首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Math5 determines the competence state of retinal ganglion cell progenitors   总被引:5,自引:0,他引:5  
Yang Z  Ding K  Pan L  Deng M  Gan L 《Developmental biology》2003,264(1):240-254
  相似文献   

3.
4.
A fundamental issue concerning development of the vertebrate retina is the relative contributions of extrinsic and intrinsic cues to the determination of cell fate. Recent findings suggest that retinal progenitors go through a series of changes in intrinsic properties that control their competence to make different cell types and that extrinsic cues influence the ratios of the cell types that they produce. Recent studies of the role of the basic helix-loop-helix genes in retinal development have indicated that they can regulate competence and/or other aspects of cell fate determination.  相似文献   

5.
Ma W  Yan RT  Xie W  Wang SZ 《Developmental biology》2004,265(2):320-328
The molecular mechanism of retinal ganglion cell (RGC) genesis and development is not well understood. Published data suggest that the process may involve two bHLH genes, ath5 and NSCL1. Gain-of-function studies show that ath5 increases RGC production in the developing retina. We examined whether two chick genes, cath5 and cNSCL1, can guide retinal pigment epithelial (RPE) cells to transdifferentiate toward RGCs. Ectopic expression of cath5 and cNSCL1 in cultured chick RPE cells was achieved through retroviral transduction. cath5 alone was unable to induce de novo expression of early RGC markers, such as RA4 antigen, neurofilament (160 kDa), and a neurofilament-associated antigen. However, cath5 induced the expression of these proteins when the RPE cells were cultured with medium supplemented with bFGF. Since bFGF alone can induce only RA4 antigen, the expression of the additional RGC markers reflects a synergism between cath5 and bFGF in promoting RPE transdifferentiation toward RGCs. Morphologically, the RA4(+) cells in bFGF + cath5 cultures appeared more neuron-like than those generated by bFGF alone. cNSCL1 also promoted bFGF-stimulated RPE cells to transdifferentiate toward RGCs that expressed RA4 antigen, N-CAM, Islet-1, neurofilament, and neurofilament-associated antigen. We found that cath5 induced cNSCL1 expression, but not vice versa. Our data suggest that cath5 or cNSCL1 alone was insufficient to induce RPE transdifferentiation into RGCs, but could further neural differentiation initiated by bFGF. We propose that intrinsic factors act synergistically with extrinsic factors during RGC genesis and development.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
The lateral line system comprises an array of mechanosensory organs, the neuromasts, distributed over the body surface. Each neuromast consists of a patch of mechanosensory hair cells surrounded by support cells. We show that, in the zebrafish, two proneural genes are essential for differentiation of the hair cells, neuroD (nrd) and atonal homolog 1 (ath1). Gene knockdown experiments demonstrate that loss of function of either gene, but not of the related proneural gene neurogenin1 (ngn1), abrogate the appearance of hair cell markers. This is in contrast to other sensory systems, such as the neurons of the lateral line ganglion, where nrd is regulated by ngn1 and not by ath1. Overexpression of ath1 can induce nrd, and the phenotype produced by loss of ath1 function can be partially rescued by injection of nrd mRNA. This supports the conclusion that the activation of nrd probably requires ath1 in the hair cell lineage, whereas in sensory neurons nrd activation requires ngn1. We propose that the emergence of two atonal homologs, ath1 and ngn1, allowed the cellular segregation of mechanoreception and signal transmission that were originally performed by a single cell type as found in insects.  相似文献   

14.
15.
All pancreatic endocrine cells, producing glucagon, insulin, somatostatin, or PP, differentiate from Pdx1+ progenitors that transiently express Neurogenin3. To understand whether the competence of pancreatic progenitors changes over time, we generated transgenic mice expressing a tamoxifen-inducible Ngn3 fusion protein under the control of the pdx1 promoter and backcrossed the transgene into the ngn3(-/-) background, devoid of endogenous endocrine cells. Early activation of Ngn3-ER(TM) almost exclusively induced glucagon+ cells, while depleting the pool of pancreas progenitors. As from E11.5, Pdx1+ progenitors became competent to differentiate into insulin+ and PP+ cells. Somatostatin+ cells were generated from E14.5, while the competence to make glucagon+ cells was dramatically decreased. Hence, pancreas progenitors, similar to retinal or cortical progenitors, go through competence states that each allow the generation of a subset of cell types. We further show that the progenitors acquire competence to generate late-born cells in a mechanism that is intrinsic to the epithelium.  相似文献   

16.
17.
Evolution of eyes and photoreceptor cell types   总被引:18,自引:0,他引:18  
  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号