinant (hr) IL-1 alpha and beta on several fibroblast functions. The parameters studied include cell proliferation, chemotaxis, and production of collagen, collagenase, tissue inhibitor of metalloproteinase (TIMP), and prostaglandin (PG) E2. We observed that hrIL-1s stimulate the synthesis and accumulation of type I procollagen chains. Intracellular degradation of collagen is not altered by the hrIL-1s. Both IL-1s were observed to increase the steady-state levels of pro alpha 1(I) and pro alpha 2(I) mRNAs, indicating that they exert control of type I procollagen gene expression at the pretranslational level. We found that both hrIL-1 alpha and beta stimulate synthesis of TIMP, collagenase, PGE2, and growth of fibroblasts in vitro but are not chemotactic for fibroblasts. Although hrIl-1 alpha and beta both are able to stimulate production of PGE2 by fibroblasts, inhibition of prostaglandin synthesis by indomethacin has no measurable effect on the ability of the IL-1s to stimulate cell growth or production of collagen and collagenase. Each of the IL-1s stimulated proliferation and collagen production by fibroblasts to a similar degree, however hrIL-1 beta was found to be less potent than hrIL-1 alpha in stimulating PGE2 production. These observations support the notion that IL-1 alpha and beta may both modulate the degradation of collagen at sites of tissue injury by virtue of their ability to stimulate collagenase and PGE2 production by fibroblasts. Furthermore, IL-1 alpha and beta might also direct reparative functions of fibroblasts by stimulating their proliferation and synthesis of collagen and TIMP.  相似文献   

7.
Francisella tularensis is a highly infectious bacterial pathogen, and is likely to have evolved strategies to evade and subvert the host immune response. In this study, we show that F. tularensis infection of macrophages alters T cell responses in vitro, by blocking T cell proliferation and promoting a Th2-like response. We demonstrate that a soluble mediator is responsible for this effect and identify it as PGE(2). Supernatants from F. tularensis-infected macrophages inhibited IL-2 secretion from both MHC class I and MHC class II-restricted T cell hybridomas, as well as enhanced a Th2-like response by inducing increased production of IL-5. Furthermore, the soluble mediator blocked proliferation of naive MHC class I-restricted T cells when stimulated with cognate tetramer. Indomethacin treatment partially restored T cell proliferation and lowered IL-5 production to wild-type levels. Macrophages produced PGE(2) when infected with F. tularensis, and treatment of infected macrophages with indomethacin, a cyclooxygenase-1/cyclooxygenase-2 inhibitor, blocked PGE(2) production. To further demonstrate that PGE(2) was responsible for skewing of T cell responses, we infected macrophages from membrane PGE synthase 1 knockout mice (mPGES1(-/-)) that cannot produce PGE(2). Supernatants from F. tularensis-infected membrane PGE synthase 1(-/-) macrophages did not inhibit T cell proliferation. Furthermore, treatment of T cells with PGE(2) recreated the effects seen with infected supernatant. From these data, we conclude that F. tularensis can alter host T cell responses by causing macrophages to produce PGE(2). This study defines a previously unknown mechanism used by F. tularensis to modulate adaptive immunity.  相似文献   

8.
The effects of interleukin (IL)-1 alpha, IL-1 beta and TNF alpha on prostaglandin-E2 synthesis in Madin-Darby canine kidney (MDCK) cells were investigated. IL-1 beta time- and dose-dependently stimulated prostaglandin-E2 synthesis. While TNF alpha produced a comparatively small but significant stimulation of PGE2 release, coincubation of IL-1 beta with TNF alpha produced a marked synergistic stimulation of PGE2 release. The effect of IL-1 beta and of IL-1 beta and TNF alpha was apparent as early as after 2 h of incubation. The enhanced PGE2 synthesis was inhibited by indomethacin as well as actinomycin D, while cycloheximide surprisingly potentiated PGE2 synthesis in response to both IL-1 beta and TNF alpha. IL-1 alpha alone was ineffective in stimulating a significant release of PGE2 at concentrations as high as 10 nM. However, it also showed a marked synergistic interaction with TNF alpha in stimulating PGE2 release.  相似文献   

9.
Interleukin 1 receptor antagonist (IL-1ra) has been found in glycosylated form in the urine of febrile patients or of children with rheumatoid arthritis, and in the supernatant of monocytes cultured in the presence of immune complexes. It blocks competitively the binding of IL-1 alpha and beta to their receptors. Produced amongst others by mononuclear cell lines and matured monocytes and alveolar macrophages, it prevents prostaglandin E2 and collagenase production by fibroblasts and synovial cells. In mice, IL-1ra improves survival after lethal endotoxemia. In this study, both natural and recombinant human IL-1ra (rhIL-1ra) were tested in an allogeneic T-cell reaction, and in mitogen- or antigen-induced lymphocyte proliferation. Neither the natural nor the rhIL-1ra blocked T-cell proliferation, but rhIL-1ra abolished the effect of exogenous IL-1 beta. This was not due to a loss of bioactivity of IL-1ra in culture, as the IL-1ra of the supernatant still completely inhibited 125I-IL-1 alpha binding to EL 4-6.1 cells and markedly reduced PGE2 production during antigen presentation. We conclude that IL-1ra alone, even at high concentrations, is not sufficient to block human T-cell proliferation in vitro.  相似文献   

10.
Activation of human monocytes results in the production of interstitial collagenase through a prostaglandin E2 (PGE2)-cAMP-dependent pathway. Inasmuch as interleukin 4 (IL-4) has been shown to inhibit PGE2 synthesis by monocytes, we examined the effect of IL-4 on the production of human monocyte interstitial collagenase. Additionally, we also assessed the effect of IL-4 on the production of 92-kDa type IV collagenase/gelatinase and tissue inhibitor of metalloproteinase-1 (TIMP-1) by monocytes. The inhibition of PGE2 synthesis by IL-4 resulted in decreased interstitial collagenase protein and activity that could be restored by exogenous PGE2 or dibutyryl cyclic AMP (Bt2cAMP). IL-4 also suppressed ConA-stimulated 92-kDa type IV collagenase/gelatinase protein and zymogram enzyme activity that could be reversed by exogenous PGE2 or Bt2cAMP. Moreover, indomethacin suppressed the ConA-induced production of 92-kDa type IV collagenase/gelatinase. These data demonstrate that, like monocyte interstitial collagenase, the conA-inducible monocyte 92-kDa type IV collagenase/gelatinase is regulated through a PGE2-mediated cAMP-dependent pathway. In contrast to ConA stimulation, unstimulated monocytes released low levels of 92-kDa type IV collagenase/gelatinase that were not affected by IL-4, PGE2, or Bt2cAMP, indicating that basal production of this enzyme is PGE2-cAMP independent. IL-4 inhibition of both collagenases was not a result of increased TIMP expression since Western analysis of 28.5-kDa TIMP-1 revealed that IL-4 did not alter the increased TIMP-1 protein in response to ConA. These data indicate that IL-4 may function in natural host regulation of connective tissue damage by monocytes.  相似文献   

11.
Alveolar type II (ATII) cells inhibit fibroblast proliferation in coculture by releasing or secreting a factor(s) that stimulates fibroblast production of prostaglandin E2 (PGE2). In the present study, we sought to determine the factors released from ATII cells that stimulate PGE2 production in fibroblasts. Exogenous addition of rat IL-1alpha to cultured lung fibroblasts induced PGE2 secretion in a dose-response manner. When fibroblasts were cocultured with rat ATII cells, IL-1alpha protein was detectable in ATII cells and in the coculture medium between days 8 and 12 of culture, correlating with the highest levels of PGE2. Furthermore, under coculture conditions, IL-1alpha gene expression increased in ATII cells (but not fibroblasts) compared with either cell cultured alone. In both mixed species (human fibroblasts-rat ATII cells) and same species cocultures (rat fibroblasts and ATII cells), PGE2 secretion was inhibited by the presence of IL-1 receptor antagonist (IL-1Ra) or selective neutralizing antibody directed against rat IL-1alpha (but not IL-1beta). Conditioned media from cocultures inhibited fibroblast proliferation, and this effect was abrogated by the addition of IL-1Ra. Addition of keratinocyte growth factor (KGF) resulted in an earlier increase in PGE2 secretion and fibroblast inhibition (day 8 of coculture). This effect was inhibited by indomethacin but was not altered by IL-1Ra. We conclude that in this coculture system, IL-1alpha secretion by ATII cells is one factor that stimulates PGE2 production by lung fibroblasts, thereby inhibiting fibroblast proliferation. In addition, these studies demonstrate that KGF enhances ATII cell PGE2 production through an IL-1alpha-independent pathway.  相似文献   

12.
The mitogenic effect of extracellular ATP on porcine aortic smooth muscle cells (SMC) was examined. Stimulation of [3H]thymidine incorporation by ATP was dose-dependent; the maximal effect was obtained at 100 microM. ATP acted synergistically with insulin, IGF-1, EGF, PDGF, and various other mitogens. Incorporation of [3H]thymidine was correlated with the fraction of [3H]thymidine-labeled nuclei and changes in cell counts. The stimulation of proliferation was also determined by measurement of cellular DNA using bisbenzamide and by following the increase of mitochondrial dehydrogenase protein. The effect of ATP was not due to hydrolysis to adenosine, which shows synergism with ATP. ATP acted as a competence factor. The mitogenic effect of ATP, but not adenosine, was further increased by lysophosphatidate, phosphatidic acid, or norepinephrine. The inhibitor of adenosine deaminase, EHNA, stimulated the effect of adenosine but not ATP. The adenosine receptor antagonist theophylline depressed adenosine-induced mitogenesis. ADP and the non-hydrolyzable analogue adenosine 5'-[beta, gamma-imido]triphosphate (AMP-PNP) were equally mitogenic. Thus extracellular ATP stimulated mitogenesis of SMC via P2Y purinoceptors. The mechanism of ATP acting as a mitogen in SMC was further explored. Extracellular ATP stimulated the release of [3H]arachidonic acid (AA) and prostaglandin E2 (PGE2) into the medium, and enhanced cAMP accumulation in a dose-dependent fashion similar to ATP-induced [3H]thymidine incorporation. Inhibitors of the arachidonic acid metabolism pathway, quinacrine and indomethacin, partially inhibited the mitogenic effect of ATP but not of adenosine. Pertussis toxin inhibited ATP-stimulated DNA synthesis, AA release, PGE2 formation, and cAMP accumulation. Down-regulation of protein kinase C (PKC) by long-term exposure to phorbol dibutyrate (PDBu) partially prevented stimulation of DNA synthesis and activation of the AA pathway by ATP. The PKC inhibitor, staurosporine, antagonized mitogenesis stimulated by ATP. No synergistic effect was found when PDBu and ATP were added together. Therefore, a dual mechanism, including both arachidonic acid metabolism and PKC, is involved in ATP-mediated mitogenesis in SMC. In addition, ATP acted synergistically with angiotensin II, phospholipase C, serotonin, or carbachol to stimulate DNA synthesis. Finally, the possible physiological significance of ATP as a mitogen in SMC was further studied. The effect of endothelin and heparin, which are released from endothelial cells, on ATP-dependent mitogenesis was investigated. Extracellular ATP acted synergistically with endothelin to stimulate a greater extent of [3H]thymidine incorporation than was seen with PDGF plus endothelin. Heparin, believed to have a regulatory role, partially inhibited the stimulation of DNA synthesis caused both by ATP and PDGF.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
14.
H Goshowaki  A Ito  Y Mori 《Prostaglandins》1988,36(1):107-114
Effects of prostaglandins on the production of collagenase by rabbit uterine cervical fibroblasts were investigated. Exogenous prostaglandin E2 (PGE2) and PGF2 alpha significantly stimulated the production of collagenase in a dose dependent manner, whereas PGI2 did not. Addition of arachidonic acid in the presence of absence of indomethacin to the cell culture did not show any increase in collagenase production. Recombinant human interleukin-1 (rhIL-1) also promoted the production of cervical collagenase independently of endogenous prostaglandin(s). Furthermore both exogenous PGE2 and PGF2 alpha enhanced the rhIL-1-induced collagenase production whereas PGI2 and/or indomethacin did not. These results suggested that exogenous PGE2 and PGF2 alpha but not endogenous prostaglandin(s) participate in cervical ripening and dilation by enhancing collagenase production by rabbit uterine cervical cells.  相似文献   

15.
Cytokines have been implicated in the regulation of eicosanoid synthesis and synovial cell proliferation. To further define these mechanisms, we have compared the effects of basic fibroblast growth factor and platelet-derived growth factor on cell growth, prostaglandin E2 (PGE2) production and phospholipase A2 enzyme activity in long-term cultures of synovial cells from rheumatoid arthritis (RA) patients capable of proliferating in serum-free medium. Compared with serum-free medium alone, RA synovial cell growth was significantly enhanced by adding either basic fibroblast growth factor (bFGF) or platelet-derived growth factor (PDGF) to the culture medium. Growing RA synovial cells for 14 days in serum-free medium plus bFGF caused them to spontaneously release significant amounts of PGE2, an effect not seen if cells were grown in serum-free medium alone, or serum-free medium plus PDGF. Enhanced release of PGE2 occurred when arachidonic acid was added to bFGF but not PDGF-treated RA synovial cells, suggesting that bFGF increased cyclooxygenase enzyme activity in these cells. Moreover, phospholipase A2 (PLA2) enzyme activity was found to be significantly greater in RA synovial cells grown for 14 days in serum-free medium containing bFGF alone, or bFGF plus interleukin 1 beta (IL-1 beta) compared with cells grown in either serum-free medium alone, or serum-free medium plus PDGF. Similarly, bFGF plus IL-1 beta-stimulated release of PLA2 activating protein, a novel mammalian phospholipase stimulator found in high concentrations in RA synovial fluid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Biochemical events elicited by interleukin 1 (IL-1) were studied in Swiss 3T3 fibroblasts. One hour after its addition, IL-1 stimulated synthesis of prostaglandin E2 (PGE2), which continued to accumulate for 4 days. IL-1 also stimulated cAMP accumulation. Indomethacin blocked cAMP accumulation in response to IL-1, suggesting that PGE2 was responsible for the increase. Addition of exogenous PGE2 to indomethacin-treated cells restored cAMP accumulation. IL-1 enhanced thymidine incorporation, and indomethacin attenuated responses to lower concentrations. Thus, PGE2 appeared to play a role in the ability of low concentrations of IL-1 to stimulate thymidine incorporation. PGE2 augmented thymidine incorporation by increasing cAMP accumulation because in the presence of indomethacin addition of exogenous cAMP enhanced thymidine incorporation in response to low concentrations of IL-1. Elevated cAMP further stimulated PGE2 synthesis. Thus, PGE2 and cAMP interacted to potentiate their mutual accumulation. In summary, IL-1 stimulates PGE2 synthesis. PGE2, in turn, stimulates cAMP accumulation which potentiates IL-1-stimulated PGE2 synthesis and thymidine incorporation.  相似文献   

17.
Given that preliminary work has indicated that prostaglandins can play a role in modulating dendritic cell (DC) functions, we addressed the prostaglandin E(2) (PGE(2)) biosynthetic capacity of mouse DC produced in vitro from bone marrow cells. We observed production of significant amounts of PGE(2), which was reduced by at least 80% when cells were incubated in the presence of indomethacin, a COX-1 preferential inhibitor. Indeed, when tested by Western blot analysis with specific COX-1 and COX-2 antibodies, only COX-1 expression could be detected in the bone marrow (BM)-DC. For lipopolysaccharide (LPS)-treated BM-DC, inhibition of PGE(2) production by indomethacin or by NS-398 (a COX-2-selective inhibitor) used alone was less potent. After LPS treatment of BM-DC, COX-1 and COX-2 expression was potent, and inhibition of PGE(2) synthesis needed the presence of both indomethacin and NS-398. We also observed that exogenous PGE(2) diminished the expression of MHC class II molecules by BM-DC and that prostaglandin and indomethacin had antagonistic effects on cell proliferation during the mixed lymphocyte reaction using BM-DC as stimulatory cells. This assessment of PGE(2) suggests that endogenous PGE(2) produced by DC might play a role as an immunomodulating factor during the immune response. This hypothesis is sustained by the fact that IL-12 production by BM-DC is modulated by exogenous PGE(2) as well as endogenous prostaglandin, since either the addition of exogenous PGE(2) or the presence of LPS (which increases endogenous PGE(2) synthesis) decreases IL-12 production, while NS-398 (which decreases LPS-induced PGE(2) synthesis) increases IL-12 synthesis.  相似文献   

18.
The role of prostaglandins in the regulation of lipopolysaccharide (LPS)-induced interleukin-1 (IL-1) production by murine C3H/HeN resident peritoneal macrophages was studied. IL-1 production was initially studied in the presence of piroxicam and indomethacin, both inhibitors of prostaglandin biosynthesis. IL-1 was assayed using the IL-1-dependent proliferative response of C3H/HeJ thymocytes. LPS stimulation resulted in 15 to 20 ng/ml of prostaglandin E2 (PGE2) produced in the first hour of culture. IL-1-containing supernatants from drug-treated macrophages at dilutions of up to 1:32 resulted in enhanced thymocyte proliferation compared to control, non-drug-treated cultures and contained less than 2 ng/ml of PGE2. Similar enhancement of proliferation could be obtained by incubating non-drug-treated supernatants with monoclonal anti-PGE2 but not anti-thromboxane B2 (TxB2) antibody. Further dilutions of the drug-treated supernatants gave thymocyte proliferation responses which were indistinguishable from control cultures and, correspondingly, had identical values for IL-1 production. The absence of an effect on IL-1 production was confirmed by quantitation of intracellular IL-1 alpha using goat anti-IL-1 alpha antibody and by quantitation of supernatant IL-1 receptor competition assay. Exogenous PGE2, in the concentration range produced in macrophage supernatants (10-20 ng/ml), directly inhibited IL-1-stimulated thymocyte proliferation. Finally, when macrophages were stimulated with LPS for 24 hr in the presence of added PGE2, thymocyte proliferation was inhibited at the lowest supernatant dilutions, but as the IL-1-containing supernatants were diluted out, the assay curves were indistinguishable from non-PGE2-treated control. Thus, in this system, PGE2 has no effect on IL-1 synthesis, but rather has a direct inhibitory effect on thymocyte proliferation. Nonsteroidal anti-inflammatory drugs are not stimulating IL-1 production but are, in fact, relieving inhibition of the thymocyte IL-1 assay caused by the presence of prostaglandins.  相似文献   

19.
Our studies show that in connective tissue cells, induction of PGE2 synthesis in response to IL-1 requires costimulation with platelet-derived growth factor (PDGF) or fibroblast growth factor (FGF). In cells incubated in medium containing fresh serum, IL-1 induced a dose-dependent synthesis of PGE2. However, when the cells were incubated in medium containing low serum or platelet poor plasma (lacking PDGF), IL-1 alone failed to induce PGE2 synthesis. PGE2 synthesis was restored when platelet poor plasma was supplemented with PDGF. Addition of PDGF or FGF together with IL-1 resulted in a 14- and 66-fold stimulation of PGE2 synthesis, respectively. Stimulation was dependent on the concentration of both IL-1 and the growth factor. PGE2 synthesis was also dependent on the synthesis of new proteins. In cells simultaneously treated with IL-1 and PDGF, PGE2 synthesis was initiated after a lag of 2 to 3 h, proceeded first with a rapid rate for 6 h, and then with a slower rate through 24 h. PGE2 synthesis during the latter, slower phase was greatly enhanced by pretreatment with PDGF, but not by pretreatment with IL-1. PDGF pretreatment also resulted in maintenance of 10- to 12-fold higher cell surface IL-1-binding during this phase. These data provide evidence for potentially novel interactions between PDGF and IL-1 activities, one of which is the modulation of IL-1 receptors by PDGF. Furthermore, these studies suggest that by virtue of their effect on IL-1 activities, PDGF and FGF may play additional roles in connective tissues, including an indirect role in inflammatory processes.  相似文献   

20.
Tumor necrosis factor (TNF) is known to be a mitogen for human diploid FS-4 fibroblasts. We have shown in an earlier study (Hori et al. (1989) J. Cell. Physiol. 141, 275-280) that indomethacin further enhances the cell proliferation stimulated by TNF. Since indomethacin inhibits the activity of cyclooxygenase, the role of prostaglandins in TNF-stimulated cell growth was examined. Cell growth stimulated by TNF and indomethacin was inhibited by exogenously added prostaglandins (PGE2, PGF2 alpha, and PGD2), among which PGE2 caused the greatest inhibition of cell growth. Treatment of FS-4 cells with 10 ng/ml TNF resulted in the release of prostaglandins (PGE2, 6-keto-PGF1 alpha, PGA2, PGD2, and PGF2 alpha) 2 to 4 fold over that of untreated cells. The amount of all these prostaglandins increased in a time-dependent manner over 6 h after treatment. In both TNF-treated and control cells, PGE2 was released as the predominant prostaglandin. Furthermore, when PGE2 production and DNA synthesis were determined in FS-4 cells treated with increasing doses of indomethacin, these two cellular responses were inversely affected by indomethacin. These data show that prostaglandins induced by TNF antagonize growth stimulatory action of TNF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号